
 

 @2020-25 - Patrick-Gilles Maillot 

 
 
 
 

WING Remote Protocols 
 

 
 
 

   

     
 
 
 
OSC remote control, MIDI SYSEX, Binary Interfaces,  
and wapi, an API for WING 
 
[V3.0.6-27 - Wing FW 3.0.6-27 and above]  



 
 
 
 

©Patrick-Gilles Maillot 2 WING remote protocols – V 3.0.6-27 
 
 
 

Table of Contents 
Introduction ......................................................................................................................................................... 9 

About this document ....................................................................................................................................... 9 
General features of the WING console ............................................................................................................ 9 
Wing, a family ................................................................................................................................................ 11 

WING: ........................................................................................................................................................ 11 
Rack:........................................................................................................................................................... 11 
Compact: .................................................................................................................................................... 12 

Sources vs. Inputs .......................................................................................................................................... 13 
WING Internal Data ........................................................................................................................................ 14 
WING File System........................................................................................................................................... 14 

OS partition ................................................................................................................................................ 15 
Data Partition ............................................................................................................................................. 15 

Remote communications with WING................................................................................................................. 16 
Keeping connections alive ............................................................................................................................. 16 
Number of simultaneously connected applications ....................................................................................... 16 
Accessing WING Internal Data and Functions from remote programs .......................................................... 17 

OSC Remote Protocol ........................................................................................................................................ 19 
OSC Data Types .............................................................................................................................................. 19 
WING OSC Messages ..................................................................................................................................... 20 

Reading (Get) Parameter and Node data ................................................................................................... 20 
Receiving OSC data on a specific port ........................................................................................................ 21 
Writing (Set) Parameter and Node data .................................................................................................... 22 

Single Parameters .................................................................................................................................. 22 
Special case: Toggle ............................................................................................................................... 22 
Enumerated strings ................................................................................................................................ 22 
Node Data .............................................................................................................................................. 23 
Special Node Type/Arguments ............................................................................................................... 24 

OSC: Special Cases ......................................................................................................................................... 26 
JSON Structure dynamic changes............................................................................................................... 26 
OSC Tag Type ‘blob’ or ‘binary’ use ............................................................................................................ 27 
Subscribing to OSC Data ............................................................................................................................. 30 

WING ae_data OSC commands list ................................................................................................................ 32 
Status ......................................................................................................................................................... 32 
General Configuration ................................................................................................................................ 34 
System Settings .......................................................................................................................................... 39 
Input/Output Settings ................................................................................................................................ 40 
Channel Settings ........................................................................................................................................ 47 
Aux Settings ............................................................................................................................................... 52 
Bus Settings ................................................................................................................................................ 55 
Mains Settings ............................................................................................................................................ 59 
Matrix Settings ........................................................................................................................................... 62 
DCA Settings ............................................................................................................................................... 65 
Mutegroup Settings ................................................................................................................................... 65 
Effects Settings .......................................................................................................................................... 66 
Cards Settings ............................................................................................................................................ 68 
USB Player Settings .................................................................................................................................... 70 



 
 
 
 

©Patrick-Gilles Maillot 3 WING remote protocols – V 3.0.6-27 
 
 
 

WING ce_data OSC commands list ................................................................................................................ 71 
Control Settings ......................................................................................................................................... 71 
Global Settings ........................................................................................................................................... 89 

WING native / binary data interface .................................................................................................................. 91 
Communication Channels .............................................................................................................................. 91 

Sample receive routine .............................................................................................................................. 92 
Sample transmit routine ............................................................................................................................ 92 

Channel 2: Audio Engine ................................................................................................................................ 94 
Binary Stream Format ................................................................................................................................ 94 

Channel 3: Metering ...................................................................................................................................... 96 
Meter Request Tokens ............................................................................................................................... 96 
Meter Data ................................................................................................................................................. 97 

Introducing wapi [wapi] ..................................................................................................................................... 98 
wapi tokens .................................................................................................................................................... 98 
Compiling a program using wapi .................................................................................................................... 99 

wapi Reference Guide ...................................................................................................................................... 101 
Open and Close ............................................................................................................................................ 101 

Int wOpen(char* wip) .......................................................................................................................... 101 
void wClose() ........................................................................................................................................ 101 
unsigned int wVer() .............................................................................................................................. 101 

Setting Values .............................................................................................................................................. 102 
int wSetTokenFloat(wtoken token, float fval) ...................................................................................... 102 
int wSetTokenInt(wtoken token, int ival) ............................................................................................. 102 
int wSetTokenString(wtoken token, char* str) .................................................................................... 102 
int wToggleTokenInt(wtoken token) .................................................................................................... 103 
int wClickTokenByte(wtoken token, char ival) ..................................................................................... 103 

Getting Values .............................................................................................................................................. 104 
wtype wGetType(wtoken token) ......................................................................................................... 104 
char* wGetName(wtoken token)......................................................................................................... 105 
whash wGetHash(wtoken token) ......................................................................................................... 105 
int wGetToken(wtoken token, wtype *type, wvalue *value) ............................................................... 105 
int wGetTokenFloat(wtoken token, float* fval) ................................................................................... 106 
int wGetTokenInt(wtoken token, int* ival) .......................................................................................... 107 
int wGetTokenString(wtoken token, char* str) .................................................................................... 107 
int wGetTokenDef(wtoken token, int *num, unsigned char* str) ........................................................ 107 
int wGetTokenTimed(wtoken token, wtype *type, wvalue *value, int timeout) ................................. 108 
int wGetTokenFloatTimed(wtoken token, float *fval, int timeout) ..................................................... 108 
int wGetTokenIntTimed(wtoken token, int *ival, int timeout) ............................................................ 109 
int wGetTokenStringTimed(wtoken token, char* str, int timeout) ...................................................... 109 
A Small Program Example .................................................................................................................... 110 

Event-driven updates ................................................................................................................................... 111 
int wKeepAlive ..................................................................................................................................... 111 
int wGetParsedEvents(wTV *tv, int maxevents) .................................................................................. 111 
int wGetParsedEventsTimed(wTV *tv, int maxevents, int timeout) .................................................... 113 

Nodes ........................................................................................................................................................... 115 
int wSetNode(char *str) ....................................................................................................................... 116 
int wSetNodeFtomTVArray(wTV *array, int nTV)................................................................................. 116 
int wSetBinaryNode (unsigned char *array, int len) ............................................................................ 116 



 
 
 
 

©Patrick-Gilles Maillot 4 WING remote protocols – V 3.0.6-27 
 
 
 

int wGetNode(wtoken node, char *str) ............................................................................................... 118 
int wGetNodeToTVArray (wtoken node, wTV *array) .......................................................................... 118 
int wGetBinaryNode (wtoken node, unsigned char *array, int maxlen) .............................................. 121 
int wGetBinaryData (char *str, unsigned char *array, int maxlen) ...................................................... 121 

Meters ......................................................................................................................................................... 122 
Meters API ............................................................................................................................................... 122 

int wMeterUDPPort (int wport) ........................................................................................................... 122 
int wSetMetersRequest(int reqID, unsigned char *wMid) ................................................................... 122 
int wRenewMeters(int reqID) .............................................................................................................. 123 
int wGetMeters(unsigned char *buf, int maxlen, int timeout) ............................................................ 123 

RTA test program ..................................................................................................................................... 125 
Channel strips layers .................................................................................................................................... 129 
Effects and Plugins ....................................................................................................................................... 130 

Plugins ...................................................................................................................................................... 130 
Effects ...................................................................................................................................................... 132 

Dynamic parameters anonymization in wapi ....................................................................................... 133 

WING MIDI (Remote-Control) .......................................................................................................................... 137 
MIDI port names .......................................................................................................................................... 137 
MIDI REMOTE CONTROL .............................................................................................................................. 137 
WING MIDI SYSEX ........................................................................................................................................ 140 

SYSEX Messages format ........................................................................................................................... 140 
SYSEX Messages, Explained ...................................................................................................................... 140 
Examples .................................................................................................................................................. 141 

cmd = 00 example: ............................................................................................................................... 141 
cmd = 02 examples: ............................................................................................................................. 141 
cmd = 03 examples: ............................................................................................................................. 142 
cmd = 05 examples: ............................................................................................................................. 142 

