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ABSTRACT 

The evaluation of twelve models of loudness perception is presented. One of the loudness models is based on a 
novel algorithm, and another is based on a combination of two known measurement techniques. The remaining 
models are all implementations of common or standardized loudness algorithms. The ability of each model to 
predict or measure the subjective loudness of speech and music segments is evaluated. The reference loudness is 
derived from two listening experiments using the speech and music segments as stimuli. Different statistical 
measures are employed in the evaluation of the models, so that both the absolute performance of the models and the 
performance relative to the between-listener disagreement are measured.  

 

1 INTRODUCTION 

Most everyday listening situations involve reproduced 
sound which is a combination of music and speech. The 
loudness of the sound, perceived by the listener, will not 
only depend on his or her volume setting, but also on 
the particular source and format of the audio material. 
Normally the programme material that is broadcast on 
radio/TV or distributed on CD has been dynamically 
and spectrally processed, in order to fulfill aesthetical 
and technical requirements. Such processing may also 
affect the perceived loudness of the material. Listeners 
often experience undesirable 'jumps' in loudness 

between different sources or broadcast channels, and 
also between different programme segments within the 
same channel.  

If the perceived loudness could be predicted, it would 
be possible to measure and control the loudness of the 
programme material. Loudness perception has been 
researched extensively in classical psychoacoustics, 
under laboratory conditions, traditionally using 
stationary and/or synthetic signals. Moreover, so-called 
objective loudness measurement procedures have been 
under continual development for decades. Nevertheless, 
no loudness model has yet been established as an 
accurate measure of the loudness of audio material such 
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as the music, speech, and commercials being broadcast 
on radio and TV.  

The applications for such a loudness model would 
include loudness meters [1, 2, 3, 4, 5, 6], as well as 
devices for loudness control [7, 8, 9, 10, 11, 12]. In 
connection with productions for broadcast, applications 
of a loudness meter has been studied in connection with 
monitoring and leveling practices [13, 14, 15, 16, 17]. 
The "loudness maximizing", achieved by aggressive 
application of dynamics compression, is frequently 
performed in the mastering of audio CDs. This practice 
may lead to an undesirable sound, as well as technical 
problems [18, 19, 20]. An accurate loudness model may 
also be desirable for other applications, for example in 
sound quality research where the a set of stimuli might 
need to be "loudness equalized" so that other 
(subjective) factors can be investigated independently of 
loudness [21, 22].  

The perceived loudness of music and speech can be 
accurately measured by means of a controlled listening 
experiment [23, 24]. The loudness of homogeneous 
sound segments, with a duration of say 10-15 seconds, 
may be compared as the overall loudness of each 
segment is perceived to be fairly constant. The property 
of the sound which is assessed is its long-term 
loudness. In some applications of a loudness model, it 
would be desirable to employ a short-term loudness 
measurement in combination with the long-term 
loudness. However, as it might be difficult to assess the 
perceived short-term loudness of music and speech in 
experiments, only the long-term loudness is examined in 
this paper. The specific relation between the short- and 
long-term loudness has not yet been established, apart 
from the notion that the short-term loudness must 
somehow converge towards the long-term loudness 
when the analysis window is increased in duration (e.g. 
[25]).  

This paper presents the evaluation of twelve models of 
loudness perception. The ability of each model to 
predict or measure the perceived loudness of speech and 
music segments is tested. Two independent listening 
experiments were conducted, with a collection of speech 
and music segments as stimuli. The results of the 
experiments provide the subjective reference data 
against which the models are evaluated. Loudness is 
subjective by nature, and as such it is more difficult to 
'measure' than physical properties. In this paper, we 
propose both a visual method and a statistical method of 
evaluating the loudness models, while taking both the 

uncertainty and subjectivity of the reference data into 
account. Other aspects, important for the application of 
a loudness model, such as real-time operation, reference 
level, and metering characteristics, are beyond the scope 
of this paper.  

Most of the established loudness models were originally 
constructed to measure the loudness of stationary 
signals, such as noises. We present two new models of 
loudness that were developed specifically for estimating 
the perceived loudness of music and speech segments.  

1.1 Some aspects of loudness perception 

Loudness perception has been studied for centuries and 
many findings have been described in the literature, e.g. 
[26, 27]. A few essential properties of the auditory 
system, related to loudness perception, are summarized 
below: integration along a perceptual frequency axis, 
masking, adaptation, compression and integration along 
the time axis. 

1.1.1 Intensity perception 

One basic aspect is how we perceive sound with 
different intensities. The transfer function from the 
physical magnitude of the sound stimulus to the 
perceived magnitude is not linear. A good (but not the 
only) approximation to this transfer function is 
expressed in Stevens' power law [28] (after [29, 30]), in 
which a characteristic power function is applied to the 
physical magnitude (intensity), I, to get the perceived 
magnitude (sensation), S :  

nIKS =  (1) 

In eq. 1, n is an empirically derived power 
corresponding to the particular type of stimulus, and K 
is a constant adapted to the unit used to make the 
judgment. For loudness perception, the power, n, is 
around 0.3 [31]. This applies to loudness well above the 
threshold in quiet. For low frequencies the power is 
higher, meaning that a given change in physical 
intensity will be perceived as a larger change than if a 
similar intensity change was made at medium or high 
frequencies. The power law can be reformulated using 
logarithms: 

KInS logloglog +=  (2) 

This correspondence between physical and perceived 
magnitudes is one of the motivations for the decibel 
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scale. For example: With two sounds, one of which is 
10 times as intense as the other in the physical domain, 
the ratio in the sensation domain is: 0.210 3.0 ≅ . Thus, 
by increasing the intensity of the sound stimulus by a 
factor of 10 the perceived loudness is only twice as 
high; so a compression takes place. (Other senses have 
other powers, n, some of which are larger than 1, in 
which case the power law becomes an expansion 
function [29].) 

The perceived loudness can be expressed in sone or 
phon (e.g. [27]). The sone scale is a ratio scale, so the 
value expressed in sone is directly proportional to the 
perceived loudness. For instance, if one sound has a 
loudness of 1 sone, another sound, which is perceived as 
twice as loud, would have a loudness of 2 sone. It may 
be more convenient and/or accurate to express loudness 
as a loudness level, in phon. The phon scale is similar to 
the dB scale and the two coincide, for 1 kHz tones, at 
levels above approximately 40 dB sound pressure level.  

When comparing the loudness of two sounds, by 
adjusting the relative level to match their loudness, the 
non-linear characteristic in itself is less important. The 
loudness difference, in this case, is typically expressed 
in phon or dB. 

1.1.2 Spectral aspects 

The loudness function expresses the correspondence 
between the physical level of some audio signal and its 
loudness. A strong frequency-dependence of the 
loudness functions exists – often expressed in the equal 
loudness contours, e.g. [32]. Alternatively, the constants 
n and K in eq. 1 and eq. 2 could be considered as 
functions of frequency. An important property of 
loudness perception, and one which might be surprising 
at first, is the spectral loudness summation. In short, the 
loudness of a signal increases with its bandwidth, for a 
constant total signal power. The effect of this property, 
in the extreme case of the difference between a pure 
tone and wide band noise (uniform excitation noise or 
white noise), is 11-18 dB, depending on the SPL 
[27](sect. 8.3). 

The spectral loudness summation is associated with the 
concept of critical bandwidth [33, 27]. Within one 
critical band, which is approximately 1/3 octave wide at 
medium and high frequencies, the loudness of a signal, 
at a given level, is independent of its bandwidth. When 
the signal's bandwidth grows outside the critical band 
the loudness increases, even though the total level is 

kept constant. The 'frequency' axis, along which the 
loudness integration takes place, is specified in different 
units, depending on the particular definition of the 
critical bandwidth; the most common units are the Bark 
and ERB (equivalent rectangular bandwidth) [31].  

Signals of different frequencies also interact in a 
complex way known as spreading, which is closely 
related to masking. An effect of this phenomenon is that 
not only the actual frequencies of a signal contribute to 
the loudness, but also to some extent the higher and 
lower neighboring frequencies. As a consequence of 
spreading, the loudness functions for pure tones and 
noise are different. For a 1 kHz pure tone, the dB SPL 
and phon scales coincide above 40 dB SPL, whereas a 
noise signal will deviate, partly due to level dependent 
spreading functions [27, 31].  

1.1.3 Temporal aspects 

The hearing does not react instantaneously to sound – 
building up the loudness takes some time. Within 
certain limits, the loudness is proportional to the energy 
of a tone or noise burst. This principle is valid up to a 
duration of about 100 ms, where the loudness of the 
burst is perceived as equal to a continuous signal of the 
same amplitude [34, 35]. Furthermore, when a sound 
ends, the loudness perception does not die out 
instantaneously. This is related to the post-masking 
effect. Unfortunately, no simple time constant can be 
specified for the temporal loudness integration. The 
loudness function depends both on the bandwidth (white 
noise, narrow-band noise, sine wave) and on the 
duration of a burst [36, 37, 38].  

A more long-term temporal effect is the temporal 
threshold shift that occurs after listening to loud sound 
for a certain duration, e.g. at a rock concert. The hearing 
ability is reduced for some time afterwards, but will 
(hopefully) return to its normal state after some hours. 

1.1.4 Spatial aspects 

The direction dependent filtering, caused primarily by 
the outer ear, influences the loudness perception. To 
complicate matters further, we normally listen with both 
ears at the same time, leading to the non-trivial 
phenomenon of binaural loudness summation [27]. 
When listening to a sound in a room the time domain 
signal is smeared by the room's reverberation 
characteristics. This filtering is quite complex and 
furthermore position dependent.  
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1.1.5 Test signals as stimuli 

In order to obtain an understanding of the basic auditory 
mechanisms psychoacousticians have generally 
employed audio signals with certain analytic properties. 
Signals such as constant or pulsating sine waves, noise 
of varying bandwidth, and tone complexes, have 
typically been used as stimulus [27, 26]. Although such 
signals are good for the purpose for which they are 
used, they are unfortunately quite far from the typical 
programme material on radio/TV broadcasts, in terms of 
spectral and dynamic content. Real-world signals, such 
as music, are typically broadband and fluctuating. Even 
though much is known about the auditory mechanisms, 
the highly complex nature of real-world signals presents 
a challenge to traditional psychoacoustic models.  

The research driven by the 'users', such as broadcasters 
and audio equipment manufacturers, tends to focus on 
real-world material in what could be called a top-down 
approach – in this case to loudness perception. This is 
perhaps due to the difficulty of extrapolating results 
derived from simple signals to very complex ones. The 
research driven by academic institutions, on the other 
hand, tends to focus on simple sounds, either in a top-
down or bottom-up approach to understand the 
individual auditory mechanisms, often in isolation.  

1.2 The ITU SRG-3 perspective 

In September 2000, the WP-6P of the ITU-R set up a 
Special Rapporteur Group, the SRG-3, to investigate 
into "Audio metering characteristics suitable for use in 
digital sound production" [39]. Specifically, the ITU-R 
considered "that listeners desire audio programmes to 
be uniform in subjective sound level", "that current 
knowledge of human psychoacoustics may make it 
possible to create a metering algorithm that would 
provide for indication of perceived loudness", and "that 
the state of digital signal processing makes it practical 
to implement complex algorithms into cost-effective 
devices". Thus the Question 2/6 was posed, part 2 of 
which is to study: "What audio metering characteristics 
should be used to provide accurate indication of 
subjective programme loudness?", with the goal of 
basing a new ITU-R Recommendation on the results.  

In order to decide on this question, a set of subjective 
reference data was produced by means of a loudness 
assessment experiment. In the experiments, a segment 
consisting of female speech was used as a fixed 
reference sound against which the other sound segments 

were matched in loudness. A total of 49 different sound 
segments were collected to be representative of 
broadcast programme material. In the collection, 13 of 
the segments are music, and the rest are primarily 
speech material with or without various background 
sounds. Listening experiments were conducted at 5 
different test sites. Some details of the experiments and 
their results have been presented in [40, 41, 42].  

In April 2003, a reflector for the SRG-3 was created at 
the Yahoo Groups web site, in order to allow all 
interested parties to participate1 in the ongoing work 
[43]. (A number of the arguments presented in this 
paper (section 5) have already been put forward as 
contributions in the SRG-3 forum.)  

Later in April 2003, a "Call for submission of audio 
loudness metering methods" was issued [44]. The 
response was a total of 10 loudness metering methods 
submitted by 7 different research organizations and 
private companies. The loudness algorithms 
implemented in the different meters were not disclosed 
to the SRG3. Some of the submitted loudness meters 
were implemented in hardware, others in software; 
some measured the loudness level in phon, others in 
relative dB. The official requirement of the meters was 
simply that they should provide a method of measuring 
the long-term loudness of a given sound segment, 
relative to a reference sound segment.  

The proposed loudness meters were collected by the 
CRC [45], where they were then evaluated. Each model 
was used to measure the loudness of the same sound 
segments used as stimuli in the listening experiments. 
The criteria and methods of evaluation were discussed 
on the SRG-3 reflector, and the results of the evaluation 
were presented at the Montreal Meeting of ITU-R 
WP6P SRG3 [46], and was subsequently published in 
[42]. Two of the four models submitted by Dolby Labs 
were the Leq(A) and Leq(B), and during the meeting a 
technical description of the two others was provided. 
Briefly, the results of the evaluation indicated that two 
simple RMS- or energy-based loudness measures were 
superior to any of the submitted loudness meters, in 
estimating the relative loudness level of the 48 different 
sound segments. It has been discussed, within the SRG-
3, whether the collection of sound segments, used in the 
experiments and the meter evaluation, was too narrow 
in terms of spectral and dynamic variation. The question 
                                                      
1 Consequently, because non–ITU-members contributed to the 
work, the Special Rapporteur Group (SRG-3) was officially 
changed into a single Special Rapporteur, Mr. Craig Todd. 
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of whether certain bias factors might have been 
influencing the results, has also been raised.  

At the time of writing, mainly part 2 of the Question has 
been addressed within the SRG-3 – namely, how to 
accurately measure the long-term loudness – and the 
results are inconclusive. A new round of listening 
experiments is being planned [47], to produce subjective 
reference data to complement (and validate) the 
reference data from the first round.  

