
DSP Tidende Marts 2003, nr. 14 6

PC based real-time signal processing

Lars Arknæs, TC Electronic A/S
larsa@tcelectronic.com

ABSTRACT

Audio algorithm development typically implies an
iteration phase where one or more listening experts
adjust and tune the algorithm until the desired
performance and quality is achieved. In this phase it
is vital that the adjustment done by the expert can be
done real-time. A cost-effective fast-prototyping
system is proposed, comprising of a PC running
MatLab as controller and a dedicated DSP windows
DLL to handle real time processing. This solution
proved useful for several development applications.

1. INTRODUCTION

Traditionally most real-time signal processing takes
place in dedicated hardware, often consisting of A/D
converters, D/A converters and DSP's or expensive
workstations. And since each algorithm requires its
own unique user interface, the control path from
user to signal processing often gets complex and
inflexible. In many cases a PC is used as prototype
interface, using screen, keyboard and mouse.

2. THE PC AS DSP PLATFORM

During the last decade the processing power in a
standard office PC has exploded. The core clock
frequency in Pentium processors today is 50 times
higher than the most common PC processors 10
years ago, so even though the Pentium was not
designed to be a DSP it has a lot of processing
power, which easily can compete with many
dedicated DSP's. Furthermore the signal processing
can be performed on the same platform as the user
interface, which is very convenient when the
listening/tuning process has to take place at external
locations (cinemas, theatres etc.). Typically the
mapping software between user parameters and

signal processing coefficients are written in C++ or
another high-level language, but in the algorithm
development phase it is convenient to use MatLab as
a fast prototyping tool. MatLab includes many built-in
signal processing design and analysis functions,
which is being used worldwide. Furthermore MatLab
can be used to create graphical user interfaces.

3. OBJECT ORIENTED SIGNAL PROCESSING

In audio signal processing many building blocks are
used again and again from one algorithm to the next,
so an object oriented "LEGO kit" of these building
blocks is desired. Such a system has been developed,
comprising of many well known signal processing
operations such as IIR filter, FIR filter, Fast
convolution, Matrix multiplication, soft clipper,
quantizer, signal generator, wave recorder, wave
player and so on. The system, called WaveProc, has
been made as a windows DLL which can be called as
a function from MatLab.

Figure 1 PC based real-time signal processing using

MatLab as controller

VIDENSKABELIGE INDLÆG

DSP Tidende Marts 2003, nr. 14 7

The signal interface to the PC is an ASIO (Audio
Stream Input Output) compatible soundcard, which
supports high quality (24 bit) multi channel digital I/O
with sample rates up to 96 KHz, which is sufficient
for most audio applications. The signal delivered
from the ASIO driver is forwarded to the signal
processing in the waveproc.dll. The signal processing
consists of a desired set of building blocks, picked
from the "LEGO kit". Each block is added to the
algorithm via the WaveProc function. The number of
channels in each block and signal routing between
blocks is programmable. Another important issue to
address is whether the signal processing in each
block should be block based or sample-by-sample
based. The block-based choice has the advantage of
efficiency, but a major drawback due to the
impossibility of making feedback loop in the signal
path. That is the main reason why the sample-by-
sample solution was chosen. When the feedback loop
possibility is present, the MatLab programmer also
must decide in which sequence the signal process in
each block is executed. In many algorithms, some
part must run at a lower or higher rate than the input
signal sample rate. This feature has also been
included in the WaveProc system, enabling each
block to execute either once per input sample, P
times per input sample or once every Q input sample.

4. PERFORMANCE

The DSP performance on a PC platform depends on a
lot of factors, not only the core clock frequency. In
many cases the bottleneck is memory access,
particularly when the algorithm needs large blocks of
memory, which exceeds the CPU cache, like FIR
filters or FFT's. A foundation stone in digital signal
processing is the IIR filter. In WaveProc the IIR
building block is implemented as a multi-channel
cascade of second order sections (biquads), where
each channel has the transfer function:

∏
=

−−

−−

⋅+⋅+

⋅+⋅+
=

M

1k
2

k2
1

k1

2
k2

1
k1k0

zaza1

zbzbb
)z(H

Both data and coefficients in the filter is 64 bit
floating point. On a standard office PC (1.8 GHz
Pentium) a cascade of 500 biquads running at a
sample rate at 48 KHz in a single channel, consumes
65% of the CPU usage. On a dedicated DSP, a
Motorola 24 bit fixed point, a biquad (single
precession with first order noise feedback) can be
executed on 7 cycles. So when the sample rate equals
48000 KHz and the DSP clock frequency is e.g. 150

MHz, only (150M/48K) / 7 ≈ 446 biquads can be
executed per sample. (Of course several hundreds of
24 bit biquads in cascade is not a very wise strategy,
due to the noise level).

The MatLab control code used for the
implementation of the biquad cascade is:

%--------- ASIO driver setup ---------------------
waveproc(’setdriver’,’ASIO DIGI9636/52’);

waveproc(’open’,48000,25,25);

%--------- Create objects based on CElement ------

inBlk = waveproc(’add_element’, ’source’)

iirBlk = waveproc(’add_element’, ’iir_filter’)

outBlk = waveproc(’add_element’, ’destination’)

%--------- Set execution sequence ----------------

waveproc(’set_exeseq’, [inBlk iirBlk outBlk -1]);

%--------- Set number of outputs -----------------

waveproc(’set_no_outputs’, inBlk, 1);

waveproc(’set_no_outputs’, iirBlk, 1);

waveproc(’set_no_outputs’, outBlk, 1);

%--------- Set routing (sources) -----------------

waveproc(’set_source’, inBlk, 1, 1);

waveproc(’set_source’, iirBlk, inBlk, 0);

waveproc(’set_source’, outBlk, iirBlk, 0);

%--------- Set algorithm specific properties -----

NBIQ = 500;

waveproc(’set_data’,iirBlk,’no_biquads’,NBIQ);

coef = ([1 0 0 1 0 0]’*ones(1,NBIQ))’;

waveproc(’set_data’,iirBlk,’coefficient’,coef);

%--------- Let the show begin --------------------

waveproc(’start’);

5. CONCLUSION

Compared to other real-time signal processing tools
like MatLab/Simulink, WaveWarp, SoundWeb or Reactor,
the WaveProc system enables you to implement your
own (sample-by-sample) signal processing in a
relatively efficient language (C++) and utilizes the
flexibility and ease-of-use of MatLab as a controller. A
major drawback of the system (when running under
windows) is the latency from digital input to digital
output, which makes the system inapplicable if e.g.
the system is located in a feedback loop. This latency
is due to input/output buffers, which protects the
signal processing against sudden task shifts of the
operating system. The need for large protection
buffers (hence latency) could perhaps be reduced if
the system was moved to run under a more
predictable operating system, like e.g. Linux.