Appendix: Buttons (user/gpio, user/user, user/daw, user/) ............................................................................ 145 
user/gpio/1..4 .............................................................................................................................................. 145 
user/user/1..4 .............................................................................................................................................. 145 
user/daw1..4/1..4 ........................................................................................................................................ 145 
user/1..16/1..4 ............................................................................................................................................. 146 

Appendix: Effects and Plugins’ Parameters list ................................................................................................ 151 
Effects .......................................................................................................................................................... 151 

Standard effects ....................................................................................................................................... 151 
Premium effects ....................................................................................................................................... 160 
Channel effects ........................................................................................................................................ 167 

Plugins .......................................................................................................................................................... 172 
Filter plugins ............................................................................................................................................ 172 
Gate plugins ............................................................................................................................................. 173 
EQ plugins ................................................................................................................................................ 176 
Compressor plugins ................................................................................................................................. 179 

Appendix: WING Effects Description ............................................................................................................... 183 
Gate Section ................................................................................................................................................. 184 

Wing Gate/Expander ................................................................................................................................ 184 
Soul 9000 Gate. Emulates the SSL 9000 Channel Gate ............................................................................ 185 
Even 88 Gate. Emulates the Neve 88RS Gate. ......................................................................................... 186 



 
 
 
 

©Patrick-Gilles Maillot 5 WING remote protocols – V 3.0.6-27 
 
 
 

Draw More 241. Emulates the Drawmer DL241 Expander/Gate Section. ............................................... 187 
BDX 902 De-Esser. Emulates the DBX 902. .............................................................................................. 187 
76 Limiter Amp. Emulates the UREI/Universal Audio 1176 FET Compressor. .......................................... 187 
LA Leveler. Emulates the Teletronix LA-2A. ............................................................................................. 188 
Source Extractor. Emulates the Rupert Neve Primary Source Enhancer PSE-545.................................... 188 
Wave Designer. Emulates the SPL Transient Designer. ............................................................................ 189 
Auto Rider. Emulates the Waves Vocal Rider ........................................................................................... 190 
Soul Warmth Pre. Emulates the SSL Console Emulated Preamp. ............................................................ 190 
Wing Gate Dynamic EQ ............................................................................................................................ 190 

Equalizer Section .......................................................................................................................................... 192 
Wing EQ ................................................................................................................................................... 192 
Soul Analog. Emulates the SSL Channel EQ. ............................................................................................. 192 
Even 88-Formant. Emulates the Neve 88 EQ. .......................................................................................... 193 
Even 84. Emulates the AMS Neve 1084 EQ.............................................................................................. 193 
Fortissimo 110. Emulates the Focusrite ISA 110 EQ. ............................................................................... 194 
Pulsar. Emulates the Pultec EQP-1A combined with MEQ-5. ................................................................... 194 
Mach EQ4. Emulates the Mäag EQ4. ....................................................................................................... 195 
PIA 560 GEQ. Emulates: API 560 EQ......................................................................................................... 195 

Compressor Section ..................................................................................................................................... 196 
Wing Compressor. ................................................................................................................................... 196 
BDX 160. Emulates the DBX 160. ............................................................................................................. 197 
BDX 560 Easy. Emulates: DBX 560 VCA Overeasy Compressor. ............................................................... 197 
Draw More D241. Emulates the Drawmer DL241. ................................................................................... 198 
Red3 Compressor. Emulates: Focusrite Red 3 Compressor. .................................................................... 198 
Soul 9000. Emulates the SSL 9000 Channel Compressor. ........................................................................ 199 
Soul G Buss. Emulates the SSL 9000 G Bus Compressor. ......................................................................... 199 
Even Compressor/Lim. Emulates: Neve 33609. ....................................................................................... 200 
Eternal Bliss. Emulates the Elysia Mpressor. ............................................................................................ 200 
76 Limiter Amp. Emulates: UREI/Universal Audio 1176 FET Compressor. ............................................... 201 
LA Leveler. Emulates the Teletronix LA-2A. ............................................................................................. 202 
Fairkid Model 670. Emulates: Fairchild 670. ............................................................................................ 203 
No Stressor. Emulates the Emperical Labs EL8 Distressor. ...................................................................... 204 
PIA2250 Rack. Emulates: API 225L 200 series module. ............................................................................ 205 
LTA100 Leveler. Emulates the Summit Audio TLA-100. ........................................................................... 205 
Wave Designer. Emulates the SPL Transient Designer. ............................................................................ 206 
PSE LA Combo. Emulates the Vintage LA-style Compressors. .................................................................. 207 
Auto Rider. Emulates the Waves Vocal Rider. .......................................................................................... 208 

Pre FX Effects Section REVERBS ................................................................................................................... 209 
Hall Reverb ............................................................................................................................................... 209 
Room Reverb ........................................................................................................................................... 209 
Chamber Reverb ...................................................................................................................................... 211 
Plate Reverb ............................................................................................................................................. 211 
Concert Reverb ........................................................................................................................................ 212 
Ambience Reverb ..................................................................................................................................... 213 
VSS3 Reverb ............................................................................................................................................. 213 
Vintage Room Reverb .............................................................................................................................. 214 
Vintage Reverb ......................................................................................................................................... 215 
Vintage Plate ............................................................................................................................................ 216 
Blue Plate ................................................................................................................................................. 216 



 
 
 
 

©Patrick-Gilles Maillot 6 WING remote protocols – V 3.0.6-27 
 
 
 

Gated Reverb ........................................................................................................................................... 217 
Reverse Reverb ........................................................................................................................................ 218 
Delay Reverb ............................................................................................................................................ 218 
Shimmer Reverb ...................................................................................................................................... 219 
Spring Reverb ........................................................................................................................................... 220 

Appendix: Routing ............................................................................................................................................ 221 
Input Routing ............................................................................................................................................... 222 
Output Routing ............................................................................................................................................ 225 
Advanced Routing Options .......................................................................................................................... 228 

USER SIGNAL ............................................................................................................................................ 228 
USER PATCH ............................................................................................................................................. 230 

Appendix: Shows, Scenes (Snaps, Snippets, Presets & Audio Clips) ................................................................. 232 
Shows ........................................................................................................................................................... 232 
Scenes .......................................................................................................................................................... 232 

Snaps (& Scopes) ...................................................................................................................................... 233 
Snippets ................................................................................................................................................... 233 
Presets ..................................................................................................................................................... 233 
Audio Clips ............................................................................................................................................... 234 

Controlling Scenes and Shows via CC buttons ............................................................................................. 234 
Controlling Scenes and Shows via MIDI ....................................................................................................... 235 

Item Tags ................................................................................................................................................. 235 
Arbitrary MIDI data .................................................................................................................................. 236 

Appendix: Scopes and Safes ............................................................................................................................. 237 
Library Scopes .............................................................................................................................................. 237 

CONTENTS Scopes (orange Icons) ............................................................................................................ 237 
CONFIGURATION Scopes (blue icons) ...................................................................................................... 238 

CONFIG ................................................................................................................................................ 238 
SFC ....................................................................................................................................................... 238 
PREFS ................................................................................................................................................... 238 
L, C, R, CC, CMPCT, RCK, EXT, VRT ........................................................................................................ 238 

Not Saved in Snapshots:........................................................................................................................... 238 
Console Init Scopes ...................................................................................................................................... 240 
Global Safes ................................................................................................................................................. 241 

Appendix: WING Startup Control ..................................................................................................................... 242 

Appendix: MIDI DAW mode for REAPER Control Surface Use ......................................................................... 243 
REAPER Audio Setup .................................................................................................................................... 244 
MIDI ............................................................................................................................................................. 244 

WING MIDI setup ..................................................................................................................................... 244 
REAPER MIDI setup .................................................................................................................................. 246 

Appendix: WING Icons ..................................................................................................................................... 251 

Appendix: WING Colors ................................................................................................................................... 253 

Appendix: WING GPIOs: ................................................................................................................................... 254 
Description ................................................................................................................................................... 254 
Electrical connections .................................................................................................................................. 254 
Power-on delay ............................................................................................................................................ 255 



 
 
 
 

©Patrick-Gilles Maillot 7 WING remote protocols – V 3.0.6-27 
 
 
 

GPIO precedence on USER/LAYER CC GPIO function ................................................................................... 255 
Multiple, simultaneous actions, using GPIOs ............................................................................................... 256 