2 PREVIOUS LOUDNESS MODELS 

Any loudness model can be categorized as either a 
single-band model or a multi-band model. The multi-
band models split the input signal into multiple 
frequency bands that are subsequently combined into a 
loudness estimate, whereas the single-band models only 
have one signal path through the model. Ten of the 
loudness models, evaluated in this paper, are 
implementations of common or standardized objective 
loudness measures. The investigation included 8 
different single-band models, based on two different 
principles: equivalent sound level (Leq) and PPM level 
measurement. Two variants of the Zwicker loudness 
model were included as instances of a prevalent multi-
band model. Sections 2.2-2.4 provide a brief structural 
description of each of these evaluated loudness models.  

2.1 Types of Loudness Models 

A classic question, related to modeling, is whether the 
model should reflect the inner structure of the (auditory) 
system, or should simply model the transfer 
characteristics between input and output variables (or 
terminals). Knowledge of a complex system can often 
be used to break down the system into simpler sub-
systems, which may then be modeled using more 
manageable mathematics. Complex auditory models 
may cover the complete physical system from outer ear 
to the hair-cells [48, 49], and sometimes even cognitive 
effects.  

If, in the case of loudness models, only certain types of 
input are considered, the model can be simplified 
dramatically. For example, the input might be limited to 
be just isolated pure tones. In this case, determining the 
loudness function by means of listening experiments, 
and subsequently computing the model parameters, is 
relatively straightforward [27]. In practice, a switching 
mechanisms might be used to adjust certain model 
properties, depending on certain properties of the input 

signal. An examples of this principle is a model that 
handles noise differently than tonal components [31, 
50]. An application-specific model might be suitable 
just for speech signals and not for broadband music – or 
pure tones, for that matter. Such a model would be 
simpler than a more general one, but would often fail 
badly when used outside its intended scope.  

Some earlier loudness models were designed to operate 
only on stationary signals, that is, sounds which can be 
described completely by their frequency spectrum, such 
as noises and tone complexes (e.g. [51]). Newer models 
attempt to also predict the perceived loudness of 
fluctuating signals [34, 35].  

Although it is known that the inner ear performs a 
frequency analysis of the incoming sound, and that 
signal frequencies interact in a complex way [27], 
several de facto loudness models have been constructed 
without a frequency analysis (i.e. single-band models) 
[52, 53, 54, 55]. Some issues are common to both 
single-band and multi-band types of loudness models. 
For instance, in which domain – e.g. linear, squared, log 
– is time integration be handled.  

2.1.1 Single-band methods 

Several single-band models have been constructed over 
the years, based on the frequency-dependency of 
loudness perception and employing an appropriate 
envelope detector. A frequency weighting is typically 
based on an approximation of one of the equal loudness 
contours. As these contours vary as a function of level, a 
compromise must be made in the choice of weighting, 
e.g. the A- or B-weighting curves [56]. Spectral 
loudness summation (section 1.1.2) cannot be modeled 
using a simple broadband method. The typical use of 
single-band models is therefore in conjunction with 
broadband signals with similar spectral content, and 
within a relatively narrow level range.  

The temporal properties of hearing can be modeled 
when using a suitable detector to account for the smaller 
loudness of short signals [34]. Sometimes, the long-term 
energy-integration measure Leq is used in single-band 
methods. Leq is a measure of the equivalent power, or 
RMS value, over time – from seconds to hours 
depending on the application. The duration dependent 
loudness (section 1.1.3), for tone and noise bursts are 
handled reasonably well by this energy-integration, 
even in single-band models. Especially when using a 
long-term average method, such as the Leq, the 
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measurement can benefit from the use of a silence 
detector. Usually, a loudness measurement method is 
expected to estimate the loudness only when a signal is 
present, e.g. [53].  

2.1.2 Multi-band methods 

The discovery and quantification of the spectral 
loudness summation [33] has led to loudness models 
incorporating several frequency bands; some of them 
using critical bandwidth filters, some with fewer, and 
hence broader, filters in order to reduce complexity. 
Two pioneers in this area were S. S. Stevens and E. 
Zwicker. Although the multi-band models are generally 
more complex than single-band models, due to the extra 
task of filtering the signal into multiple bands, the multi-
band approach provides some fundamental advantages 
in the accurate modeling of perceived loudness. 

The method by Stevens is described in the standard ISO 
532-A as being suitable for broadband signals without 
strong spectral peaks of large frequency separation [4]. 
Furthermore, a diffuse sound field is assumed and the 
sound should be steady-state. This latter condition is 
less limiting than it might seem, as a diffuse sound field 
will smear an impulsive signal in the time domain. The 
frequency analysis is basically performed in whole 
octaves, although the method can adapted to half- and 
third-octaves. The model comprises spectral loudness 
summation.  

The method of Zwicker is also described in the ISO 532 
standard, as method B [4]. In the standard a third-octave 
frequency analysis is assumed. This is a fairly good 
approximation to the critical bands. In the original work 
a filter bank with true critical bandwidth filters was used 
[51], but for technical and practical reasons, a third-
octave filterbank was preferred. Compared to the 
method by Stevens, the Zwicker method comprises a 
more sophisticated spectral loudness summation 
including a spreading function closely related to the 
effect of simultaneous masking. Furthermore, frequency 
weightings for both diffuse and free sound fields are 
included. The method was indicated as suitable for both 
narrow and broadband signals.  

Several researchers have contributed with refinements 
to the original Zwicker method [34]. In Cambridge 
(UK), Moore, Glasberg and colleagues have proposed 
another interpretation of critical bandwidth, and made 
several improvements, for instance for calculating the 
loudness of fluctuating sounds [35, 5, 50, 3].  

Starting from the application side, work at the 
laboratories of the broadcaster CBS resulted in a 
loudness model based on octave-wide filters. It was 
constructed for measuring the loudness of signals 
typically encountered in radio and TV broadcasts [1]. A 
preliminary study [57] justify the properties of the 
model. The main starting point was Stevens' work, and 
also spectral loudness summation and time constants 
were included in the model.  

A recent study [25] describes the effect on loudness 
caused by applying varying degrees of multi-band 
dynamics compression to speech signals. One of the 
interesting conclusions was that the long-term loudness, 
for a given signal, increases with the degree of 
dynamics compression applied, and with the RMS value 
held constant. It is generally expected that the RMS 
value increases for a given peak level when dynamics 
compression is applied. Loudness is often thought to be 
proportional to the RMS value (e.g. [55]), but the study 
[25] has demonstrated that even when the RMS value is 
kept constant the loudness depends on the degree of 
dynamics compression – or rather the resulting 
fluctuation depth. The loudness model described in [25] 
correctly models this effect of compression – at least to 
some extent.  

2.1.3 Annoyance vs. loudness 

It may be difficult to distinguish clearly between 
loudness and annoyance, as loudness is a major – but 
not the only – contributor to annoyance. Legislation 
regarding environmental noise is often based on the 
long-term A-weighted measurement, the Leq(A), but 
with some corrections due to the known discrepancy 
between the basic Leq(A) and perceived loudness or 
annoyance. Specifically, signals containing strong tonal 
or impulsive components are generally considered to be 
more annoying than more random signals of the same 
level. A Danish guideline for environmental noise [58] 
therefore indicates that 5 dB(A) should be added in the 
case of clearly audible tonal components or clearly 
audible impulsive components in the noise. The 
assessment of whether the sound is tonal or impulsive is 
specified to be subjective, due to the lack of an 
objective method. Similar principles apply in a recent 
EU directive [59] on environmental noise, but in which 
the exact amount of level to add, in case of tonal or 
impulsive character, is not indicated (work in progress).  
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2.2 Leq or RMS measures 

The Leq measure is the equivalent continuous sound 
level, or time-average sound level. The Leq corresponds 
to an (energy domain) average over a time interval T 
during which the sound level is measured, in dB [60]. A 
mathematical definition of Leq is:  
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The )(txW  is the frequency-weighted sound pressure of 
the measured signal at time t, and )(txRef  is the 
reference signal. Typically a frequency weighting W is 
applied to the measured signal, prior to the integration 
or averaging. The term linear Leq, or Leq(Lin), refers to 
the unweighted Leq as opposed to a frequency-weighted 
Leq. The second formulation in eq. 3 is included to show 
the Leq as a root-mean-square (RMS) type of 
measurement which is transformed into dB.  

The Leq is commonly used in acoustical measurements 
of sound sources with a time-varying level. Used 
together with certain frequency weightings the Leq 
measure is often considered a measure of loudness. 
When the Leq measure is employed as a model of long-
term loudness, in this study, we simply assume that the 
measurement period T is equal to the duration to the 
sound segment to be measured. Note that although the 
Leq was constructed as a dose measurement, it is only 
applied here for homogenous sound segments. The 
algorithm below shows the expression of the Leq as one 
of the loudness models that we evaluated. 

Algorithm for the Leq(Lin) loudness model: 

1. calculate the unweighted Leq measurement, in dB, of 
the entire sound segment (eq. 3) 

2. apply calibration gain, so that a 1 kHz full-scale test 
tone corresponds to a fixed loudness level reference 
(such as 100 phon) 

2.2.1 Leq (A, B, C, D, M, RLB)  

The sensitivity of the human hearing is frequency 
dependent (e.g. [61]). Therefore a frequency weighting 
of the signal is commonly applied, prior to the 
calculation of the Leq. Generally, such frequency 

weightings attenuate the low-frequency part of the 
spectrum, corresponding to the region where the hearing 
is least sensitive, roughly, below 100 Hz. Some of the 
weightings attenuate the high-frequency region as well, 
and may incorporate a peak in the frequency response 
around 1-4 kHz, where the hearing is most sensitive. As 
the sensitivity of hearing also depends on the absolute 
level of a sound, a given frequency weighting 
corresponds to a certain SPL range. Furthermore, the 
frequency weightings may serve different purposes: for 
instance, it may be applied to achieve an estimate of the 
perceived loudness or of the annoyance of a certain 
category of sounds.  

In this study, 5 standardized frequency weightings have 
been implemented. The A-weighting is most commonly 
used with Leq measurements [60]. The B- and C-
weightings were constructed to complement the A-
weighting, such that A-weighting should be used at low 
sound levels, B at medium, and C at higher sound levels 
[56]. The A-weighting was originally a simple 
approximation to a 40 phon equal loudness curve, and 
its although its correlation with loudness (and with 
annoyance) has been questioned [62], sound level 
measurements often report the dB(A).  
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Figure 1. Frequency response of the A, B, C, D, M, and 

RLB frequency weighting filters. All the curves are 
aligned in level so that their magnitude response at 1 

kHz is 0 dB. 

The CCIR specified a weighting curve for the purpose 
of measuring low-level noise in electroacoustic devices, 
with a quasi-peak detector [63, 54]. However, this 
frequency weighting is also being used together with Leq 
measurements. This so-called Leq(M) – the "M" is for 
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movie – has been promoted by Dolby, to be used for 
measuring the loudness of different segments of movie 
soundtracks such as advertisements [64, 52]. The 
frequency response of the A, B, C, D, and M-weightings 
are shown in Figure 1. 

Soulodre and Norcross [55] evaluated different loudness 
models against subjective reference data. All the models 
were based on frequency weighted Leq, and a new 
frequency-weighting was introduced: the Revised Low-
frequency B-weighting (RLB). In the evaluation against 
the subjective data, the Leq(RLB) was ranked higher 
than any of the other evaluated models. Note that the 
RLB frequency weighting corresponds to a high-pass 
filter, as opposed to the A, B, C, D, and M-weightings. 
A similar high-pass weighting has reportedly been used 
for some years by the Danish broadcaster TV 2, in 
connection with loudness metering [42]. The frequency 
response of our RLB filter implementation is shown in 
Figure 1.  

Algorithm for the frequency-weighted Leq models: 

1. apply the frequency weighting filter, W, to the 
sound segment 

2. calculate the Leq measurement, in dB, of the entire 
sound segment (eq. 3) 

3. add calibration gain, so that a 1 kHz full-scale test 
tone corresponds to a fixed loudness level reference 
(such as 100 phon)  

2.3 PPM + percentile  

The Peak Program Meter (PPM) was developed as an 
alternative to the traditional VU meter. The PPM 
displays the pseudo-peak level of audio signals, using a 
fast attack time constant, allowing the meter to detect 
peaks, and a slow release time constant, to give the user 
time to read the meter's peak indication [6]. There are 
several PPM specifications with minor variations of the 
attack and release time constants. The implementation 
used in this evaluation was based on the German DIN 
45406 standard (which is similar to IEC 268-18). The 
PPM is commonly used in the production of digital 
audio, where the engineer needs to monitor that the 
signal does not exceed 0 dBFS.  

2.3.1 From envelope to long-term loudness 

Unlike the Leq measurement, which calculates a single 
average value, the PPM measurement returns a time-
domain signal – an envelope in dB. Suppose an audio 
engineer was assessing the loudness of an audio signal, 
by watching the PPM, without hearing the sound. In this 
case the engineer and the PPM would together 

constitute a loudness model. For the purpose of our 
evaluation, we have replaced the engineer by a simple 
statistical function, to calculate an estimate of the long-
term loudness given the envelope from the PPM 
measurement.  

When the temporal dimension of the envelope is 
discarded, the data could be described by the 
distribution of dB values. One way of estimating the 
long-term loudness would then be to calculate a certain 
percentile of the distribution; for example, the 95th 
percentile is that value which the envelope is below 
95% of the time. Spikofski and Klar considered the 
cumulative frequency distribution, based on histograms 
of PPM levels [65, 9, 10]. This approach is equivalent to 
the percentile method used here, because the cumulative 
distribution can be obtained by integrating over the 
envelope level distribution.  
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Figure 2. Left: The first 4 seconds of female speech; 
sample magnitudes (grey), PPM envelope (black). 

Right: The distribution or density of the PPM envelope 
levels; the 50th, 75th, and 95th percentiles of the 

distribution are marked. 