Appendix: W-Live/SD card Sessions ................................................................................................................. 257 
Recording data format ................................................................................................................................. 257 
Session name coding.................................................................................................................................... 257 
Naming  & sorting your existing sessions ..................................................................................................... 258 

Working with Dante or WSG ............................................................................................................................ 260 

Appendix: MCU [DAW BUTTONS] commands list ............................................................................................ 261 

Appendix: MCU [DAW V-POTS] commands list ................................................................................................ 262 

Appendix: MCU [DAW REMOTE MCU] commands list ..................................................................................... 263 

Appendix: WING Snapshot and JSON Data Structure: ..................................................................................... 264 
Wing Snapfile ............................................................................................................................................... 264 

Description ............................................................................................................................................... 264 
scopes ...................................................................................................................................................... 265 
ae_data .................................................................................................................................................... 267 
ce_data .................................................................................................................................................... 284 
globals ...................................................................................................................................................... 288 

More JSON files ............................................................................................................................................ 289 
 
  



 
 
 
 

©Patrick-Gilles Maillot 8 WING remote protocols – V 3.0.6-27 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 
 

 

 

  



 
 
 
 

©Patrick-Gilles Maillot 9 WING remote protocols – V 3.0.6-27 
 
 
 

Introduction 

About this document 
My name is Patrick-Gilles Maillot and I am authorized by Behringer to publish and maintain this “WING 
remote protocols” document; I am not a MusicTribe employee.  
 
Starting with release 2.0 of the WING firmware, OSC and native remote protocols form a single (this) 
document under two separate sections, and share the same series of appendix chapters.  
 
Most users will probably find it easier to remote access their WING with OSC commands while more advance 
programing and less restricted control are possible using native commands and the Wing API (wapi) library. 
 
While the main purpose of this document is to offer developers with a reference to programing their WING 
console using OSC or wapi, this document also includes chapters which would qualify more as User Guide 
oriented ones, helping novice and advanced users to better use the desk: Dedicated chapters provide 
additional details on MIDI, Custom Controls, Effects, Plugins, Shows and Scenes, Routing and more. 
 
I want to thank the Behringer development team for their continuous support in writing this document. 
 
 

General features of the WING console 
In 2019, Behringer has been designing a whole new digital mixing desk they would later call “Personal Mixing 
Console”. The WING was unveiled to the public in November 2019 and first shipments took place in 
December that year. As to why calling it a “Personal Mixing Console”, here is a perfectly valid answer from 
one of the fathers of the console: “A fundamental idea of WING was providing a high level of customization 
options to the engineer, allowing to adapt the console surface to his personal preferences and needs”. 
The WING console was awaited by several X32 and M32 users as it carried the promise of new features, long 
expected since the first release the X32 and M32 family of digital mixing desks. It seems the WING receives a 
warm welcome from the community. 
 
 
The Behringer WING provides 48-channel, 28-bus mixing with 24 motorized faders and a large 10” 
capacitive-touch LED screen. The desk is designed for live performance, live and studio recording, touring 
sound, A/V, club installs, and more. Three separate fader sections and a custom controls section can be easily 
and intuitively tailored to personal requirements.  
 
The 48-channel inputs [in/aux] and 28-channel mixes [bus/matrix/main] can all be in mono/stereo or mid-side 
mode, with specific source mutes and metering, and provide dynamics, EQ and FX processing. They too can be 
given a color, icon, name and up to 8 console or user defined tags for grouping and filtering purposes. 
WING input channels provide low-cut & high-cut filters, tilt-EQs, all-pass or Sound Maxer, in addition to a 
6-band parametric EQ. All buses, matrices, and mains feature 8-band parametric EQ. All channels and buses 
can also load high-end simulations modeled from hardware devices such as Pultec EQ, SSL Bus Compressor 
and Gate/Expander, SPL Transient Designer, Neve EQ, Compressor and Gate, Focusrite ISA and D3, DBX160, 



 
 
 
 

©Patrick-Gilles Maillot 10 WING remote protocols – V 3.0.6-27 
 
 
 

LA-2A, 1176, Elysia mPressor, Empirical Labs Distressor, and more. The built in FX rack supports 8 true stereo 
processors including TC VSS3 algorithms, Lexicon, Quantec, and EMT emulations. Other processing includes 
modulation, equalization, dynamics, nonlinear effects and four guitar amplifiers with cabinet simulations. A 
maximum of 16 stereo inserts can be used for applying internal FX or outboard processing to input channels 
or buses. 
The channel editing section provides instant channel status overview and flow of operation. It allows working 
on the selected channel processing, even when the main display is used for something completely unrelated. 
Touch-sensitive rotary controls allow you to display the most relevant information, all at your fingertips.  
The central Custom Controls section1 offers user-assignable controls including 4 rotary encoders and 20 
buttons with 2 LCDs that can be set as functions readily available.  
A big rotary wheel offers fine-adjustments for up to 8 user parameters or can be used for DAW remote 
control via USB MIDI.  
The control configuration also includes predefined functionality for USB and SD-card recorder transport, show 
control and mute groups. 
WING includes 8 (full size console) or 24 (Rack and Compact consoles) original MIDAS PRO microphone 
preamps and 8 XLR outputs with professional quality specifications. 8 TRS line auxiliary ins and outs help bring 
in signals from media players or computers.  
 
A brand new StageCONNECT2 interface allows connecting breakout boxes and delivers up to 32 channels of 
low-latency input or output over a single standard XLR cable (DMX). 
WING can accommodate 376 inputs3 and 374 outputs thanks to 3 AES50 SuperMAC audio networking ports, 
which connect to digital stageboxes. In addition, 144 input and 144 output streams can be shared with other 
mixing consoles.  
There are 48 channels of USB audio and 64 channels of Audio over IP (AoIP module optional), plus AES/EBU 
stereo I/O. The WING expansion card slot features the LIVE SD recording card with 64x64 channels of audio or 
can accommodate option cards for various standards such as ADAT, MADI, DANTE, and WSG. 
All digital processing takes place on 40-bit floating point Digital Signal Processors, at 48 or 44.1 kHz, with a 
1.3ms round-trip latency4. 
WING provides MIDI In/Out and 2x2 GPIO (General Purpose Input Output, 1x2 on the compact console) that 
can be used as console event triggers and external show controls, including power-on delays for external gear 
that needs sync powering with the console. 
Automixing is also implemented, with 2 groups of gain sharing on any 16 input channels. The management of 
the respective input channel gains depends on the levels received, reducing the sum gain in the group to 
maintain intelligibility and low noise during meetings, ideal when several speakers are collaborating to 
corporate events, panels, broadcast applications or house of worship. 
 
 

  

 
1 Not on all WING family devices, the provided description matches the full-size console, unless mentioned otherwise 
2 https://www.klarkteknik.com/series.html?category=R-KLARKTEKNIK-STAGECONNECTSERIES 
3 Not considering User Signal/Patch, FX send, or Bus send entries which overlap with actual sources and would bring this to a virtual 
value of 478 on the WING 
4 Typical value for Out-to-In trip without effect or insert. 



 
 
 
 

©Patrick-Gilles Maillot 11 WING remote protocols – V 3.0.6-27 
 
 
 

Wing, a family 
Starting with FW version 3.0 in fall 2024, WING firmware addresses more devices than the ‘big’ WING which 
has been on the market for almost five years. Note these will be disjoint firmware packages. 
 
Compact and Rack are now available and offer the same overall functionality than the initial WING, although 
the change in format implies modifications, some more important than others. We list below the 
main/obvious elements of WING, Rack and Compact. 
 

WING: 
 Large control surface with a Left bank of 12 channel strips, a Center bank of 8 channel strips, a n area 

with CC encoders and buttons, and a Right Bank of 4 channel strips 
Each bank comes with a specific group select set of buttons (IN, AUX, MATRIX, MAIN, BUS, DCA, 
USER1, USER2, …) on its left side 

 Available in gray or black 
 Each channel strip is stereo and composed of a motorized fader, a MUTE, SOLO and SELECT button, a 

stereo vu-meter with clip, dynamics, and gate indicators, and a 2-line B/W scribble with a color LED 
above it 

 Big Wheel, 4 cursor Buttons, and a DAW control button for enabling some of the fader banks to 
control MIDI connected DAWs 

 A secondary screen besides the main LCD to control/manage ‘in channel’ settings such as EQ, COMP, 
etc. 