The calculation of the long-term loudness estimate, 
based on the PPM envelope, was evaluated for three 
different percentile values (section 6.1): the 50th, 75th, 
and 95th percentiles of the distribution. To illustrate this 
procedure, Figure 2 shows the envelope produced by the 
PPM, for the first 4 seconds of track 53 (female speech) 
from the SQAM CD [66]. The figure shows the 
distribution of dB levels as a density function – in other 
words, the density plot on the right contains the same 
information as the envelope plot on the left, except that 
the time dimension of the envelope is collapsed. The 
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three different percentiles of the distribution are 
indicated in the figure.  

In the algorithm below, steps 1-3 and 5 ordinarily 
belong to the PPM measurement.  

Algorithm for the PPM+percentile loudness model2: 

1. full-wave rectification of the input signal 
2. asymmetrical low-pass filter, attack and release 

time constants as in the PPM 
3. convert the output to an envelope in dB 
4. calculate the pth percentile of the distribution of 

envelope levels 
5. add calibration gain 

2.4 Zwicker Loudness models 

In 1960, Zwicker presented a procedure for calculating 
the loudness of stationary sounds [51]. This highly 
influential model of loudness was based on a frequency 
division into critical bands [67] – hence the Zwicker 
model is a multi-band loudness model. The input to the 
model is the 1/3-octave spectrum of the sound, and the 
output is the estimated loudness in sone. The Zwicker 
model was adopted in the standards DIN45631 and ISO 
532-B [4].  

Appell et al. reviewed and measured the properties of 
four different multi-band loudness models [30]. It is 
described how these models, which are more or less 
based on the Zwicker model, have fundamental 
similarities in their structure and processing principles. 
The algorithm below outlines the processing steps of 
such Zwicker-type models.  

General algorithm for Zwicker-type loudness models: 

1. linear filter, to simulate the outer and middle ear 
frequency response 

2. auditory filterbank, to simulate spectral masking (in 
Bark or ERB) 

3. calculate the excitation pattern (excitation level in 
each filterbank channel) 

4. calculate the specific loudness, using a power law 
compression, and accounting for hearing threshold 

5. calculate the total loudness, in sone, by integrating 
the specific loudness across critical bands 

6. (if required) transform the sone to phon (or some 
other loudness scale) 

The original Zwicker model has been extended, for 
instance to better cope with time-varying sounds by 
modeling the post-masking effect [68, 27, 5]. Even 
                                                      
2 For efficiency reasons steps 3 and 4 could be interchanged; 
the percentile statistic is invariant to transformation by any 
monotone increasing function. 

though the Zwicker model is the most computationally 
complex model tested here, real-time implementations 
are available, e.g. [69].  

2.4.1 Two separate implementations 

For the purpose of our evaluation, an estimate of the 
long-term loudness of a sound must be calculated, given 
the time-domain signal or envelope, in sone, calculated 
by the Zwicker model. We have used two separate 
Zwicker model implementations, partly to test two 
different methods of calculating the long-term loudness 
estimate, and partly to detect any implementation-
specific functioning.  

1) SI++ implementation of the Zwicker model 

The commercial acoustics analysis software, SI++, 
provides several implementations of the Zwicker 
loudness model [70]. We used the lautheitII function, 
which is implemented with a filterbank rather than with 
FFT (which lautheitI is). LautheitII accepts an audio 
signal as input, and computes the Zwicker loudness 
according to the ISO 532-B standard, furthermore 
incorporating post-masking (which is not specified in 
the standard). The function was used in free field mode, 
with a specified output rate of 50 Hz.  

Zwicker and Fastl presented the N5 loudness which is 
the loudness, in sone, that only 5% of the loudness 
values are above, in the cumulative loudness 
distribution [27] (pp.318-324). The N5 was used to 
predict the subjective overall loudness of noise 
emissions, based on a Zwicker loudness model. 
Moreover, the documentation accompanying a 
commercial implementation of the Zwicker loudness, 
states that, "The perceived loudness of a long, non-
stationary sound is the loudness value which is 
exceeded 5 % of the time in the loudness/time course." 
[71]. This statistic corresponds to 95th percentile.  

We have chosen to estimate the long-term loudness 
using a percentile statistic of the distribution of sone 
values, analogous to the procedure we used with the 
PPM measurement (section 2.3.1). We shall denote this 
model "Zwicker&Fastl(95%)", when the 95th percentile 
is used. Like in section 2.3.1, three different variants the 
model were evaluated, with different percentile values. 
 
 
 



Skovenborg & Nielsen Evaluation of Different Loudness Models
 

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31 
Page 10 of 34 

Algorithm for the Zwicker&Fastl(percentile) loudness 
model: 

1. scale the sound segment, so that the signal 
represents the corresponding SPL 

2. call the lautheitII function implemented in the SI++ 
system 

3. transform the sone envelope to phon 
4. calculate the pth percentile of the distribution of 

loudness levels 

The transformation from sone to phon used the relation 
in eq. 4, together with a floor function (which had no 
effect on the result due to the percentile statistic). In eq. 
4, P is the loudness level in phon, and St is the total 
loudness in sone [4].  

)(log1040 2 tSP ⋅+=  (4) 

2) ISO 532-B implementation of the Zwicker model 

An alternative implementation of the Zwicker model 
was based on the C code by Widmann [72]3. This 
function implements the procedure specified in the ISO 
532-B standard. The C code was itself based on a 
QuickBasic program by Zwicker et al. [73], which again 
was based on a Fortran program by Paulus and Zwicker 
[74]. We shall denote this model "Zwicker ISO".  

The ISO 532-B procedure calculates the loudness given 
a set of third-octave levels. In an acoustic measurement, 
third-octave band Leq levels are typically obtained from 
a spectrum analyzer (e.g. [75]). We used this Leq 
approach, even though the sounds in our evaluation are 
non-stationary. Thus, the time-dimension in the 
"Zwicker ISO" implementation is collapsed before the 
calculation of the loudness, whereas in the 
"Zwicker&Fastl(95%)" implementation, it was 
collapsed after the loudness calculation (via the 
percentile statistic).  

Algorithm for the Zwicker-ISO loudness model: 

1. apply calibration gain, so that the digital 
representation of a 1 kHz test tone corresponds to 
the appropriate loudness level in phon 

2. third-octave filterbank 
3. calculate the Leq (in dB) per frequency band 
4. perform the three-step procedure specified in ISO 

532B, using the C implementation 
5. transform the resulting total loudness in sone to 

phon 

                                                      
3 Minor (seemingly typographical) errors in the C code were 
corrected, to make the program and data consistent with the 
BASIC version of the code.  

2.5 Other models (not evaluated here) 

The CBS Loudness Indicator [2] is a multi-band 
loudness model, based on a filterbank with 8 bands each 
covering 3 critical bands. This model has served as a de 
facto reference for objective loudness measurement, in 
the broadcast community.  

Moore and Glasberg has developed a multi-band 
loudness model, structurally comparable to the Zwicker 
model, but with certain enhancements [50]. Recently, 
the model has been expanded to predict the long-term 
loudness of amplitude modulated (i.e. time-varying) 
sounds, via the computed short-term loudness [35]. 
With a minor adjustment, this model was also able to 
predict the long-term loudness of speech stimuli treated 
with various degrees of dynamic compression [25].  

It would have been interesting to include, for example, 
the CBS Loudness Indicator and the revised Moore & 
Glasberg model in this evaluation. Unfortunately, to our 
knowledge no (software) implementations of these 
models were publicly available. Stevens method, as 
standardized in ISO 532-A, was also not considered. 

3 TWO NEW MODELS OF LOUDNESS 

Our initial evaluation of loudness models indicated that 
none of the available models were able to provide an 
accurate estimate of the perceived loudness of music 
and speech segments. Moreover, none of the existing 
loudness models were originally designed to estimate 
the loudness of non-stationary sounds such as music; 
although, in practice, they are frequently utilized for 
precisely this purpose.  

At TC Electronic, we have therefore developed two new 
models of loudness. The main objective of the new 
models has been to produce an accurate and robust 
estimate of the perceived loudness of sound segments 
consisting of speech and/or music. In the following, we 
introduce a new single-band loudness model and a new 
multi-band model. Both these models were optimized to 
compute an accurate long-term loudness estimate. 
However, they can also be used to compute a short-term 
loudness, by shortening their analysis-window.  

3.1 The new single-band model: LARM 

The new single-band model, named LARM, consists of a 
combination of two known measurement techniques: the 
pseudo-peak detector, and the frequency-weighted RMS 
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measurement. An asymmetrical low-pass filter with a 
short attack time-constant and a longer release time-
constant is used in the PPM to emphasize the higher 
levels in the envelope. This property is also relevant in a 
loudness model (see section 1.1). The LARM model 
calculates the loudness estimate analogous to the 
frequency-weighted Leq (eq. 3). However, as a 
generalization of the RMS calculation, a variant of the 
power mean, Mp, is employed (eq. 5), such that p is in 
effect turned into a model parameter.  

p
N

i

p
p ix

N
xM ∑

=
=

1
)(1)(  (5) 

Algorithm for LARM: 

1. apply frequency-weighting filter to the sound 
segment 

2. full-wave rectification 
3. asymmetrical low-pass filter (i.e., separate attack 

and release time constants) 
4. calculate power mean, Mp, of the envelope levels 

for the entire sound segment 
5. transform the Mp into dB 
6. add calibration gain, so that a 1 kHz full-scale test 

tone corresponds to a fixed loudness level reference 
(such as 100 phon) 

The LARM model contains several model parameters 
that may be tuned to achieve the most accurate loudness 
estimate. In doing so, we have made the following 
observations: Step 1 could be a simple high pass filter, 
like the RLB-weighting, but the frequency response 
may be further optimized. In step 3, the best 
performance is obtained when the release time-constant 
is considerably slower than the attack time-constant, i.e. 
an asymmetrical low-pass filter which accentuate peaks. 
In step 4, any Mp, for p > 1 represents a non-linear 
weighting of the envelope values resulting from step 3. 
Note that for p = 2, step 4 is equivalent to calculating 
the RMS value, and for p = 1, step 4 essentially 
calculates the mean absolute value. Curiously enough, 
we have for LARM found an optimal value of p ≈ 1.5.  

3.2 The new multi-band model: HEIMDAL 

About 45 years ago Zwicker proposed a loudness model 
founded on the concept of critical bandwidth (section 
2.4). Subsequently, most multi-band models of loudness 
have used third-octave or auditory filterbanks to 
simulate the spectral masking (section 2.1.2). For 
speech and music signals, however, there is a strong 
interdependency between the dynamical behavior at 
frequencies in neighboring critical bands. For these 

types of signals, it may therefore be possible to model 
the loudness, using a resolution less than the critical-
band rate.  

The new multi-band model, named HEIMDAL, 
comprises a novel algorithm based on an octave-band 
filterbank. The input signal is filtered into 9 channels 
which are then processed individually. In the 
HEIMDAL model, octave band filters are used as a 
compromise between computational complexity and 
spectral resolution. By using a filterbank and not an FFT 
analysis, the time/frequency trade-off associated with 
the latter is avoided. It is beyond the scope of this paper 
to describe the details of the HEIMDAL model, but a 
structural outline is provided below.4   

Algorithm for HEIMDAL: 

1. rms-based normalization of signal level 
2. octave-band filterbank 
3. full-wave rectification 
4. asymmetrical low-pass filter 
5. extraction of multiple features per frequency band 
6. non-linear combination of features into estimate of 

relative loudness 
7. calculate long-term loudness estimate 
8. add calibration gain 

3.2.1 Model profiles, optimization and 
generalization 

The HEIMDAL loudness model contains a set of model 
parameters, corresponding to step 4, 5, and 6 in the 
algorithm. These model parameters have been 
optimized so that the model will produce the most 
accurate loudness estimate for a range of different 
sounds. The values of the model parameters are 
determined during the optimization phase, and will not 
need to be adjusted in the application of the model. On 
the other hand, if a different loudness function was 
desired, a new set model parameters – a new profile – 
could be installed into the HEIMDAL model.  

Determining the values of the model parameters is 
essentially a non-linear optimization process. This 
process involves a trade-off between the accuracy of the 
model's predictions of the target values, and the model's 
ability to accurately estimate the loudness of 'new' input 
signals. The objective of the optimization is for the 
optimized model to produce accurate estimates for any 
new input of the same type as that used in the 
optimization. This property is known as the 
generalization ability of the model. The generalization 

                                                      
4 International patent pending. 
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(error) can be tested and improved using techniques 
from machine-learning, e.g. [76, 77].  

When using the same data to optimize the model 
parameters and to estimate of a model's generalization 
ability, the estimate will tend to be optimistically biased. 
Thus, it is preferable to evaluate the model's 
performance using data which is independent of that 
used for optimization. In case not enough data is 
available to constitute two independent, representative 
data sets, cross validation can be used: in an iterative 
process, the available data is partitioned into different 
subsets of data, used for optimization and testing, 
respectively.  

In principle, three independent sets of data are required 
for the optimization procedure: The training set is used 
for the actual optimization of the model parameters. The 
validation set is used to ensure the generalization ability 
of the model, and to choose between different candidate 
models. The test set is used to finally measure the 
performance of the now fully-specified, optimized 
model [77, 76].  

Two independent data sets were available for the model 
evaluation presented in this paper: One data set was 
used for the optimization of the LARM and HEIMDAL 
models, in combination with a cross-validation 
technique; the other data set was used as the validation 
set.  

3.2.2 Limitations of the current HEIMDAL 
implementation 

In this evaluation, we have chosen not to include the 
type of stimuli traditionally used to develop and test 
psychoacoustic loudness models, such as pure tones and 
noise bursts. The HEIMDAL model could to some 
extent predict the 'correct' loudness level of such sounds 
– this aspect might be addressed in a subsequent paper. 
However, due to the octave-band resolution, signals 
could be constructed, for which HEIMDAL's loudness 
prediction would be less accurate than that of the 
psychoacoustic loudness models. On the other hand, 
such signals are quite rare in typical programme 
material which generally has a fairly continuous 
spectrum.  