 8 local Inputs, 8 Aux inputs, 8 aux outputs, 8 local outputs 
 2 headphones jacks on the consoled rear surface sides (left and right), level control is on the top 

surface 
 4-pin, 12V XLR lamp socket on the rear of the console 
 Main board with Power, 2 Ethernet sockets, a USB port, 3 AES50 ports, 1 StageCONNECT port, AES-BU 

In and Out ports and an expansion slot fitted with 2 SD recording/playback expansion card. 
 4 GPIO (2 TRS) 
 MIDI IN and OUT 
 A dedicated section for USB, Monitoring 
 A large CC section with 2 sets of 8 buttons for CC, transport controls, and other WING dedicated 

functions (such as Mute Groups), DAW control and two LCD for displaying active functions 
 A dedicated section with 4 additional encoders and 4 buttons and LCD, and 8 buttons to select 

functions 

Rack:  
 19”, 4U rack format 
 No wheel, no DAW control button(s) 
 DAW Mode on Rack is limited to CC buttons and one Mackie Control device. 
 24 Local Inputs (8 on the WING) 
 No local Aux IO (8 IN, 8 OUT on the WING) 
 4 headphones outs mapped to the 8 local OUTs at the rear of the console with their own headphone 

amps for IEM applications 
 1 general headphone out with dedicated level knob on the front 
 No faders, and a limited set of buttons on the surface. 



 
 
 
 

©Patrick-Gilles Maillot 12 WING remote protocols – V 3.0.6-27 
 
 
 

 No encoders below the LCD touch screen (controls are only via the touch screen, and two encoders 
on the right side) 

 1 LCD + set of 4 encoders and 8 buttons CC section, with Layer level indicator, VIEW and >4 <4 
buttons 

 4 GPIO (2 TRS) 
 MIDI IN and OUT 
 No Lamp socket 
 A USB socket, and 4 buttons dedicated to selecting INPUT/AUX, BUSES/MAIN, DCA/Mute Groups, and 

CUST TRANSP (USB, SD1, SD2) on the CC section above 
 Same Main board as on WING, no fan 

 

Compact: 
 Smaller (19” rack compatible) surface with 3 sets of 4 faders and 1 main fader, with bank layer 

selection available from a vertical set of buttons on the left side of the console.  
 4-pin, 12V XLR lamp socket on the top surface of the console 
 Similar channel strips as on WING 
 No wheel, no DAW control button(s). Control is possible from the LCD screen. 
 24 Local Inputs (8 on the WING) 
 No local Aux IO (8 IN, 8 OUT on the WING) 
 Monitor/USB section on the right side of the screen 
 16 buttons in two vertical sets of 8 with a dedicated LCD acts as a CC section between the 12 faders 

left and the main fader 
 2 GPIO (1TRS) on the rear of the console (4 GPIO / 2 TRS on the WING) 
 MIDI IN and OUT 
 1 headphone lack on the rear of the console (level control is on the top surface) 
 Same Main board as on WING 

 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 13 WING remote protocols – V 3.0.6-27 
 
 
 

Sources vs. Inputs 
Unlike many digital or analogue desks, WING makes a clear separation between Sources and Input channels;  
Historically, consoles focus on input numbers assigned to Channels and Auxes. WING is offering a different 
perspective by focusing on the Source as the reason for any mixing. Sources can be in mono, stereo, or 
mid-side mode, own headamp parameters like gain and phantom power, with specific source mute and 
metering. They can be given a color, icon, name and up to 8 console or user defined tags for grouping and 
filtering purposes. All of this describes the actual Source first, before being patched to Input channels which 
focus on processing or mixing. 
 
This patching process (also called “Routing”) is described in a specific “user-guide” like Appendix later in this 
document to help new users grasp the basic operations involved in assigning a physical source (local or 
remote) to a channel for mixing, as well as assigning WING processed audio data to a physical output (local or 
remote). 
 
Sources can be labeled using the WING Co-Pilot app or other means such as OSC protocol described later in 
this document or the wapi function calls also presenter in the upcoming chapters5, and no matter if the signal 
is patched to a channel, to SD recording or to any other output, it can always be referred to as its assigned 
Source label. 
 
 
 
 
 
 
 
Notes 
The internal real-time clock (RTC) is powered by a super-capacitor. If the WING is off mains for more about 
two weeks, it will most likely lose its clock data. 
  

 
5 Refer also to https://github.com/pmaillot/wapi 



 
 
 
 

©Patrick-Gilles Maillot 14 WING remote protocols – V 3.0.6-27 
 
 
 

WING Internal Data 
 
Like all digital or programmable devices, WING relies on an internal set of parameters that are stored/saved in 
non-volatile memory. This enables you to find the console in the same state you left it when powering it OFF. 
WING data set is very large, and in line with the many features the console offers. Each button, each attribute, 
color setting, effect, parameter, etc. can be found as an internal variable, member of a hierarchical tree 
structure. 
The WING tree is more than 25000 elements! To organize this large set of internal variables, WING uses a 
hierarchical tree of data, stating with a root and dispatching parameters into logical groups (sub-trees or 
branches) until the last element (leaves) that represent the actual parameter. 
For example, the fader associated to channel 1 is part of the channels sub-tree, and is one of the many 
attributes of channel 1. The channel sub-tree is part of the audio-engine, itself at the root level. 
A quick representation would be as shown below: 

 
 
Computers use specific data structures to represent trees. WING uses one of them, based on JSON6 notation. 
It is important to know/understand the list of sub-trees (nodes), and leaves (parameters) WING contains as 
this is how you can access to data. More detail on the WING data set is provided in appendix. 
 

WING File System 
At the difference of the X32, WING can be directly connected to a computer via USB; There are two ways 
WING can be visible to your computer, depending on the setting of the SETUP→GENERAL screen (shown below, 
with WING connected as an active data partition): 
 

 
6 JavaScript Object Notation: an efficient way to represent structured objects. Also used as a data-interchange format. 

root

audioengine

Channels

ch 1

fader

color

other  ...
...

ch n...

other

other

other

...



 
 
 
 

©Patrick-Gilles Maillot 15 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

When actively connected to your PC either as an OS partition or a Data partition, the status at the top of the 
WING screen will show a red OS or DATA tag. 
 

         
 
 
 

OS partition 
WING can be seen as an OS PARTITION, a directory where you can deposit the FW release you will use to boot 
from at next power up or reboot. Use with caution! 
 

Data Partition 
A USB connected WING presents itself as an external disk drive. Therefore, the standard cautions apply when 
connecting and more important, disconnecting from the computer; Ensure you unmount the WING file system 
to avoid losing data. 
 
If the choice for USB MSD ACCESS in SETUP→GENERAL is set to DATA PARTITION, the WING file system will show as 
a standard external USB drive. There may be some folders already there, such as ‘global’ or ‘shows’, with 
subfolders, such as ‘global/ch_presets’, ‘global/fx_presets’, ‘global/routing_presets’, ‘global/snapshots’. 
  



 
 
 
 

©Patrick-Gilles Maillot 16 WING remote protocols – V 3.0.6-27 
 
 
 

Remote communications with WING 
WING communicates via ports 2223 [UDP], and 2222 [UDP, TCP]; 
Initiating a communication with WING starts with sending the 5 bytes [UDP] datagram ‘WING?’ to the IP of 
your WING, port 2222. 
 
WING will reply to the requesting IP and port with the following datagram: 
 
‘WING,’ [c_ip] ‘,’ [c_name] ‘,’ [c_model] ‘,’ [c_serial] ‘,’ [firmware] 

Where: 
[c_ip]  e.g., ‘192.168.1.62’ 
[c_name]  ascii characters 
[c_model] ‘ngc-full’ (standard Wing console) 
[c_serial] serial number (ascii) 
[firmware] version string (ascii) 

 
For its native communication format, WING proposes 14 ‘communication channels’ to enable separation 
between the different ‘engines’ or main blocks of the console. The following communication channels are 
currently in use: 
Control-engine (a TCP communication channel) is using channel #1 
Audio-engine (main TCP communication channel) is using channel #2 
Meters (UDP communication) are using channel #3 
 
OSC uses a single UDP communication port: 2223 

Keeping connections alive 
Open connections will time out after 10 seconds of inactivity (on the receiving side). One way to keep a 
connection active is to request at regular intervals of less than 10 seconds some data from the console. There 
are many data that can be collected, as shown later in this document. 