The current implementation of HEIMDAL is neutral to 
the absolute SPL, in the sense that if the stimulus is 
turned down by x dB, then the loudness estimate will 
likewise drop by x phon. This behavior, caused by the 

normalization in the algorithm's step 1, contradicts the 
fact that the frequency sensitivity of the hearing is 
known to depend on the SPL of the stimulus. 
Furthermore, this HEIMDAL implementation will in 
principle have an infinite dynamic range, and will not 
simulate the threshold of hearing. In practical 
applications of the model, in connection with audio 
production and broadcast, this limitation may be less of 
a problem because the loudness level of most sounds 
tends to be in the range 55 to 95 phon. In some 
psychoacoustic models, the threshold is simulated partly 
by adding a constant low noise to the stimulus, thus 
masking the excitation produced by the stimulus below 
the threshold [30]. One extension to the HEIMDAL 
model could be to incorporate a similar technique, in 
effect providing an appropriate loudness 'floor'. 

4 SUBJECTIVE LOUDNESS REFERENCE 

Loudness is a perceptual and subjective property, and as 
such it is more difficult to measure than physical 
properties. Both uncertainty and subjectivity factors 
have to be taken into account. An evaluation of loudness 
models requires a data set of representatively sampled 
sound segments together with their corresponding 
perceived loudness levels. Currently, no such data set 
seems to be available to investigations such as ours. In 
this respect the development of loudness models is 
lacking behind for instance perceptual codec 
development, for which standard evaluation data and 
meticulous procedures are available to the developers 
[78]. In principle, a data set and evaluation procedures 
could similarly be compiled for the purpose of a 
consistent loudness model assessment, by a 
standardization organization such as ITU-R, AES, or 
EBU. The lack of 'standard' subjective reference data 
and methodology, combined with the difficulty and 
expense of obtaining reliable results via listening 
experiments, makes it difficult to compare the results of 
different loudness model studies.  

Established loudness models have sometimes been 
assumed to provide subjective reference data against 
which other models could be evaluated. For instance, 
Benjamin explicitly states "...the assumption that the 
Zwicker or Moore loudness measurement methods 
represent the real perceived loudness of the program 
samples", when using these two models as reference in 
his study [79]. In [80] the CBS Loudness Indicator 
(meter) was used as reference because "This instrument 
indicates true perceived loudness and agrees well with a 
panel of human listeners.".  
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4.1 Loudness experiment method 

The subjective reference data, used in this model 
evaluation, was derived from two listening experiments, 
using the speech and music segments as stimuli. The 
two experiments were conducted at different sites, with 
different test subjects and stimuli, resulting in two 
independent sets of reference data. The experimental 
method and statistical analysis, used in both 
experiments, were presented in [23], and is summarized 
in the following.  

4.1.1 Balanced pair-matching 

The loudness matching experiments were conducted 
using the method of adjustment [27, 81]. The subjects 
were instructed to adjust the loudness of a comparison 
stimulus (B) using a volume or gain control until it 
matched a reference stimulus (A). The relative level of 
one of the segments in each pair was controlled by the 
subject using an endless rotary knob [82]. The method 
of adjustment was chosen because it was fast and 
intuitive, and therefore suitable for an experiment 
involving a relatively large number of segment pairs to 
match.  

Measuring the perceived loudness in a listening 
experiment implicates several choices regarding the 
experimental design and procedure. In particular, a 
loudness matching experiment could be based on a fixed 
reference method, in which the subjects match all 
stimuli against a single sound segment selected in 
advance. We have employed a different method, 
however: the balanced pair-matching method. When 
using this method, both segments in a pair are drawn 
from the same collection. No single fixed reference 
sound is used in the balanced pair-matching method, 
and thus the influence (bias) that a specific reference 
sound could have on the results is "evened out". The 
composition of the set of pairs to be matched is said to 
be balanced, because the relative frequency of 
occurrence of the different segments is the same [24].  

The experimental design was constructed with 
redundancy, in the sense that each subject performed 
more than one loudness match involving each sound 
segment. By affording a certain redundancy and by 
using a balanced experimental design, the accuracy of 
the results for the balanced pair-matching method was 
improved beyond the fixed-reference method with any 
segment as reference [24]. The results of a pilot 
experiment indicated that the improved accuracy was 

caused partly by using the balanced pair-matching 
method, and partly by the limited redundancy in the 
design.  

4.1.2 Stimuli 

The sound stimuli used for the experiments consisted of 
monophonic segments of speech and/or music. The 
choice of monophonic stimuli was made to eliminate 
possible extra factors introduced by stereo signals that 
could have affected the loudness assessment of the 
subjects. The segments were extracted from commercial 
music recordings, radio broadcasts, and movie 
soundtracks. Each segment was edited into a short 
excerpt of approx. 10 to 15 seconds in duration. Each 
segment was selected to be homogeneous with respect 
to its spectral content, dynamic properties, and 
instrumentation to facilitate the assessment of its overall 
loudness. Each segment was normalized in level by 
means of an RMS-based estimate of its loudness. A 
random offset was the added to the presentation-level; 
the variance of these offsets thus determined the 
'dynamic range' of the experiment.  

4.1.3 Statistical analysis 

In [23], a statistical model of the responses from a 
balanced pair-matching experiment was presented, in 
the form of a General Linear Model (GLM) [83, 84]. 
The statistical model incorporates bias terms 
corresponding to two types of errors associated with the 
method of adjustment: the adjustment bias and A/B-
order bias. Both types of bias were found to be 
significant (in the modeled responses) for 3/4 of the 
subjects. By including bias terms for each subject, in the 
statistical model, the biases can be estimated and 
removed. Furthermore, the redundancy incorporated in 
the experimental design was used to reduce the 
influence of the subject's inconsistency on the results. In 
the statistical model, all adjustments are used for 
estimating the loudness level of each individual sound 
segment. Hence the resulting loudness estimates would 
minimize the overall error [24].  

In the GLM, the SegmentLevel variable comprised the 
loudness level for every sound segment in the 
experiment. Given the responses from the listening 
experiment, the GLM would estimate the optimal and 
bias-corrected SegmentLevel parameters. The set of 
SegmentLevel parameters can be estimated using the 
combined responses from all the subjects taking part of 
the experiment – in this case the SegmentLevel values 
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were said to describe the common loudness. In other 
words, the common loudness estimate of the 
SegmentLevel of a given segment is the single best 
estimate of that segment's loudness level, based on all of 
the adjustments obtained in the experiment. 
Alternatively, the adjustments from each subject 
individually could be used to estimate the set of 
loudness levels. In this case the estimates were said to 
describe the subjective loudness, and the parameters are 
denoted SegmentLevelS. Thus, the adjustments of a 
given subject have no influence on the SegmentLevelS 
estimates of any other subject. The subjective loudness 
estimates are required when we wish to evaluate the 
predictions of a loudness model, relative to the 
between-subject disagreement [23]. The GLM contained 
individual bias terms, both when estimating the common 
loudness and subjective loudness parameters.  

In summary, the experimental method outlined above, 
was used to obtain estimates for the loudness level for 
each sound segment. A statistical analysis was used to 
compute estimates of the subjective loudness, based on 
the adjustments of each individual subject, and to 
compute estimates of the common loudness, based on all 
adjustments obtained from all subjects in the 
experiment. The two types of loudness estimates 
provide the subjective reference data against which we 
evaluate the different loudness models.  

4.2 Two independent experiments  

The subjective reference data used in our evaluation 
were derived from two different listening experiments: 
One of the experiments was conducted at the McGill 
University by Dr. René Quesnel, and is described in 

[23]. The other experiment was conducted at TC 
Electronic, using an identical experimental method, but 
with a different set of stimuli (Table 2). Also the test 
subjects, loudspeakers, and listening rooms were 
different in the two experiments (Table 1). The 
subjective data from the two experiments can thus be 
considered to be independent, which is desirable for the 
purpose of model evaluation.  

In the experiments, the reference level denotes the 
sound pressure level which the stimuli were centered 
around (see the level normalization, section 4.1). We 
have chosen a reference level of 70 dB SPL, as a 
compromise between domestic (TV) sound level [85, 
16, 86], and public presentations, for instance in the 
cinema (the SMPTE RP-200 standard [87]).  

The standard error of the SegmentLevel estimates is 
considerably lower in the McGill experiment than in the 
TC experiment (Table 1). This difference could be 
caused by several reasons: 1) the McGill subjects were 
all expert listeners, 2) the subjects of the TC experiment 
only performed half as many adjustments, i.e., less data 
to reduce experimental error, 3) the TC experiment 
contained a number of test tones and noises among the 
stimuli, some of which were difficult to match in 
loudness, hence yielding more uncertain adjustments. 

A subset of the sound segments used in the two 
experiments was included in the reference data sets 
(Table 2). These segments were selected from four 
broad but distinctive classes of sound: speech, classical 
music, rock/pop, and jazz. The speech class included 
isolated speech and dialog, and speech with background 
music and/or environmental sounds. The music classes 

 McGill University 
loudness experiment 

TC Electronic  
loudness experiment 

Number of test subjects 8 8 
The subjects' background Expert listeners, experienced in level 

adjustment 
Ranging from 'naive' to expert listeners, 
with varied music-related backgrounds 

Total number of adjustments 
submitted per test subject 

1073 504 

Total effective duration of experiment 37.8 subject hours 21.5 subject hours 
Total number of sound segments  
used as stimuli in the experiment1 

147 129 

Type/source of audio segments Ranging from raw mixes or un-
processed recordings to final masters 

Mastered and broadcast material 

Standard error of the common  
loudness SegmentLevel  

0.18 dB 0.43 dB 

Reference level (around which the  
stimuli are centred) 

70 dB(C) SPL 70 dB(C) SPL 

Loudspeakers Genelec 1031A Dynaudio BM-15A 
Loudspeaker setup Stereo setup Stereo setup 
Distance from listener to loudspeakers 1.6 m 1.8 m 
Listening room size and character Small, damped Medium, damped 

Table 1. Parameters of the two listening experiments, from which the subjective reference data is obtained. 
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included both instrumental and vocal music segments.  

A number of segments were excluded from this 
evaluation, because they were synthetic sounds, such as 
pure tones or filtered noise. The scope of this paper is 
the type of material that is likely to occur, for instance, 
in radio/TV programmes. Additionally, certain 
segments were excluded from the TC experiment 
because they also appeared as stimuli in the McGill 
experiment, and would thus introduce an overlap.  
 
Sound segments in 
reference data set: 

McGill University 
loudness 

experiment 

TC Electronic 
loudness 

experiment 
Rock or pop music  40 11 
Jazz music  40 0 
Classical music  40 0 
Speech material 25 37 
Total segments used in 
the reference data set 145 48 

Table 2. The classes of stimuli from the two listening 
experiments, that are used in this model evaluation. 

4.3 Principal component visualization of the 
reference data sets 

Principal component analysis (PCA) is a common 
method for visualizing multivariate data [88, 89, 90]. 
We have used PCA to investigate the distribution of the 
sound segments forming the two reference data sets. Via 
the PCA, a map of the segments is produced, so that we 
could inspect whether the data sets constitute 
representative samples, and whether the two data sets 
overlap or have 'holes'.  

A PCA was computed on the loudness features 
extracted by the HEIMDAL model, for the sound 
segments in the two collections (Table 2). Specifically, 
the PCA used the input features to the nonlinear 
function computing the loudness, i.e., extracted from 
between step 5 and 6 of the HEIMDAL algorithm 
(section 3.2). The covariance of the normalized features 
was used in the PCA. The HEIMDAL model utilizes the 
information provided in these features to estimate the 
relative loudness level of a given sound segment. The 
HEIMDAL performs an Leq-type level normalization of 
the input signal. Therefore, the HEIMDAL features, 
used in the PCA, can be said to characterize aspects of a 
sound which are related to its loudness, but which are 
not captured by the Leq measurement.  

The first two principal components alone account for 
roughly 60% of the variance in HEIMDAL features for 

the combined data sets. In other words, 40% of the 
variance in the HEIMDAL features is lost by projecting 
them onto a two-dimensional plane. By considering 
only the first two principal components, however, the 
data is of course much easier to plot. The two most 
principal components of each sound segment in the 
McGill and the TC reference data sets are plotted in 
Figure 3. Additionally, the pink noise segment and the 1 
kHz tone are included as fix points in the plots (these 
segments were not part of the reference data sets used 
for the model evaluation).  
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Figure 3. The two most principal components of each 
sound segment in the McGill (top) and TC (bottom) 

reference data sets. In each plot the pink noise segment 
and the 1 kHz tone are added as fix points.  
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By considering the sound segments in terms of the two 
most principal components of the HEIMDAL features, 
we can get an idea of how different the segments in the 
two collections are, as seen from a HEIMDAL 
perspective. In the context of a loudness model 
evaluation, we might use this kind of analysis to 
indicate how general or representative the results of the 
evaluation are. Even though the PCA projection 'spreads 
out' the data in the 2D plane, any large 'holes' in the 
projection of the segment collections could mean that a 
certain type of sound was not represented.  

Although the different number of segments in the two 
collections makes it difficult to judge, it appears that the 
TC collection is 'narrower' than the McGill collection 
(Figure 3). It seems that the McGill collection extends 
longer than the TC collection in the positive direction of 
both PC-1 and PC-2 (the two principal components). 
What the TC collection lacks seems to be largely the 
classical music segments, a lot of which are centered 
around the coordinates (3,0). Furthermore, the McGill 
collection seems to contain pop/rock segments which 
reach all the way 'up' to the pink noise. This might be 
caused by the inclusion of unmastered material in the 
McGill collection. On the other hand, the TC collection 
contains several speech segments in areas where the 
McGill collection has none.  

In summary, the two segment collections do overlap, in 
the plane spanned by the two most principal 
components of the HEIMDAL features. The overlap is 
not complete, however, because the McGill collection 
consists mainly of music, both mastered and 
unprocessed, while the majority of the TC collection is 
processed speech material, such as commercials or film 
sound tracks. The 1 kHz pure tone was isolated and not 
adjacent to the music/speech material of either segment 
collection. This separation highlights the difference 
between 'ecological' sound and test tones – also from a 
loudness model's perspective.  

5 MODEL EVALUATION 

Different statistical measures were employed in the 
evaluation of the models, so that both the absolute 
accuracy of the models and the accuracy relative to the 
subjective variability are measured.  

5.1 Subjective loudness or Common 
loudness as Target 

A loudness assessment experiment produces for each 
sound segment a loudness level corresponding to each 
test subject. There are two different approaches to 
evaluating a loudness model against this set of loudness 
levels:  
1) using the common loudness as target. For each 

sound segment, a single target level is calculated. 
This common loudness value could simply be the 
average or median of the individual loudness levels, 
submitted by the different subjects. Alternatively, a 
statistical model could be used to estimate the 
SegmentLevel parameters which best fit all the 
adjustments obtained from all subjects (see section 
4.1).  

2) using the subjective loudness as target. In [23], we 
found a between-listener disagreement that was 
greater than what could be explained by the within-
listener inconsistency. In other words, even for an 
ideal (infinitely large) listening experiment, with 
zero experimental error and an infinitesimal within-
subject inconsistency, we could still expect a 
between-subject variability in the assessed loudness 
levels for each stimulus. In this case, the 
subjectively "correct" loudness level for a given 
sound would be a range or distribution of loudness 
levels, instead of a single level.  
The between-subject disagreement could be caused 
by individual factors, such as hearing ability and 
musical taste, or external factors, such as the 
acoustics of the listening room and loudspeakers 
used in the experiment. It might be appropriate to 
eliminate some of these subject-specific bias factors 
from the subjective loudness levels, prior to using 
them as reference for the models.  

Note that performing a larger experiment (more 
adjustments) does not in principle lead to a smaller 
spread in the distribution of the subjective loudness for 
each sound segment, when that spread depends on 
between-listener disagreement rather than within-
listener inconsistency. A larger experiment should lead 
to a better estimate of the distribution of subjective 
loudness, but the distribution's spread or range would 
remain the same. This is in contrast to the estimation of 
the common loudness – the more ratings or adjustments 
obtained in the experiment, the more accurate the 
common loudness estimate would be. Therefore, when 
comparing their results, researchers should be careful 
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not to confuse the spread in subjective loudness with the 
uncertainty of the common loudness.  

5.2 Zero-order correction 

Suppose the loudness levels predicted by a certain 
model would consistently differ from the target 
SegmentLevel by a constant value. This situation might 
be caused by the model not having been calibrated to 
the subjective reference data. This type of calibration 
problem could be corrected by simply adding an offset 
to the model predictions, so as to remove the systematic 
error. The loudness meter evaluation, within the ITU-R 
SRG3, applied this simple mapping to all meters – it 
was called the zero order correction [46]. A zero-order 
correction has also been applied to all loudness models 
evaluated in this paper, prior to measuring their 
accuracy. Note that the zero-order correction is specific 
to each set of subjective reference data.  

If the uncalctionModelPredi  is the prediction from an 
uncalibrated loudness model, the zero-order correction 
could be applied by subtracting the difference between 
the mean model prediction and the mean SegmentLevel.  
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5.3 Measures and statistics of evaluation 

Numerous methods could be devised to evaluate the 
loudness models, either using visual displays or 
numerical measures of their accuracy. A numerical 
measure could quantify the error of the model 
predictions, compared to the common loudness, or 
relative to the distribution of subjective loudness. In 
addition, some measures use meaningful units, and 
furthermore, some measures can be compared across 
different experiments.  

5.3.1 Measures of fit and residual error  

Traditionally, a model's goodness-of-fit is measured by 
a summary of the residual error, and also the correlation 
coefficient (e.g. [83]). The SegmentError of a model 
prediction, compared to the common loudness estimate, 
for the ith sound segment is - 
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To summarize the error, across the entire segment 
collection, the mean absolute error and the root mean 
squared error are commonly used. 
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The AAE5 and RMSE measures both describe the 
overall absolute error, in dB. The difference is that the 
RMSE emphasizes the influence of relatively large 
errors over smaller errors, whereas the AAE is a simple 
average. Neither measure reflects the uncertainty of the 
SegmentLevel values, and thus inaccurate common 
loudness estimates may cause the AAE and RMSE to be 
systematically too large, i.e. biased.  

Soulodre proposed to also measure the maximum 
absolute error [55]. Because this measure essentially 
ignores all SegmentErrors but the single largest, it will 
tend to fluctuate a good deal for different sound 
collections. As a more robust measure of assessing the 
worst case predictions of a model, we propose the 95th 
percentile absolute error (P95AE). Moreover, we found 
a visual display of the absolute error distribution to be 
very informative – in particular the upper tail of the 
distribution represents the maximum absolute error.  

above is 5% and below, is                 
 absolute  theof 95%  which valuethe

orSegmentErr
P95AE =  (10) 

Pearson's correlation coefficient measures the strength 
of linear association between two variables. Suppose we 
have a new SegmentLevel and ModelPrediction 
variable, but with relative levels, such that each new 
variable has a zero mean value:  

elSegmentLevielSegmentLev
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5 In order to avoid confusion, we have adopted Soulodre's 
naming-convention [55, 42], and use the term Average 
Absolute Error, AAE, rather than Mean Absolute Error, MAE. 
(MAE was used by Soulodre to mean Maximum Absolute 
Error). 
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Then the correlation coefficient, R, is calculated as - 
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where the indices have been omitted, for clarity.  

The correlation coefficient is invariant to any monotone 
increasing linear transformation of the data. Thus the 
correlation might evaluate a loudness model positively, 
even though it predicted the common loudness in units 
that were somehow scaled. In other words, the 
correlation coefficient implicitly performs a first-order 
correction in addition to the zero-order correction 
(section 5.2).  

The specific correlation coefficients, obtained from a 
given model evaluation, are partly determined by the 
spread or variance in the reference data. Imagine the 
extreme case, in which all the sound segments were 
loudness-equalized by a (hypothetical) perfect loudness 
function, prior to the evaluation. In this case, the more a 
loudness model would deviate from predicting the 
(correct) constant loudness level, the more negative the 
correlation would be. Now imagine the other extreme, 
where the sounds were attenuated or amplified such that 
their loudness levels would span a range of say 100 dB. 
In this case, even the worst of loudness models would 
probably achieve a correlation coefficient close to 1.0.  

The covariance between SegmentLevelZ and 
ModelPredictionZ, calculated in the numerator in eq. 13, 
can be dominated by values which are unusually large, 
positive or negative – the so-called outliers. Just one 
outlier can be totally responsible for a high correlation 
coefficient that would otherwise have been close to zero 
[83]. A rank-order correlation (Spearman's rho) was 
used in [46, 42] to 'validate' the correlation coefficient, 
R. In this study, the confidence intervals are computed 
for the correlation coefficient, which would reveal the 
influence of outliers.  

Another approach is to base the evaluation measure on a 
specific type of application of the loudness model. For 
instance, in case the model was intended to 
automatically balance the loudness of programme 
material, prediction errors less than 1.25 dB might go 
unnoticed, whereas errors larger than 10 dB may be 
unacceptable [55, 42]. With this in mind, Soulodre 
proposed the Loudness Performance Index (LPI) [55].  

∏
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Like the AAE and RMSE, the LPI calculates a single 
score based on the set of SegmentError, but differs in 
two respects: 1) the LPI weighs the error according to 
two constants, L and p, and 2) the resulting scores are 
multiplied (not added). The recommended value of L is 
10 dB, which means that any model with one or more 
SegmentError greater than 10 dB would yield a total 
LPI of zero – the minimum score. With the suggested 
value of p = 2.5, any SegmentError of less than around 
1 dB would receive only a small penalty.  

As the outcome of the LPI depends entirely on the two 
design constants, the values of which are somewhat 
arbitrary, this measure was not used in our evaluation.  

5.3.2 Two measures of Subjective Deviation 

The error of a model prediction may be assessed, 
relative to the subjective loudness. This way, the 
between-listener disagreement is taking into account.  

One statistical approach is to consider whether the 
model predictions are located within the 95% 
confidence interval around the mean of the subjective 
loudness, for each sound segment. All predictions inside 
this interval are considered equally good, and only 
predictions outside the interval are counted as errors. 
The percentage of errors could then be used as an 
evaluation measure. This method can be regarded as a 
set of statistical hypothesis tests of the form: does the 
test reject the null hypothesis that the mean subjective 
loudness and the model prediction is the same value? If 
the null hypothesis is rejected, at the given significance 
level, for a sound segment, a significant error is 
counted. This method corresponds to the tolerance 
interval suggested as a minimum model requirement by 
Opticom [91], in relation to the SRG-3 work.  

The confidence interval approach yields only a binary 
evaluation for each sound segment, and thus implies a 
qualitative difference between a model prediction just 
inside, and one just outside this interval. To obtain a 
more gradual evaluation, we proposed a new evaluation 
metric: the Subjective Deviation.6  

                                                      
6 We first presented the Subjective Deviation formulae in the 
context of the ITU-R SRG-3 work [46]. 
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For each sound segment, i, in the test sound collection, 
the Subjective Deviation is defined as - 

( ))(
)()(
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ielSegmentLevictionModelPredi
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The denominator in eq. 15 is the inter-quartile range of 
the subjective loudness, for the sound segment whose 
level is estimated. Thus, the Subjective Deviation 
measures the error of the model prediction, in a unit 
which is the spread of the 'middle' half of the test 
subjects. As the most disagreeing upper and lower 25% 
of the subjects are excluded in the estimation of the 
subjective spread, the estimate is robust against various 
aberrations. The robustness of the inter-quartile range is 
the reason it was preferred over the standard deviation 
which could alternatively have been used.  

If the loudness of a certain stimulus was difficult for the 
subjects to assess, the models are punished less hard for 
deviating from the corresponding common loudness 
level. Note that the Subjective Deviation implicitly 
characterizes both the performance of the evaluated 
model and also the quality of the subjective reference 
data. The wider the spread in the subjective loudness, 
the more tolerant the Subjective Deviation measure 
would be.  

The distribution of the Subjective Deviation may be 
characterized by means of a histogram or a box plot. 
Alternatively, two measures are presented, to 
summarize the Subjective Deviation as a single score. 
The SDmean is simply the average Subjective Deviation 
over the reference data set.  
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The SDprod is a penalty-based measure, inspired by the 
LPI. The SDprod is a normalized product of factors 
between 0 and 1. Each sound segment will yield a factor 
close to 1, if the model prediction had a low Subjective 
Deviation, and for a high Subjective Deviation, a factor 
closer to 0 – i.e., a large penalty.  
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In eq. 17, the Nth root is taken to normalize the overall 
product, yielding SDprod scores between 0 and 1.  

Expected Subjective Deviation – the 'normal' case  

What Subjective Deviation could we expect from a 
hypothetical "average subject" ?  In other words: Given 
estimates of the common loudness and subjective 
loudness for a set of sounds, derived from a loudness 
assessment experiment with real subjects. Then imagine 
that the extra "average subject" independently provided 
his own loudness assessments of the same sounds. 
Suppose the resulting loudness levels would have the 
very same between-subject disagreement properties as 
those of the real subjects. Now, if we regarded this 
"average subject" as a loudness model, then what would 
that model's Subjective Deviation be?  

To answer this question, let us make two assumptions: 
1) that the spread in the subjective loudness levels is the 
same for all sound segments, and 2) that the subjective 
loudness levels belong to a normal distribution with the 
variance 2σ , and with the common loudness as mean. 
These assumption could be expressed as - 

)())(mean(
))(var(: 2

ielSegmentLevielSegmentLev
ielSegmentLevi

S

S

=
∧=∀ σ  (18) 

The Subjective Deviation of the "average subject"s 
predictions would then statistically be as follows -  
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as the σ⋅= 349.1ileRangeInterQuart , for any normal 
distribution with standard deviation σ.  

From eq. 19 we can calculate the expected SDmean and 
SDprod values, for the archetypical subject, as: 

SDmean = 0.591  and  SDprod = 0.652 (20) 

Notice that these expected Subjective Deviation scores 
are independent of the specific between-listener 
disagreement in the hypothetical experiment – they are 
independent of σ. Although the two assumptions, 
underlying these scores (eq. 18), are not satisfied for the 
two actual reference data sets, they do not seem very 
unreasonable. The scores in eq. 20 could be used as a 
guideline to judge whether a model is more or less 
accurate than an "average" test subject would be.  
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5.4 Bootstrap resampling used to compute 
the confidence intervals 

In section 5.3 we considered a set of statistics that could 
be used to evaluate the loudness models, and in section 
6 the values of these statistics are presented. In order to 
compare the performance of evaluated loudness models, 
it would also be relevant to assess the amount of 
uncertainty in each of the statistics.  

Confidence intervals are commonly used to express a 
range of values within which the true parameter value 
will be with a certain probability (e.g. [92]). The 
computation of the confidence intervals associated with 
a statistic requires knowledge of the sampling 
distribution of the statistic. The sampling distribution 
can in some cases be derived via a theoretical analysis, 
or alternatively, it may be described empirically. In the 
latter case, we could consider the variations of the 
statistic, if numerous samples from the unknown 
distribution were available. In our case, however, this 
solution would require many repetitions of the whole 
listening experiment producing the reference data, 
simply to observe the variability in the resulting model-
evaluation statistics. Because we are unable to sample 
repeatedly from the 'population' (the unknown true 
distribution), we can instead sample repeatedly from our 
original sample, which is itself an estimate of the 
population. This method of obtaining 'new' samples is 
known as resampling (e.g. [93, 94]). 

The bootstrap is a resampling technique invented by 
Bradley Efron and further developed in [95]. The 
bootstrap can be considered a general technique for 
assessing uncertainty in estimation procedures, in which 
computer simulation through data resampling replaces 
mathematical analysis [96]. The idea of the bootstrap is 
essentially to assume that our sample is the population, 
and then use the uncertainties observed in sampling 
from the sample to estimate the uncertainties of 
sampling from the population (sort of like "pulling 
oneself up by one's bootstraps"). In a sense, the 
bootstrap resampling does what the experimenter would 
have done: repeat the experiment and observe the 
variations of the results. The empirical description of 
our statistic's sampling distribution is obtained by re-
computation of the statistic using random (re-)samples 
from the original data. The resampling is done with 
replacement so that any data point can be sampled 
multiple times. A thousand repetitions or more may be 
required to obtain a good estimate of the sampling 
distribution of the statistic.  