Number of simultaneously connected applications 
WING can simultaneously communicate with up to 16 connected ‘clients’; The console will reject further 
connection requests, if the maximum number of simultaneous connections (16) is reached. 
What we call ‘clients’ above refer to actual TCP ports that communicate with the console. Some applications 
may use several ports and this will reduce the actual number of applications that can simultaneously connect 
and communicate with WING. 
UDP communications such as used for OSC do not have this limitation, being “connection-less”. On the other 
hand, WING’s OSC remote protocol enables only one (1) subscription to data (for receiving event messages) at 
any given time.  
 
Subscriptions must be kept alive; they automatically die after 10 seconds. 



 
 
 
 

©Patrick-Gilles Maillot 17 WING remote protocols – V 3.0.6-27 
 
 
 

Accessing WING Internal Data and Functions from remote programs 
As mention in the introduction, WING hosts an OSC compliant remote protocol server that offers access to 
the full set of features of the desk. This is described in the “WING OSC protocol data interface” chapter below. 
WING also offers a native, binary protocol with the capability to access (read or write) parameters of its 
internal structures and take full advantage of the entire set of features of the digital desk, including remote 
control. The protocol is fully described in the “WING native/binary data interface” chapter below.  
To help users access the native protocol, a WING API written in C [wapi] has been developed and is available 
as a free resource at https://x32ram/wapi to write programs that directly call wapi functions. 
 
  



 
 
 
 

©Patrick-Gilles Maillot 18 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

WING OSC protocol data interface 
 

  



 
 
 
 

©Patrick-Gilles Maillot 19 WING remote protocols – V 3.0.6-27 
 
 
 

OSC Remote Protocol 
WING includes an OSC Remote Protocol server. This enables easy access to remote features for many 
professional, sound applications and extensions offered by third parties. 
OSC remote control enables reading and modifying (when possible) all parameters included in the ae_data 
and ce_data JSON structures, all part of the main parameter tree. 
 
WING OSC server implementation complies with the OSC standard7 and proposes several ways to access data, 
parameters, and features. As all OSC compliant servers, the WING OSC server runs in the console and will 
reply to UDP on a specific port: 2223.  
When using standard UDP communication, clients will be replied onto their calling port. If needed, a specific 
feature enables WING to reply to a UDP port specified by the connected client, as explained later in this 
document. 

OSC Data Types 
In compliance with the OSC standard, WING supports the following types:  

 int32 (32bits, bi-endian),  
 float32 (32bits, IEEE 754, big endian), 
 string (non-null ASCII characters followed by a null, followed by 0-3 additional null characters to 

make the total number of bytes a multiple of 4),  
 blob (An int32 size count, followed by one or more bytes of arbitrary binary data, followed by 0-3 

additional zero bytes to make the total number of bytes a multiple of 4).  
 
As specified in the OSC standard, the unit of transmission of OSC is an OSC Packet. Any application that sends 
OSC Packets is an OSC Client; WING embeds and runs an OSC Server. 
 
An OSC Packet consists of its contents, a contiguous block of binary data, and its size, the number of 8-bit 
bytes that comprise the contents. The size of an OSC packet is always a multiple of 4. 
In the case of WING, the contents of an OSC packet is always an OSC Message, i.e. OSC Bundles are not 
supported. Note that wildcards ‘?’ and ‘*’ in Address Patterns are reserved for special cases. 
An OSC Message consists of an OSC Address Pattern followed by an OSC Type Tag String followed by zero or 
more OSC Arguments. Some older implementations of OSC may omit the OSC Type Tag string and WING 
supports this.  

 OSC Address Patterns always start with the character ‘/’. 
 OSC Type Tags can be i, f, s, b for int32, float32, string and blob, respectively 
 OSC Arguments consist in a single or a contiguous sequence of the binary representations of each 

argument 
The maximum UDP packet size is 32k bytes. 

  

 
7 See http://opensoundcontrol.org/spec-1_0 



 
 
 
 

©Patrick-Gilles Maillot 20 WING remote protocols – V 3.0.6-27 
 
 
 

WING OSC Messages 
In the following paragraphs, we assume a communication link exists between WING and a client program, and 
communications take place with a WING console at a known IP address, using UDP on port 2223.  
 
All along this document, the character ‘~’ will represent a NULL byte (\0). Patterns ->W and W-> represent data 
sent to WING and data received from WING followed by the actual number of bytes transmitted or received, 
respectively. To generate and test the OSC patterns listed in these pages, we used wosc8, a command-line tool 
specifically designed to operate with WING OSC.  
 
Retrieving WING console information can be completed by sending the OSC Address Pattern “/?” 
->W,    4 B: /?~~ 
W->,   80 B: /?~~,s~~WING,192.168.1.71,PGM,ngc-full,NO_SERIAL,1.07.2-40-g1b1b292b:develop~~~~ 
 
The actual bytes exchanged are displayed below (OSC is a binary protocol) 
->W,    4 B: 2f3f0000 
W->,   80 B: 
2f3f00002c73000057494e472c3139322e3136382e312e37312c50474d2c6e67632d66756c6c2c4e4f5f53455249414c2c
312e30372e322d34302d6731623162323932623a646576656c6f7000000000 
 
The line below is using a more compliant OSC format, and will result in the same answer 
->W,    8 B: /?~~,~~~ 

Reading (Get) Parameter and Node data 
There are two main ways to gain access to WING data: using one-parameter-at-a-time or using “nodes”. 
 
WING “nodes” are a great way to access multiple parameters at a time, and therefore maximize 
communication bandwidth with the console. Nodes are represented as string OSC Data Type and are zero 
terminated (\0 byte ending the string). 
Nodes are also a good way to discover WING parameters, as they offer easy access to the full map of the JSON 
internal data structures.  
We show below WING’s first layer of JSON structure, and starting at the root, retrieved using OSC. 
 
->W,    4 B: /~~~ 
W->,  116 B: 
/~~~,ssssssssssssssss~~~$stat~~~cfg~$syscfg~io~~ch~~aux~bus~main~~~~mtx~dca~mgrp~~~~fx~~cards~~~pl
ay~~~~rec~$ctl~~~~ 
 
Retrieving a WING single parameter is quite easy: You must ensure your OSC request points to a leaf of the 
JSON structure (i.e. there is no more hierarchy data after the current one). This is for example the case for the 
fader value of a channel strip, or its mute state. Channel Strip 1 fader is represented as follows:  
 

 
8 wosc can be found as a free tool at https://x32ram.com/downloads 



 
 
 
 

©Patrick-Gilles Maillot 21 WING remote protocols – V 3.0.6-27 
 
 
 

  
 
Or “ch”/”1”/”fdr”, which translates to OSC Address Pattern /ch/1/fdr: 
->W,   12 B: /ch/1/fdr~~~ 
W->,   32 B: /ch/1/fdr~~~,sff~~~~-oo~[0.0000][-144.0000] 
 
In the example above, the data [0.0000][-144.0000] are ascii representation of two 32bits big-endian float 
data values, each coded on 4 bytes as binary. The binary data actually received is as shown below, and in 
order to ease the reading of numerical information in this document, we use readable values in brackets 
rather than the actual binary data. The color highlights are there to help distinguish data elements. 
W->,   32 B: 2f63682f312f6664720000002c736666000000002d6f6f0000000000c3100000 
 
Depending on the OSC Address Pattern, WING returns ',s' for strings or enums, ',sff' (ascii, raw, float value) 
for floats, ',sfi' (ascii, raw, int value) for ints. In the example above, fader position is a float and WING returns 
the ascii representation, the raw [0.0..1.0] data and the actual float value in dB. 
Similarly, requesting the mute state of channel strip 1 would return: 
->W,   12 B: /ch/1/mute~~ 
W->,   32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][     1]  
W->,   32 B: 2f63682f312f6d75746500002c73666900000000310000003f80000000000001 
 
It should be noted that WING will accept both OSC path or the native hash data for representing nodes or 
parameters; Indeed, all nodes and parameters in the console are assigned a binary address (a hash) as 
explained in the chapter on native interface to the console. For example, the channel 1 mute command above 
can be sent as OSC Address Patterns /ch/1/mute~~ as shown, or /#f50f69f8~~, and would return the same 
data as shown above. 0xf50f69f8 is the hash for command “Channel 1 mute”. The full set of WING hash 
values can be discovered by recursively traversing the JSON tree of WING nodes/commands, using the native 
binary interface or OSC protocol, but it is generally more convenient to use the more standard OSC node 
notation, rather than hexadecimal hash values to address the console features. 
 