The use of bootstrap confidence intervals is not 
uncontroversial [97], and the procedure is not accurate 
in all situations [98]. On the other hand, any new 
statistical method will tend to take decades to move 
from specialized literature into the statistical analyses of 
the mainstream experimenters [83] (ch.18).  

In order to compute the confidence intervals for our 
non-standard statistical parameters, such as the product 
and mean Subjective Deviation, we have employed the 
bootstrap method. There are several different ways of 
computing confidence intervals using bootstrap 
resampling. The method used here is the called the 
"hybrid method" [97] or "the root method" [98]. The 
hybrid method is relatively simple and reportedly 
robust. For simplicity, the bootstrap was used to 
compute the confidence intervals for all the statistics to 
evaluate the loudness models (next section), even 
though some of them might alternatively have been 
computed using parametric statistical procedures.  

6 COMPARATIVE STUDY: PERFORMANCE 
OF THE LOUDNESS MODELS 

This section presents the evaluation of the loudness 
models described in sect. 2 and 3. Each model is tested 
against the two subjective reference data sets 
summarized in sect. 4, using the measures presented in 
sect. 5 to display and quantify how well a model is able 
to predict the subjective long-term loudness of the 
sound segments.  

6.1 Sub-evaluation of model variants 

The PPM and Zwicker&Fastl models were each 
presented in three different variants, corresponding to 
the three tested percentile-statistics used in the 
calculation of the long-term loudness estimate. The best 
of these variants is identified in this sub-section, to 
reduce the number of different models being compared. 
The interpretation of the actual scores is in section 6.4.  

6.1.1 PPM model variants  

Table 3 shows that the PPM(50%) variant of the PPM-
based loudness model achieves the highest accuracy on 
both reference data sets. This is consistent with the 
findings of Klar and Spikofski [9], who found the 50th 
percentile of a PPM-type measurement to achieve the 
highest rank-correlation with subjective ratings of 
loudness. The difference between the PPM(50%) and 
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the PPM(75%) variant is less pronounced on the McGill 
data set than on the TC set.  
 
Model 
name 

Ref.  
data 

SDmean SDprod AAE RMSE P95AE R 

PPM50 McGill 1.332 0.480 0.972 1.229 2.352 0.687
PPM75 McGill 1.390 0.478 0.972 1.253 2.342 0.669
PPM95 McGill 1.791 0.419 1.252 1.554 3.137 0.554
PPM50 TC  0.875 0.579 1.123 1.542 2.695 0.437
PPM75 TC  1.062 0.539 1.356 1.854 3.415 0.287
PPM95 TC  1.369 0.477 1.722 2.273 4.335 0.131

Table 3. Evaluation of PPM+percentile model variants.  
"PPM50" means PPM(50%), etc. 

6.1.2 Zwicker&Fastl model variants 

The Zwicker&Fastl(95%) variant of the Zwicker&Fastl 
loudness model achieves the highest accuracy (Table 4) 
– its RMSE is around 0.5 dB lower than for the two 
other variants, on both reference data sets. This result is 
consistent with the N5 loudness prescribed by Zwicker 
and Fastl (see section 2.4.1).  
 
Model 
name 

Ref.  
data 

SDmean SDprod AAE RMSE P95AE R 

Z&F50 McGill 3.430 0.279 2.585 3.192 5.786 0.115
Z&F75 McGill 2.858 0.311 2.099 2.583 4.761 0.220
Z&F95 McGill 2.324 0.356 1.681 2.079 3.599 0.387
Z&F50 TC  1.712 0.442 2.215 3.141 5.530 0.093
Z&F75 TC  1.356 0.472 1.570 2.027 3.604 0.048
Z&F95 TC  1.020 0.542 1.224 1.462 2.918 0.068

Table 4. Evaluation of Zwicker&Fastl model variants.  
"Z&F50" means Zwicker&Fastl(50%), etc. 

6.2 The Absolute Error 

The absolute residual error, in dB, for each model's 
loudness predictions is shown in Figure 4. A histogram 
together with a boxplot displays the distribution of 
absolute error. (An explanation of the centered vertical 
histogram is provided in the appendix.) We find that 
this visual display of the data is a good compromise 
between detail and overview. In both plots the models 
are ordered according to the trimmed mean of the 
absolute error.  

For the best performing 5 or 6 models, the absolute 
error is below 1.2 dB for 75% of the sound segments in 
both the McGill and TC collections. For this group of 
models, the maximum absolute error is above 3 dB only 
for a small number of segments in the McGill set. The 
distribution of error is "chunky with a thin tip", for both 
the LARM and HEIMDAL models. The Leq models 
based on the linear, RLB-, and C-weightings, have a 
similar error distribution shape, though with more errors 

in the 1-2 dB range. Each of the A-, D-, and M-weighed 
Leq models, and the Zwicker models, make several 
prediction errors greater than 5 dB. The Leq(M) does a 
particularly poor job of predicting the loudness levels of 
the (music dominated) McGill data set, with 25% of the 
errors greater than 4 dB, and 12% greater than 5 dB.  
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Figure 4. Each centred, vertical histogram shows the 
distribution of absolute error (in dB) for each of the 
evaluated loudness models. The subjective reference 
data is (top) the McGill set, and (bottom) the TC set.  

When considering the plots of absolute error of the 
model predictions one must keep in mind that the 
subjective reference data are not perfect – any data 
resulting from a listening experiment will have an 
uncertainty. For the McGill and TC experiments, this 
uncertainty was quantified as the standard error of the 
common loudness estimates of the SegmentLevel. This 
value was 0.18 dB for the McGill experiment, and 0.43 
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dB for the TC experiments. Any error in the predictions 
made by the models, which is smaller than these 
standard errors of the reference data, should in principle 
not be considered an error at all.  

6.3 The Subjective Deviation  

A centered vertical histogram of the Subjective 
Deviation for each model is displayed in Figure 5. In 
both plots, the models are ordered according to the 
trimmed mean of their respective Subjective Deviation.  

The Y-axis and its scale is the same for the two plots 
corresponding to the two reference data sets. Yet all the 
models achieve a considerably lower (i.e. better) 
Subjective Deviation with the TC data set than with the 
McGill data set as reference. This disparity can have 
two causes: 1) the McGill collection contained more 
segments, from a broader range of genres, than the TC 
collection, and was thus a more difficult test for the 
models, 2) the results from the McGill experiment were 
based on more adjustments than the TC experiment, and 
hence the within-subject inconsistency was better 
suppressed, yielding a smaller spread in the subjective 
loudness. The distribution of absolute error also showed 
a difference between the two data sets, but to a much 
lesser degree than reflected in the Subjective Deviation 
measure. This indicates that the difference is a 
combination of the two above causes: both the segment 
collection and the subjective loudness spread contributes 
to the different evaluation of the models.  

Aside from the difference between the reference data 
sets, the overall picture is similar to the distribution of 
absolute error.  In particular, the HEIMDAL and LARM 
models again make the best predictions, and the Leq(A) 
and Leq(M) produce the poorest predictions, of the 12 
evaluated models.  
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Figure 5. Each centred, vertical histogram shows the 
distribution of Subjective Deviation for each of the 

evaluated loudness models. The subjective reference 
data is (top) the McGill set, and (bottom) the TC set. 

 

6.4 Model comparison by evaluation 
measures 

Rather than characterizing the performance visually, as 
in the previous sections, various scalar measures or 
scores could be considered, as described in section 5.  
Table 5 presents the five different evaluation measures 
for the 12 loudness models, with the two different 
reference data sets. The theoretical optimal and worst 
values, for the five different measures, are shown in 
Table 6. 

The correlation coefficient could not be computed for 
the Leq(B), because this loudness model was used to 
level-normalize the sound segments in the listening 
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experiments, hence the variance approaches zero. This 
level-normalization is also the reason why the Leq(A) 
can have a negative correlation – this model does worse 
than doing nothing at all (with level-normalized sound 
segments).  

The HEIMDAL and LARM model parameters were 
optimized using the McGill data set. Hence, when tested 
on this data set, a bias towards a better performance 
could be expected, although cross-validation was 
employed to counteract this problem (section 3.2). For 
these two models, the performance relative to the other 
models is nearly the same for both their training set 
(McGill data) and validation set (TC data). This 
indicates that the potential bias in their evaluation is 
probably quite small.  
 

 SDmean SDprod AAE RMSE P95AE R 
Optimum 
(theoretical) 

0.0 1.0 0.0 0.0 0.0 1.0 

Worst 
(theoretical) 

∞ 0.0 ∞ ∞ ∞ -1.0 

Table 6. Theoretical optimal and worst evaluations. 

Figure 6 and Figure 7 show the AAE, R, SDmean, and 
SDprod measures7 together with their 95% confidence 
intervals (CI). In all four plots the models are ordered 
according to their measurement for the McGill 
                                                      
7 The RMSE measure was omitted here, due to its similarity to 
the AAE measure. 

experiment (indicated by the filled circle). The CIs of 
the evaluation measures were computed using bootstrap 
resampling (section 5.4). Specifically, the CIs quantify 
the uncertainty caused by the sampling error associated 
with the particular selection of sound segments, on 
which the models are evaluated. The larger the selection 
of sound segments, from the same genres, the more 
certain the results of the evaluation would be.  

As the bootstrap resampling is inherently a stochastic 
process, it will not produce the exact same results for 
each run. However, the greater the number of 
resamples, the more consistent the results will be. In this 
study, 5000 resampling iterations were used in 
computing each individual CI. Consequently the first 3 
digits of the CI limits were roughly constant between 
runs.  

Under the normal-distribution assumption, the expected 
SDmean = 0.59 was calculated (section 5.3.2). The 
SDmean plot in Figure 7 indicates that only the 
HEIMDAL model could perform close to the 
hypothetical "average-subject", in the McGill 
experiment. In the TC experiment, the 5 best-
performing models obtained an SDmean evaluation at or 
above the level of the hypothetical "average-subject".  
 

Model name Ref. data SDmean SDprod AAE RMSE P95AE  R 
Leq(A) McGill 2.598 0.328 1.854 2.287 3.826 -0.274 
Leq(B) McGill 1.397 0.473 1.020 1.324 2.636 n/a 
Leq(C) McGill 1.201 0.503 0.918 1.181 2.494 0.531 
Leq(D) McGill 2.415 0.353 1.724 2.159 4.343 0.165 
Leq(Lin) McGill 1.240 0.499 0.980 1.327 2.537 0.485 
Leq(M) McGill 3.861 0.266 2.709 3.358 5.769 0.250 
Leq(RLB) McGill 1.124 0.515 0.855 1.084 2.173 0.581 
PPM(50%) McGill 1.332 0.480 0.972 1.229 2.352 0.687 
TC HEIMDAL McGill 0.769 0.601 0.578 0.748 1.534 0.825 
TC LARM McGill 0.973 0.551 0.744 0.964 1.983 0.707 
Zwicker&Fastl(95%) McGill 2.324 0.356 1.681 2.079 3.599 0.387 
Zwicker-ISO McGill 2.397 0.358 1.711 2.181 3.845 0.417 
Leq(A) TC 1.626 0.425 1.781 2.124 4.126 -0.470 
Leq(B) TC 0.751 0.603 0.840 0.990 1.589 n/a 
Leq(C) TC 0.632 0.640 0.722 0.974 1.954 0.619 
Leq(D) TC 1.248 0.485 1.423 1.687 3.001 0.072 
Leq(Lin) TC 0.655 0.637 0.767 1.063 2.155 0.633 
Leq(M) TC 1.341 0.480 1.684 2.097 3.832 0.249 
Leq(RLB) TC 0.576 0.659 0.667 0.843 1.579 0.638 
PPM(50%) TC 0.875 0.579 1.123 1.542 2.695 0.437 
TC HEIMDAL TC 0.413 0.727 0.520 0.688 1.496 0.815 
TC LARM TC 0.523 0.686 0.608 0.776 1.641 0.634 
Zwicker&Fastl(95%) TC 1.020 0.542 1.224 1.462 2.918 0.068 
Zwicker-ISO TC 0.753 0.604 0.839 1.044 1.954 0.443 

Table 5. The 12 models evaluated using the 5 different statistics, with 2 different 
reference data sets. 



Skovenborg & Nielsen Evaluation of Different Loudness Models
 

AES 117th Convention, San Francisco, CA, USA, 2004 October 28–31 
Page 24 of 34 

0

0.5

1

1.5

2

2.5

3

TC H
EIM

DAL

TC L
ARM

Le
q(

RLB
)

Le
q(

C)

PPM
(5

0%
)

Le
q(

Lin
)

Le
q(

B)

Zwick
er

&Fas
tl(

95
%

)

Zwick
er

−I
SO

Le
q(

D)

Le
q(

A)

Le
q(

M
)

M
ea

n 
ab

so
lu

te
 e

rr
or

 w
ith

 9
5%

 C
I

McGill experiment
TC experiment

  

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

TC H
EIM

DAL

TC L
ARM

PPM
(5

0%
)

Le
q(

RLB
)

Le
q(

C)

Le
q(

Lin
)

Zwick
er

−I
SO

Zwick
er

&Fas
tl(

95
%

)

Le
q(

M
)

Le
q(

D)

Le
q(

A)

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 w

ith
 9

5%
 C

I

McGill experiment
TC experiment

 
Figure 6. The mean absolute error (top) and correlation 
coefficient (bottom) for the evaluated loudness models. 
For each measurement, the 95% confidence interval is 

indicated. 

 

Table 7 and Table 8 show the ranking of the models, as 
determined by four different evaluation measures. The 
SDmean, SDprod, and AAE measures produce virtually 
identical ranking of the models, given the same 
reference data set. The ranking is also nearly – but not 
quite – the same across the two data sets. The 
PPM(50%) model is ranked relatively higher with the 
McGill data set, and the Zwicker-ISO model is ranked 
relatively higher with the TC data set. 
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Figure 7. The mean Subjective Deviation (top) and 
product subject deviation (bottom) for the evaluated 
loudness models. For each measurement, the 95% 

confidence interval is indicated. 

 
SDmean –SDprod AAE –R 
TC HEIMDAL
TC LARM 
Leq(RLB) 
Leq(C) 
Leq(Lin) 
PPM(50%) 
Leq(B) 
Z&F (95%) 
Zwicker-ISO 
Leq(D) 
Leq(A) 
Leq(M) 

TC HEIMDAL
TC LARM 
Leq(RLB) 
Leq(C) 
Leq(Lin) 
PPM(50%) 
Leq(B) 
Zwicker-ISO 
Z&F (95%) 
Leq(D) 
Leq(A) 
Leq(M) 

TC HEIMDAL 
TC LARM 
Leq(RLB) 
Leq(C) 
PPM(50%) 
Leq(Lin) 
Leq(B) 
Z&F (95%) 
Zwicker-ISO 
Leq(D) 
Leq(A) 
Leq(M) 

TC HEIMDAL
TC LARM 
PPM(50%) 
Leq(RLB) 
Leq(C) 
Leq(Lin) 
Zwicker-ISO 
Z&F (95%) 
Leq(M) 
Leq(D) 
Leq(A) 
 

Table 7. Ranking of the models, evaluated with four 
different statistical measures; best-performing models at 
the top. McGill data set as reference. 
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SDmean –SDprod AAE –R 
TC HEIMDAL 
TC LARM 
Leq(RLB) 
Leq(C) 
Leq(Lin) 
Leq(B) 
Zwicker-ISO 
PPM(50%) 
Z&F(95%) 
Leq(D) 
Leq(M) 
Leq(A) 

TC HEIMDAL 
TC LARM 
Leq(RLB) 
Leq(C) 
Leq(Lin) 
Zwicker-ISO 
Leq(B) 
PPM(50%) 
Z&F(95%) 
Leq(D) 
Leq(M) 
Leq(A)  

TC HEIMDAL 
TC LARM 
Leq(RLB) 
Leq(C) 
Leq(Lin) 
Zwicker-ISO 
Leq(B) 
PPM(50%) 
Z&F(95%) 
Leq(D) 
Leq(M) 
Leq(A) 

TC HEIMDAL
Leq(RLB) 
TC LARM 
Leq(Lin) 
Leq(C) 
Zwicker-ISO 
PPM(50%) 
Leq(M) 
Leq(D) 
Z&F(95%) 
Leq(A)  

Table 8. Ranking of the models, evaluated with four 
different statistical measures; best-performing models at 
the top. TC data set as reference. 

6.5 Overall performance of the loudness 
models 

The evaluation measurements seem to suggest a 
grouping of the loudness models as presented in Table 
9. Class 1 contains the models achieving the best overall 
evaluation, and Class 4 contains the models with the 
worst performance.  
 
Performance  
class 

Models  
(best-in-class listed first) 

Better than 
class  

Class 1 TC HEIMDAL, TC LARM Class 3, 4 
Class 2 Leq(RLB), Leq(C), Leq(Lin) Class 4 
Class 3 Leq(B), PPM(50%), Zwicker-ISO, 

Zwicker&Fastl(95%) 
(none) 

Class 4 Leq(D), Leq(A), Leq(M) (none) 

Table 9. Classes of loudness models, based on the 
overall evaluation. Column 3 refers to a significance 
level, α=0.05. 

The two new models, HEIMDAL and LARM, were 
both in Class 1, as they obtained a superior accuracy 
with both the absolute error and the Subjective 
Deviation measures. The HEIMDAL performed better 
than any of the other evaluated loudness models, with 
an average error of only 0.58 and 0.52 dB, for the 
McGill and TC data sets. HEIMDAL's worst case error, 
as measured by the P95AE, was only 1.5 dB (both data 
sets). A bias towards positive evaluation could be 
expected because both Class 1 models were optimized 
on the McGill data set (see section 3.2.1), but as the 
models obtained a similar evaluated on the TC data set, 
we expect this bias to be quite small. Judging from the 
95% confidence intervals, the Class 1 models are more 
accurate than the Class 3 and 4 models, with statistical 
significance, for both reference data sets (although the 
CI of LARM overlap slightly with Leq(B) and Zwicker-
ISO for the TC set, Class 1 and 3 are otherwise well-
separated).  

The three Leq models in Class 2 are significantly better 
than Class 4, for both data sets. The mutual ranking of 
these models is invariant to different reference data sets 
and evaluation measures. The only difference between 
the Class 2 models is their frequency weighting: RLB, 
C, and none. These models have an RMSE of 1.08, 1.18, 
and 1.33 dB (McGill data), respectively. In comparison 
to the Class 4 Leq models, with an RMSE of 2.2 to 3.4 
dB (McGill data), we note that the specific frequency 
weighting is quite important, and also that the 
unweighted Leq performs better than 4 out of 6 of the 
evaluated weightings. The worst case error of the Class 
2 models is a P95AE of 1.6-2.2 dB (TC data), and 2.2-
2.5 dB (McGill data).  

Class 3 contains the two variants of the multi-band 
Zwicker loudness model. Their performance is quite 
similar, especially for the McGill data set, suggesting 
that their implementation-differences (section 2.4.1) are 
not of crucial importance. The extra computational 
complexity of these models does apparently not 
improve the accuracy beyond Class 3, when the stimuli 
belongs to music/speech genres like the McGill and TC 
segment collections. The PPM(50%) model is close to 
Class 2 performance for the McGill data set, but not for 
the TC data. The PPM(50%) is interesting, however, 
because it is based on a different principle than Leq, and 
also because PPM measurement (meters) are already 
installed in many audio production and broadcast 
studios.  

The three Leq models constituting Class 4 produced the 
least accurate predictions of the loudness levels. The 
Class 4 models made prediction errors larger than 4.1 
dB for 5% of the sound segments, for one or both 
reference data sets. In particular, the P95AE measure for 
the Leq(M) was 5.8 dB (McGill data). Interestingly, 
Leq(M) had a better correlation than Leq(A) and Leq(D), 
for both data sets, yet made many large errors, both on 
the absolute and the subjective scales. This 
inconsistency suggests that the Leq(M) might not be 
measuring the loudness in dB at all, but rather some 
other unit requiring an extra mapping to dB.  

7 RELATION TO PREVIOUS WORK 

The lack of a common set of reference data, and a 
standard method of evaluation, tends to make the 
comparison between results of different studies difficult. 
In sections 5 and 6 we argued that in some cases it is 
meaningless to compare, for instance, measurements of 
correlation or standard error across different 
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experiments. In the following, we try to report the 
findings of other studies that evaluate loudness models 
with time-varying sounds, in terms of the measures 
presented and used in our own model evaluation. 

Two listening experiments were performed by Jones 
and Torick, in order to validate their new Loudness 
Indicator [2]. The stimuli consisted of 12 sound 
segments of dynamically processed material, in an 
experiment with 30 subjects, and 8 segments of 
unprocessed material, in the other experiment with 11 
subjects. All segments were only 1.5 to 2 seconds of 
duration, and of the total 20 segments, the majority 
contained speech. The performance of the Loudness 
Indicator was evaluated by comparing its predictions to 
the median of the subjects' loudness assessments, i.e. a 
kind of common loudness estimate. The subjective 
loudness was also taken into account, by presenting the 
semi-quartile range of the loudness assessments. In 
other words, our Subjective Deviation measures are 
comparable to the properties considered by Jones and 
Torick. The results of the model evaluation was, in our 
terms, that an AAE of 0.58 dB, for the processed 
segments, and 1.25 dB, for the unprocessed material. 
The worst case error was 2.5 dB, and the error was 
greater than 1.5 dB for only 3 segments. These 
measurements might indicate that the Loudness 
Indicator would be a Class 3, perhaps 2, loudness 
model. However, the reported error statistics must be 
somewhat uncertain, as they are based on a only 20 
sound segments.  

Caric and Guzina conducted a study of the loudness in 
radio broadcasts, in particular the balance between 
music and speech [99]. Taped broadcast material was 
measured with a Hewlett-Packard loudness analyzer, 
implementing a Zwicker loudness model. The 
announcer's voice was found to have insufficient 
loudness, compared to music, but the subjective and the 
measured loudness were not compared quantitatively. 
PPM and VU-meter readings of the material were also 
studied, and were found not to be suitable for objective 
loudness measurement.  

In the loudness experiments conducted by Aarts [21, 
22], subjects matched the loudness of 6 different 
loudspeakers using pink noise and music stimuli. The 
objective was – via this loudness equalization – to 
eliminate loudness differences as a factor in subsequent 
tests of subjective quality of the loudspeakers. A 
listening experiment with 10 subjects was used to 
produce subjective reference data, against which five 

Leq-type models, and the ISO 532A and 532B models 
were compared. The stimuli consisted of the different 
loudspeakers' timbral colorations of the pink noise, 
around a level of 80 phon. To evaluate the performance 
of the 7 loudness models, Hotelling's T2 test was used. 
This multivariate statistical test determines whether the 
model predictions of the relative loudness levels are 
significantly different from the subjective assessments. 
The covariance of the subjective ratings, used in the 
test, can be considered a type of subjective loudness 
(rather than a common loudness) as it takes the 
subjective variability into account. Only the Leq(B) and 
the ISO 532B (Zwicker) models were not significantly 
different from the subjective reference. The Leq(A) and 
Leq(D) were found to deviate the most from the 
reference. This latter result is consistent with the 
evaluation presented here, whereas the positive 
performance of the Leq(B) and Zwicker models, reported 
by Aarts, is not reproduced with the music/speech 
segment collections used in our study.  

Benjamin considered objective measures of loudness, in 
relation to typical broadcast material [79]. The principal 
limitations of weighted-Leq–type models compared to 
Zwicker type models were reviewed. An experiment 
was then reported, with 210 sound segments, each of 10 
seconds duration, consisting mainly of dialogue. The 
loudness level of the segments were calculated using the 
Leq(A) and Leq(B), as well as published implementations 
of the multi-band models by Zwicker and by Moore & 
Glasberg. As no subjective reference data was 
available, scatter plots were presented to compare the 
models to each other (no quantitative comparison was 
reported). When assuming the Zwicker model as 
reference, the loudness measurements of Leq(A) were 
within +/–2.5 phon, and the Leq(B) was thought to be 
slightly closer to the reference. The Zwicker and the 
Moore & Glasberg models were reported to function 
nearly identically, in measuring the relative loudness 
level.  

In Part IV of their extensive study of multi-channel 
level alignment, Zacharov and Bech investigate the 
ability of loudness models to predict subjective level 
calibration [100]. Specifically, they consider "whether a 
test signal / metric combination can be found that will 
provide a perceptually valid level alignment 
compensation for differences associated with different 
source locations, distances, directivities, sensitivities 
and asymmetries associated with the room acoustics.". 
This objective is clearly different from our investigation 
of loudness models predicting the loudness level of 
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music/speech. However, two properties distinguish 
Zacharov's investigation from the other loudness model 
evaluations reported here. First, most other studies 
(including ours) presume that the relative loudness 
level, in phon, is approximately the same as a gain 
adjustment, in dB, within the loudness range of the 
experiment. Instead of making this assumption, 
Zacharov et al. employed an optimization procedure in 
the estimation of the gain adjustment predicted by the 
model – in essence simulating a loudness matching 
experiment with the model as 'subject'. Second, an 
impulse of the reproduction system and room was 
measured, and applied to the signals, in order to let the 
loudness models 'hear' precisely what the test subjects 
heard, rather than the 'dry' electrical signal.  

Psychoacoustic listening experiments have often 
employed anechoic listening conditions, in order to 
eliminate the acoustic influence of a room (section 
1.1.4). Most loudness experiments involving music and 
speech as stimuli, however, have used more realistic 
listening conditions. This presents a mismatch between 
the loudness models, using the 'dry' signal as input, and 
the test subjects, listening to the acoustic reproduction 
of the stimuli in a (somewhat) reverberant room. In 
essence, the model must also take the influence of the 
room into account, when predicting the subjects' 
loudness assessments. The consequence of this disparity 
could be subject of further investigation.  

In order to compare Zacharov and Bech's model 
evaluation results [100] to our own, we consider their 
evaluation based on the listeners adjusting the relative 
level of pink noise played through the individual 
channels in a surround system, in order for each channel 
to match the centre channel in perceived loudness. Both 
the correlation  and a regression analysis was used in 
their model evaluation. The highest correlation (r=0.2) 
was found for the Zwicker and Moore&Glasberg 
models, both in diffuse and free field modes. The best 
performing Leq-type model was Leq(A) (r=0.21), and the 
worst Leq(C) (r=0.14). Nevertheless, Zacharov and Bech 
ended up recommending a high-pass filtered test signal 
that could be used in combination with either of the Leq 
or multi-band models, as suitable (r=0.83) for their 
calibration task.  

Klar and Spikofski report the problem of loudness 
differences between – and within – radio and TV 
programmes, and propose some solutions for these 
problems, based on leveling recommendations and the 
introduction of a loudness meter [9, 10]. Six different 

loudness models, based on signal power and signal level 
(PPM), were evaluated. A long-term loudness prediction 
was calculated via the envelopes recorded from the 
loudness meters using a histogram function (see section 
2.3.1). A total of 56 sound segments, of 15 seconds 
duration, were recorded from Digital Satellite Radio. 
The subjective reference data was formed out of 
averages of loudness assessments, after mapping from 
an ordinal scale onto an interval scale [65]. In the 
evaluation, the rank-order correlation (Spearman's rho) 
was calculated, between the levels predicted loudness 
models and the subjective reference data. The two 
models with the highest correlation (78%) were based 
on PPM meters with 10 ms integration time and the 50th 
percentile of their level histogram.  