Receiving OSC data on a specific port 
Some OSC programs will request that data is returned on a specific port rather than being sent back to the 
port used by the requesting client for sending data. To enable this capability, WING OSC includes an optional, 
special notation for all OSC commands: 
Any OSC command can be prefixed with the /%<port>, with <port> in the form “12345” to enable receiving the 
expected answer onto the specified port number. For example, the OSC request: 
->W,   20 B: /%10027/ch/1/mute~~~ 
 
Will receive the expected reply from WING on port 10027, as shown below, using a sniffer program on said 
port. The IP does not change. 



 
 
 
 

©Patrick-Gilles Maillot 22 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

Writing (Set) Parameter and Node data 
Single Parameters 
OSC can be used to set or modify WING data. Taking the fader and mute examples above, we can modify their 
respective values using OSC commands, sending string, big-endian int32 or big-endian float32 with the 
corresponding OSC Type Tag following the OSC Address Pattern respective of the parameter to change. 
WING does not echo data sent over UDP by the client application. The client application may nevertheless be 
notified with an OSC event in case of an error. 
Individual parameters can be strings, integer, or floats; WING OSC server implementation enables to use 
several data types and will manage the conversion to ensure proper value setting inside the console. For 
example, fader position is a floating-point internal value. It can be set as a string or a float using the following 
OSC commands (in this example setting channel 2 fader position to -2 or -3dB): 
->W,   20 B: /ch/2/fdr~~~,s~~-2~~ 
->W,   12 B: /ch/2/fdr~~~ 
W->,   36 B: /ch/2/fdr~~~,sff~~~~-2.0~~~~[0.7000][-2.0000] 
 
->W,   20 B: /ch/2/fdr~~~,f~~[-3.0000] 
->W,   12 B: /ch/2/fdr~~~ 
W->,   36 B: /ch/2/fdr~~~,sff~~~~-3.0~~~~[0.6750][-3.0000] 
 

Special case: Toggle 
Wing OSC implements a specific option for toggling [0..1] OSC integer values for int Type Tags;  
This can be quite useful to change a value without first having to read it and test its current value before 
sending back 0 or 1 accordingly. By sending a -1 to an OSC Command with and integer OSC Type Tag that can 
only accept values 0 or 1, the value of the parameter will toggle between 0 and 1. For example: 
 
->W,   20 B: /ch/1/mute~~,i~~[    -1] 
Will mute channel 1 it is was unmuted, and unmute channel 1 if it was muted 
 

Enumerated strings 
One of the data WING uses is “enumerated strings”, or the choice of one string in a list of elements to 
represent a specific state or attribute value. For example, /$ctl/user/1/1/enc/mode can be any of the 
following strings: OFF, FDR, PAN, DCA, SSND, FSND, FX, DAWMCU, MON, MIDICC, SD A, or SD B 
 
This can be set via a string OSC tag, as shown below if one wants to set the mode parameter to FX: 
/$ctl/user/1/1/enc 
->W,   20 B: /$ctl/user/1/1/enc~~ 
W->,   52 B: /$ctl/user/1/1/enc~~,sss~~~~mode~~~~name~~~~$fname~~  
->W,   24 B: /$ctl/user/1/1/enc/mode~ 
W->,   32 B: /$ctl/user/1/1/enc/mode~,s~~OFF~ 
/$ctl/user/1/1/enc/mode ,s FX 



 
 
 
 

©Patrick-Gilles Maillot 23 WING remote protocols – V 3.0.6-27 
 
 
 

->W,   32 B: /$ctl/user/1/1/enc/mode~,s~~FX~~ 
/$ctl/user/1/1/enc/mode 
->W,   24 B: /$ctl/user/1/1/enc/mode~ 
W->,   32 B: /$ctl/user/1/1/enc/mode~,s~~FX~~ 
 
But it can also be set as an int OSC tag, using the index of the list corresponding to the targeted value; in the 
example above, FX sits at index 6 in the list of 10 strings; This enables us to use the following OSC command to 
set the encoder mode to FX: 
 
/$ctl/user/1/1/enc 
->W,   20 B: /$ctl/user/1/1/enc~~ 
W->,   52 B: /$ctl/user/1/1/enc~~,sss~~~~mode~~~~name~~~~$fname~~  
->W,   24 B: /$ctl/user/1/1/enc/mode~ 
W->,   32 B: /$ctl/user/1/1/enc/mode~,s~~OFF~ 
/$ctl/user/1/1/enc/mode ,i 6 
->W,   32 B: /$ctl/user/1/1/enc/mode~,i~~[     6] 
/$ctl/user/1/1/enc/mode 
->W,   24 B: /$ctl/user/1/1/enc/mode~ 
W->,   32 B: /$ctl/user/1/1/enc/mode~,s~~FX~~ 
 
One can also note the extendibility character of WING nodes; indeed, after the previous command, the user 
1/1 encoder has additional parameters: 
/$ctl/user/1/1/enc 
->W,   20 B: /$ctl/user/1/1/enc~~ 
W->,   60 B: /$ctl/user/1/1/enc~~,sssss~~mode~~~~name~~~~$fname~~fx~~par~ 
 

Node Data 
WING nodes can also be used to set multiple values with using a single OSC “/” command, and offer a simple 
yet effective way to navigate within the hierarchical structure of JSON data. Say you want/need to set fader 
and mute values to -1 dB, 0 dB, OFF and ON for channels 1 and 2; This can be achieved in a single OSC request 
using the following syntax: 
->W,   44 B: /~~~,s~~/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1~ 
 
Or setting channel 1 fader and mute values to 10 dB and ON, and setting bus 1 fader to 5 dB: 
->W,   44 B: /~~~,s~~/ch.1.fdr=10,mute=1,/bus.1.fdr=5~~~~ 
 
As shown above, each parameter group is separated by a ‘,’ character, the ‘/’ character represents the root of 
the JSON parameter tree, and ‘.’ characters are used to navigate up and down within the JSON parameter tree.  
The console will reply with /*~~,s~~OK~~ if the command was accepted, or one of the following: 
/*~~,s~~NODE NOT FOUND~~ 
/*~~,s~~VALUE ERROR~~~~~ 
/*~~,s~~BUFFER OVERFLOW~ 
/*~~,s~~NODE IS NOT PAR~ 
/*~~,s~~INCOMPLETE DATA~ 
/*~~,s~~STACK EMPTY~~~~~ 
 
if an error occurred during the execution of the command. 
 
Note: Nodes can return large amounts of data; as a result, some nodes cannot be returned using OSC/UDP as 
they would overflow the 32kB UDP buffer limitation; In such situation, WING will return an error OSC message 
event. 
 
Some nodes examples are provided below: 
 
->W,   12 B: /ch/1/fdr~~~ 



 
 
 
 

©Patrick-Gilles Maillot 24 WING remote protocols – V 3.0.6-27 
 
 
 

W->,   32 B: /ch/1/fdr~~~,sff~~~~-oo~[0.0000][-144.0000] 
->W,   12 B: /ch/1/mute~~ 
W->,   32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][     1] 
->W,   12 B: /ch/2/fdr~~~ 
W->,   32 B: /ch/2/fdr~~~,sff~~~~-oo~[0.0000][-144.0000] 
->W,   12 B: /ch/2/mute~~ 
W->,   32 B: /ch/2/mute~~,sfi~~~~0~~~[0.0000][     0] 
 
->W,   44 B: /~~~,s~~/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1~ 
W->,   12 B: /*~~,s~~OK~~ 
 
->W,   12 B: /ch/1/fdr~~~ 
W->,   36 B: /ch/1/fdr~~~,sff~~~~-1.0~~~~[0.7250][-1.0000] 
->W,   12 B: /ch/1/mute~~ 
W->,   32 B: /ch/1/mute~~,sfi~~~~0~~~[0.0000][     0] 
->W,   12 B: /ch/2/fdr~~~ 
W->,   32 B: /ch/2/fdr~~~,sff~~~~0.0~[0.7500][0.0000] 
->W,   12 B: /ch/2/mute~~ 
W->,   32 B: /ch/2/mute~~,sfi~~~~1~~~[1.0000][     1] 
 
Nodes can also be located deeper in the JSON structure tree. For example, changing a single parameter in the 
node channel 1 [”/ch/1”] can be done as shown below: 
->W,   20 B: /ch/1~~~,s~~fdr=3~~~ 
W->,   16 B: /ch/1*~~,s~~OK~~ 
 
->W,   12 B: /ch/1/fdr~~~ 
W->,   32 B: /ch/1/fdr~~~,sff~~~~3.0~[0.8250][3.0000] 
->W,   12 B: /ch/1/mute~~ 
W->,   32 B: /ch/1/mute~~,sfi~~~~0~~~[0.0000][     0] 
 
The OSC command is replied to with an OK status if execution went well; error messages can be returned too, 
as explained earlier. 
 