Moore, Glasberg and Stone investigated various effects 
of amplitude compression applied to speech segments 
[25]. A listening experiment was conducted with 6 
subjects. A total of 18 speech segments of 2.1 seconds 
duration were extracted. Pairs of stimuli were then 
formed by matching the uncompressed and a 
compressed version of a segment – three different 
compression ratios were employed. The experiment was 
performed around three levels: 50, 65, and 80 dB SPL. 
Moore et al. found that, for a fixed RMS level, the 
compressed speech segments were significantly louder 
than the uncompressed versions, by up to 3 dB (for a 
high compression ratio). Predictions of loudness levels 
for the same stimuli were then computed by the multi-
band loudness model of Glasberg and Moore [35]. 
Specifically, the model computes an instantaneous 
loudness, from which a (time-varying) short-term 
loudness is calculated by a temporal integration. The 
long-term loudness estimate is then calculated by an 
average over a temporal integration of the short-term 
loudness envelope. The relative levels thus predicted by 
the loudness model were consistent with the subjective 
reference data. The absolute errors were typically below 
0.5 dB. In comparison, the McGill segment collection 
(see section 4.2) also consist of both uncompressed and 
compressed (mastered) speech and music segments. 
However, the McGill collection only contain one 
version of each segment, as opposed to the stimuli used 
by Moore et al. The mean absolute error was around 0.7 
dB and 0.9 dB for the Class 1 and 2 models, 
respectively, for this considerably more varied segment 
collection.  

Soulodre and Norcross evaluated the performance of 7 
Leq-type loudness models [55]. The models were based 
on the A-, B-, and C-weighting curves, together with 
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two previously published frequency weightings, and the 
unweighted Leq. In addition, the Revised Low-frequency 
B-weighting (RLB), was introduced (see section 2.2.1). 
A total of 48 sound segments, primarily speech and 
music, were collected from various broadcast sources. 
Based on a loudness-matching experiment, the 
subjective reference data consisted of the adjusted gain 
level in dB, for each segment, averaged across the 25 
subjects [41]. To evaluate the models, Soulodre 
introduced the Loudness Performance Index, LPI (see 
section 5.3), and also measured the correlation 
coefficient, the RMSE, and the maximum absolute 
error. In addition, a scatter plot of each model's 
predictions against the reference data was used as a 
visual supplement to the numerical evaluation measures.  

The segment collection used by Soulodre et al. is 
comparable in size and contents to the TC collection 
presented here. Furthermore, 5 of the Leq models recur 
in both studies. The mutual ranking of those 5 models, 
as found in this study, matches exactly the ranking by 
Soulodre's correlation and LPI measures, as well as his 
'visual rank'. That is, the Leq(RLB) performed the best, 
followed by Leq(C) and Leq(Lin), with the Leq(A) as the 
worst. Although it is unclear whether the RLB 
weighting was fitted to the subjective reference data in 
[55], our evaluation of the Leq(RLB) with the McGill 
and TC reference data confirms the superiority of this 
loudness model over the other tested Leq-based models.  

The correlation coefficients in Soulodre's evaluation are 
between 0.92 and 0.98, for all the models. The contrast 
to the much greater range of values in our evaluation, 
demonstrates the arbitrariness of the correlation 
coefficient (sect. 5.3.1). Soulodre finds an RMSE of the 
Leq(RLB) of 1.35 dB, compared to only 0.85 and 1.08 
dB for the TC and McGill data sets, respectively. 
Assuming that the segment collection used in Soulodre's 
study is not more difficult than the TC and McGill 
collections, this discrepancy might be caused by the 
different experimental method, used by Soulodre et al., 
leading to a somewhat greater uncertainty in their 
subjective reference data.  

In section 1.2 we described the ongoing study by the 
SRG-3 within the IRU-R WP6P, concerning the 
standardization of a new audio metering method. Part of 
the SRG-3 work has been to evaluate the ability of 
various loudness meters (i.e., a kind of loudness 
models) to predict a set of loudness assessments. The 
SRG-3's subjective reference data was derived from 
listening experiments at 5 separate sites around the 

world, involving a total of 96 subjects. The stimuli 
consisted of 48 sound segments recorded from TV and 
radio broadcasts, 35 of the segments contained speech. 
The results of the first round of loudness meter 
evaluation have been presented in [46, 42]. For this 
evaluation, 10 loudness meters were submitted by 7 
research organizations and private companies. Some of 
the meters were actual hardware meters, measuring a 
short-term loudness, whereas others were software 
implementations, measuring the long-term loudness 
directly. Numerous error measures were employed in 
the evaluation: the correlation coefficient, rank-order 
correlation, RMS-, mean-, and maximum-error, two 
forms of the LPI, and also the two forms of our 
Subjective Deviation, SDmean and SDprod (section 
5.3.2). The evaluation also included two loudness 
models, intended to provide a 'baseline' performance: 
the Leq(Lin) and Leq(RLB). Yet, these two models 
obtained a better evaluation than any of the other 
models, according to most of the error measures. 

Note that a version of the HEIMDAL model 
(preliminary due to time constraints) was submitted to 
this evaluation within the SRG-3. However, both the 
structure and the optimization of the HEIMDAL model 
evaluated here has been substantially improved, 
compared to the initial version of the model, towards 
making more accurate and robust estimates of loudness. 

It turned out that one of the meter proponents, Dolby 
Labs, had submitted two additional 'baseline' models to 
the evaluation: the A- and B-weighted Leq. 
Consequently, four identified models were evaluated by 
the SRG-3: A-, B-, and RLB-weighted and unweighted 
Leq. As these four models were also part of the our 
evaluation, the two sets of results can be compared. 
Four evaluation measures can be compared across the 
different reference data sets: the two measures of 
absolute error, AAE and RMSE, and the two measures 
of Subjective Deviation. For both the SRG3, McGill, 
and TC reference data sets, the mutual ranking of the 
four Leq models is the same. The average Subjective 
Deviation (SDmean), measured for the 4 models that the 
3 data sets have in common, is shown in Figure 8. The 
SRG3 data was reported in [42] and the data calculated 
for the McGill and TC data sets was presented in section 
6.4. 
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Figure 8. The SDmean measure, reported from the 

SRG3, and calculated for the McGill and TC data sets. 

Figure 8 shows that the ranking of the four Leq models is 
the same, for the 3 reference data sets. However, the 
SDmean values resulting from the SRG3 evaluation are 
consistently lower than for TC data set, which again are 
considerably lower than the SDmean for the McGill data 
set. Recall that the SDmean is the average deviation 
from the common loudness estimate, relative to the 
spread in the subjective loudness. Thus the figure 
indicates that, in the SRG3 study, all the models 
received a somewhat more positive evaluation, than 
when tested against either the TC or McGill data sets.  

Three different phenomena can cause this consistent 
difference in Subjective Deviation between the 
reference data sets:  
a. if a collection of sound segments are somehow 

'easier' for the models to predict the loudness of, 
than with some other collection, then the 'easy' 
reference data set will yield lower SDmean 
measures, 

b. a larger between-listener disagreement, in the 
assessments of each sound segment, will lead to a 
wider spread in the subjective loudness values, and 
hence lower SDmean measures, 

c. a larger within-listener inconsistency, in the 
assessments of each sound segment, will lead to both 
a wider spread in the subjective loudness values, and 
also to a less certain common loudness estimate, and 
hence lower SDmean measures. 

As the SRG3 and TC segment collections are 
comparable in both size and contents, the (a) can not 
explain the observed difference alone. The (b) could be 
affecting the SRG3 reference data, because it was based 
on a number of different test sites, acoustical 

environments, and subjects. The (c) have probably 
affected the SRG3 data more than the TC and McGill 
data, because the latter were based on the balanced pair-
matching experimental design [24].  

Note that any subjective evaluation of objective 
measures will inevitably reflect the quality of the 
objective results relative to the quality of the subjective 
reference data. The Subjective Deviation measures 
utilized this subjective variability directly, whereas the 
AAE, RMSE, and correlation measures are merely 
biased by the uncertainty in the reference data.  

8 CONCLUSION 

In this study, the performance of twelve loudness 
models was evaluated. Two listening experiments, using 
speech and music segments as stimuli, provided the 
subjective reference data. Different statistical measures 
were employed in the evaluation of the models, so that 
both the absolute accuracy of the models and the 
accuracy relative to the between-listener disagreement 
were measured. We presented a multi-band loudness 
model (HEIMDAL) based on a novel algorithm, and a 
single-band model (LARM) based on a combination of 
two known measurement techniques. The remaining 
models were all implementations of common or 
standardized methods, some of which were intended for 
loudness measurement and others were constructed for 
measuring levels for various purposes. Eight of them 
were single-band models based on two different 
principles: Leq (equivalent sound level) and PPM (Peak 
Program Meter) level measurement. In addition, two 
variants of the well-established Zwicker multi-band 
loudness model were evaluated. 

A statistical analysis of the responses from the listening 
experiments produced two kinds of reference data, 
against which the models were evaluated. Redundancy, 
incorporated in the experimental design, was used to 
reduce the influence of the subjects' inconsistency on 
the results. In the analysis, all adjustments were used for 
estimating the loudness level of each individual sound 
segment, to minimize the overall error. Furthermore, 
two kinds of bias errors were, for each subject, 
estimated and removed. The statistical analysis was 
used to compute, for each individual sound segment, 
estimates of the subjective loudness, based on the 
adjustments of each individual subject, and of the 
common loudness, based on all adjustments obtained 
from all subjects in the experiment. In other words, the 
subjective loudness, for each sound segment, is the 
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distribution of loudness level estimates for the 
individual subjects, and thus the between-listener 
disagreement – or 'subjective spread' around the 
common loudness level – is characterized. Two 
experiments were conducted at different sites, with 
different test subjects and stimuli, resulting in two 
independent sets of reference data.  

To evaluate the loudness models, two different types of 
error measures were employed: First, a set of measures, 
based on the absolute error in dB, i.e., the difference 
between the model prediction and the common loudness 
estimate of the loudness level. This type of measure 
may be preferable in some cases because their unit is 
dB; however, they are biased by the 'noise floor' of the 
underlying subjective reference data. We proposed a 
second type of measure, the Subjective Deviation, 
which quantifies the error of the loudness model relative 
to the spread in subjective loudness for each segment. 
Hence, these measures reflect both the accuracy of the 
model predictions and of the reference data. In 
particular when comparing results based on different 
reference data sets, we found it to be essential to include 
both types of evaluation measures.  

The distribution of absolute error or Subjective 
Deviation was also presented graphically with the 
centered, vertical histogram – a combination of a 
histogram and a boxplot, showing the quartile error 
values and the shape of the error distribution, as well as 
any outliers. We found the centered, vertical histogram 
to be a more complete and intuitive representation of an 
evaluated model's performance, than any of the scalar 
evaluation measures.  

A traditional measure of fit, the correlation coefficient, 
was also computed to quantify the deviation of a 
model's predictions. We found the correlation to depend 
strongly on the spread of the reference data, such that a 
large spread would lead to a high correlation for all the 
models, hence compressing their differences. Therefore, 
the correlation coefficient could be very misleading, if 
used to compare studies with different reference data 
sets.  

In the field of statistics, the concept of significance is of 
prime importance: if an observed result is not very 
unlikely to have been caused by chance, the result is not 
valid. In the case of loudness model evaluation, we 
should in principle not distinguish between any models 
whose tested accuracies are not significantly different. 
We have computed the confidence intervals, for each of 

the evaluation measures, using a bootstrap resampling 
technique. Thereby we are able to assess the statistical 
significance of the observed differences between the 
models. We are not aware of any earlier (loudness 
modeling) studies using this approach.  

Whether a given performance difference between two 
models is significant will depend on the sample size: the 
number of sound segments, number of test subjects and 
loudness assessments. In the practical application of a 
loudness model, it may make little difference whether 
the superiority of a given model was found to be 
statistically significant. It would be more relevant to 
examine, for instance, the degree of listener's tolerance 
towards fluctuations in the loudness estimates. In a 
standardization process, however, where one or more 
models are declared as superior, is there any reason for 
not using statistical methods to ensure that the observed 
results are indeed significant, and not merely caused by 
the specific data sample?  

The evaluation measurements seem to suggest a 
grouping of the loudness models into 4 classes, with 
Class 1 containing the models achieving the best overall 
evaluation, and Class 4 the worst. Our two new 
loudness models, HEIMDAL and LARM, constitute 
Class 1. Class 2 contains the RLB-, C-, and linear-
weighted Leq measures, in that order. The Leq(B), a 
PPM-based measure, and the two Zwicker-based 
models make up Class 3. Finally, the D-, A-, and M-
weighted Leq measures, forming Class 4, performed 
remarkably poorly as loudness models. The Class 4 
models all made prediction errors larger than 4.1 dB for 
5% of the sound segments, with one or both reference 
data sets; whereas the HEIMDAL model's errors were 
just larger than 1.5 dB for 5% of the sound segments, 
with an average error of only 0.58 and 0.52 dB, for the 
two data sets.  

Somewhat surprisingly, two rather widespread loudness 
measures, the Zwicker model and the Leq(A), ended up 
in Class 3 and 4, respectively. The Zwicker model, 
which was originally developed and validated using 
synthetic and/or stationary signals, could not accurately 
predict the relative loudness of music and speech 
segments. The worst performance was observed from 
the Leq(A) and Leq(M) measures, which are implemented 
in sound level meters and signal analyzers, and applied 
for loudness measurements in broadcast and cinema.  
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11 APPENDIX: THE VERTICAL, CENTERED 
HISTOGRAM 

To evaluate the loudness models visually, a new type of 
plot was employed – a combination between a box plot 
and a vertical, centered histogram. An illustrated guide 
to this visualization device is provided in Figure 9. For 
each group of data, the centered vertical histogram 
outlines the distribution of values. This is similar to a 
normal histogram plot, except that it is displayed 
vertically, and that its bars are centered. The three 
horizontal lines that are superimposed the histogram 
provides the same information as in a boxplot: the 
location of the three quartiles, i.e., the 25th, 50th, and 
75th percentiles [101]. Thus, the middle horizontal line 
represents the median of the data. The legend in the 
figure's upper-left corner presents the 'Y-axis' of the 
histograms, that is, how many elements or data points 
that a certain length of a bar in the histogram 
corresponds to. 
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Figure 9. A guide to the vertical, centered histogram. 