The same type of command can be used to set/change several parameters at once; For example, fader and 
mute values of channel 1 can be done as follows: 
->W,   28 B: /ch/1~~~,s~~fdr=4,mute=1~~~~ 
W->,   16 B: /ch/1*~~,s~~OK~~ 
 
->W,   12 B: /ch/1/fdr~~~ 
W->,   32 B: /ch/1/fdr~~~,sff~~~~4.0~[0.8500][4.0000] 
->W,   12 B: /ch/1/mute~~ 
W->,   32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][     1] 
 
 

Special Node Type/Arguments 
There are three special tag/argument that are specifically implemented for nodes. They enable listing the 
complete set of data, parameter description, and description including values for the node provided as OSC 
address pattern. The arguments to use are ‘*’, ‘?’, and ‘#’, respectively. Examples of use are provided below, 
applied to OSC address pattern /fx/1 when no effect is loaded to keep the description as short as possible. 
 
Node data dump: 
When using this format, the data returned will strictly correspond to what would be saved in a snap file; 
Read-only and temporary data are not returned. 
/fx/1 ,s * 
->W,   16 B: /fx/1~~~,s~~*~~~ 



 
 
 
 

©Patrick-Gilles Maillot 25 WING remote protocols – V 3.0.6-27 
 
 
 

W->,   32 B: /fx/1~~~,s~~mdl=NONE,fxmix=100,~ 
 
Node parameter description: 
/fx/1 ,s ? 
->W,   16 B: /fx/1~~~,s~~?~~~ 
W->,  696 B: /fx/1~~~,s~~  mdl            list [NONE, EXT, HALL, ROOM, CHAMBER, PLATE, CONCERT, 
AMBI, V-ROOM, V-REV, V-PLATE, GATED, REVERSE, DEL/REV, SHIMMER, SPRING, DIMCRS, CHORUS, FLANGER, 
ST-DL, TAP-DL, TAPE-DL, OILCAN, BBD-DL, PITCH, D-PITCH, VSS3, BPLATE, GEQ, PIA, DOUBLE, PCORR, 
LIMITER, DE-S2, ENHANCE, EXCITER, P-BASS, ROTARY, PHASER, PANNER, TAPE, MOOD, SUB, RACKAMP, 
UKROCK, ANGEL, JAZZC, DELUXE, BODY, SOUL, E88, E84, F110, PULSAR, MACH4, C5-CMB, SUB-M, V-IMG, 
SPKMAN, DEQ3, *EVEN*, *SOUL*, *VINTAGE*, *BUS*, *MASTER*]~  fxmix          lin [0 .. 100 %], 101 
steps~  $esrc          int [0 .. 400]~  $emode         list [M, ST, M/S]~  $a_chn         int [0 
.. 76]~  $a_pos         int [0 .. 1]~~~~ 
 
Node description including values: 
/fx/1 ,s # 
->W,   16 B: /fx/1~~~,s~~#~~~ 
W->,  816 B: /fx/1~~~,s~~  mdl            NONE                list [NONE, EXT, HALL, ROOM, 
CHAMBER, PLATE, CONCERT, AMBI, V-ROOM, V-REV, V-PLATE, GATED, REVERSE, DEL/REV, SHIMMER, SPRING, 
DIMCRS, CHORUS, FLANGER, ST-DL, TAP-DL, TAPE-DL, OILCAN, BBD-DL, PITCH, D-PITCH, VSS3, BPLATE, 
GEQ, PIA, DOUBLE, PCORR, LIMITER, DE-S2, ENHANCE, EXCITER, P-BASS, ROTARY, PHASER, PANNER, TAPE, 
MOOD, SUB, RACKAMP, UKROCK, ANGEL, JAZZC, DELUXE, BODY, SOUL, E88, E84, F110, PULSAR, MACH4, 
C5-CMB, SUB-M, V-IMG, SPKMAN, DEQ3, *EVEN*, *SOUL*, *VINTAGE*, *BUS*, *MASTER*]~  fxmix          
100                 lin [0 .. 100 %], 101 steps~  $esrc          0               r/o int [0 .. 
400]~  $emode         M               r/o list [M, ST, M/S]~  $a_chn         0               r/o 
int [0 .. 76]~  $a_pos         0               r/o int [0 .. 1]~~~~ 
 
As a second example, we give below the node data dump for OSC address pattern /ch/1, when loaded with 
default values after init: 
/ch/1 ,s * 
->W,   16 B: /ch/1~~~,s~~*~~~ 
W->, 2156 B: 
/ch/1~~~,s~~in.set.srcauto=0,altsrc=0,inv=0,trim=0.0,bal=0.0,dlymode=M,dly=0.1,dlyon=0,.conn.grp=L
CL,in=1,altgrp=OFF,altin=1,..flt.lc=0,lcf=100.2,lcs=24,hc=0,hcf=10k02,hcs=12,tf=0,mdl=TILT,tilt=0.
00,.clink=1,col=1,name=,icon=0,led=1,mute=0,fdr=-oo,pan=0,wid=100,solosafe=0,mon=A,proc=GEDI,ptap=
5,peq.on=0,1g=0.0,1f=100,1q=1.00,2g=0.0,2f=999,2q=1.00,3g=0.0,3f=10k0,3q=1.00,.gate.on=0,mdl=GATE,
thr=-40.0,range=40.0,att=10,hld=10,rel=199,acc=0,ratio='1:3',.gatesc.type=OFF,f=1k0,q=2.00,src=SEL
F,tap=IN,.eq.on=0,mdl=STD,mix=100,lg=0.0,lf=80.2,lq=1.00,leq=SHV,1g=0.0,1f=200.0,1q=1.00,2g=0.0,2f
=601.4,2q=1.00,3g=0.0,3f=1k50,3q=1.00,4g=0.0,4f=3k99,4q=1.00,hg=0.0,hf=12k00,hq=1.00,heq=SHV,.dyn.
on=0,mdl=COMP,mix=100,gain=0.0,thr=-10.0,ratio=3.0,knee=3,det=RMS,att=50,hld=20,rel=153,env=LOG,au
to=1,.dynxo.depth=6.0,type=OFF,f=1k0,.dynsc.type=OFF,f=1k0,q=2.00,src=SELF,tap=IN,.preins.on=0,ins
=NONE,.main.1.on=1,lvl=0.0,pre=0,.2.on=0,lvl=0.0,pre=0,.3.on=0,lvl=0.0,pre=0,.4.on=0,lvl=0.0,pre=0
,..send.1.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.2.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.
3.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.4.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.5.on=0,l
vl=-oo,pon=0,mode=PRE,plink=0,pan=0,.6.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.7.on=0,lvl=-oo,p
on=0,mode=PRE,plink=0,pan=0,.8.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.9.on=0,lvl=-oo,pon=0,mod
e=GRP,plink=1,pan=0,.10.on=0,lvl=-oo,pon=0,mode=GRP,plink=1,pan=0,.11.on=0,lvl=-oo,pon=0,mode=POST
,plink=1,pan=0,.12.on=0,lvl=-oo,pon=0,mode=POST,plink=1,pan=0,.13.on=0,lvl=-oo,pon=0,mode=POST,pli
nk=1,pan=0,.14.on=0,lvl=-oo,pon=0,mode=POST,plink=1,pan=0,.15.on=0,lvl=-oo,pon=0,mode=POST,plink=1
,pan=0,.16.on=0,lvl=-oo,pon=0,mode=POST,plink=1,pan=0,.MX1.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan
=0,.MX2.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.MX3.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.
MX4.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.MX5.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.MX6.
on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.MX7.on=0,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,.MX8.on=0
,lvl=-oo,pon=0,mode=PRE,plink=0,pan=0,..tapwid=100,postins.on=0,mode=FX,ins=NONE,w=0.0,.tags=,~~~~ 

 
  



 
 
 
 

©Patrick-Gilles Maillot 26 WING remote protocols – V 3.0.6-27 
 
 
 

OSC: Special Cases 

JSON Structure dynamic changes 
As parameters get changed on the WING console, its JSON structure tree evolves to reflect the changes; This 
can be a specific parameter that when changing to an ON state, offers new capabilities in the audio chain, or in 
the way the console will react. 
It is also typical of effects and plugins: WING consoles support dynamic allocation of effect or plugins that can 
generate large changes within the default JSON tree. As already mentioned, WING nodes are a great way to list 
the parameters available for a given effect and therefore a way to get and possibly set effect parameter 
values.  
The WING effects and plugins, and their respective parameters are listed later in this document9. 
 
The OSC commands below show how you can access effects slots, allocate an effect, and list parameters and 
later modify effect parameter values. 
 
Accessing effects with currently no effect loaded in effect slot 1, listing the effect node: 
->W,    4 B: /fx~ 
W->,   88 B: 
/fx~,ssssssssssssssss~~~1~~~2~~~3~~~4~~~5~~~6~~~7~~~8~~~9~~~10~~11~~12~~13~~14~~15~~16~~ 
 
->W,    8 B: /fx/1~~~ 
W->,   60 B: /fx/1~~~,ssssss~mdl~fxmix~~~$esrc~~~$emode~~$a_chn~~$a_pos~~ 
->W,   12 B: /fx/1/mdl~~~ 
W->,   24 B: /fx/1/mdl~~~,s~~NONE~~~~ 
 
Loading a PIA effect in effect slot 1: 
->W,   20 B: /fx/1/mdl~~~,s~~pia~ 
->W,   12 B: /fx/1/mdl~~~ 
W->,   20 B: /fx/1/mdl~~~,s~~PIA~ 
 
PIA effect is now loaded, listing the effect Node gives a different set of parameters: 
->W,    8 B: /fx/1~~~ 
W->,  120 B: 
/fx/1~~~,ssssssssssssssssss~mdl~fxmix~~~$esrc~~~$emode~~$a_chn~~$a_pos~~mix~g~~~31~~63~~125~250~50
0~1k~~2k~~4k~~8k~~16k~ 
 
We can now get/set effect 1 PIA parameters, for example the 125Hz band: 
->W,   12 B: /fx/1/125~~~ 
W->,   32 B: /fx/1/125~~~,sff~~~~0.0~[0.5000][0.0000] 
 
The 125Hz band is at 0dB, change it to 10dB and verify the change: 
->W,   20 B: /fx/1/125~~~,f~~[10.000] 
->W,   12 B: /fx/1/125~~~ 
W->,   36 B: /fx/1/125~~~,sff~~~~10.0~~~~[0.9233][10.000] 
 
  

 
9 Please refer to the “Effects” paragraph 



 
 
 
 

©Patrick-Gilles Maillot 27 WING remote protocols – V 3.0.6-27 
 
 
 

OSC Tag Type ‘blob’ or ‘binary’ use 
WING OSC server implementation supports the ‘blob’/’binary’ OSC Tag type, enabling the use of ‘native’ 
commands10 within OSC, making it is possible with the proper information at hand to send and receive binary 
data. 
 
An alternative to standard node requests (such as the request on root below) is to use binary. 
->W,    4 B: /~~~ 
W->,  116 B: 
/~~~,ssssssssssssssss~~~$stat~~~cfg~$syscfg~io~~ch~~aux~bus~main~~~~mtx~dca~mgrp~~~~fx~~cards~~~pl
ay~~~~rec~$ctl~~~~ 
 
Binary types typically apply on WING nodes to retrieve the internal binary equivalent of the JSON tree level 
respective of a WING node.  
Shown below is a request at root level using the native commands part of the binary data [all bytes sent 
shown as hex data] 
 
/ ,b dd 
 
Data actually sent (in hex): ->W,   16 B: 2f0000002c62000000000001dd000000 
WING’s reply is: 
W->,  440 B: /~~~,b~~425 bytes: 
df00180000000097a0043900000524737461740553544154450000df001100000000edca7af9000003636667000000df00
1500000000f89818a600000724737973636667000000df001300000000294f7794000002696f03492f4f0000df00170000
000070b101390000026368074348414e4e454c0000df001c000000008fa3078d0000036175780b415558204348414e4e45
4c0000df001400000000f46c185e000003627573034255530000df00160000000004d3a3a80000046d61696e044d41494e
0000df001700000000f82a5af20000036d7478064d41545249580000df001400000000e313aeff00000364636103444341
0000df001c00000000d252398b0000046d6772700a4d5554452047524f55500000df001700000000473c91340000026678
07454646454354530000df002200000000b4296fc900000563617264730f455850414e53494f4e2043415244530000df00
180000000057297a28000004706c617906504c415945520000df001900000000fab1762c000003726563085245434f5244
45520000df001900000000cbb951430000042463746c07434f4e54524f4c0000de 
 
Lots of information are returned either as string, or more often as blob/binary. In the reply above, after each 
‘df’ byte is a data length on two bytes, immediately followed by the binary address (the hash) where a node, 
parameter, or subtree data can be found. For example, the subtree entry for channel (/ch) can be found at 
address/hash 70b10139 
 
An example on retrieving the DAW node (hash is df17c242, part of the $ctl subtree) is shown below. Sending 
the OSC blob: 
/$ctl/daw ,b dd 
 or  
/ ,b d7df17c242dd 
 
Respectively translate in the following binary data being sent to the console: 
->W,  24 B: 2f2463746c2f6461770000002c62000000000001dd000000  
or 
->W,  20 B: 2f0000002c62000000000006d7df17c242dd0000  
 
To which the console replies with (it can also reply with one of the errors listed earlier in the OSC chapters): 
W->,  876 B: /$ctl/daw~~~,b~~856 bytes: 
df0022df17c2423cb129d50000026f6e0a44415720454e41424c4500400000000000000001df0028df17c2424e5c7f3400
0004636f6e6e0a434f4e4e454354494f4e005000020344494e000355534200df0027df17c242e5681680000004656d756c
09454d554c4154494f4e00500002034d4355000348554900df0071df17c24242701ca9000006636f6e6669670000500004
02434314435553544f4d20434f4e54524f4c53204f4e4c59044d5354520a53494e474c45204d4355084d53545231455854

 
10 Detail information on native commands is provided in a separate chapter 



 
 
 
 

©Patrick-Gilles Maillot 28 WING remote protocols – V 3.0.6-27 
 
 
 

0e4d4355202b20455854454e444552084d53545232455854114d4355202b20327820455854454e444552df002edf17c242
ae1538a4000004636375701455534520555050455220434320464f522044415700400000000000000001df0035df17c242
9fa4e7320000066469736a6f671944495341424c4520574845454c20445552494e4720504c415900400000000000000001
df0097df17c242892e512d000006707265736574124c415354204c4f414445442050524553455400500008012d012d0663
756261736506435542415345046c697665044c495645066c6f67696378074c4f4749432058066e75656e646f064e55454e
444f0870726f746f6f6c730950524f20544f4f4c5306726561706572065245415045520973747564696f6f6e650a535455
44494f204f4e45df001fdf17c242beefaeab000003246f6e06444157204f4e02400000000000000001df0027df17c24296
31559f0000062462706167650b425554544f4e205041474500400000000000000004df0031df17c242012dc54600000924
62746e746f7563681242544e53454c20464144455220544f55434800400000000000000001df002adf17c242775c19c200
00082462746e76706f740c42544e53454c20562d504f5400400000000000000001df002ddf17c24242aeb92800000a2462
746e7265637264790d42544e53454c2052454352445900400000000000000001df0029df17c242fccfbe07000008246274
6e6175746f0b42544e53454c204155544f00400000000000000001df002adf17c24285cdce3f0000082462746e7673656c
0c42544e53454c20562d53454c00400000000000000001df002ddf17c24215abd96800000a2462746e696e736572740d42
544e53454c20494e5345525400400000000000000001de 
 
The above is more difficult to read than the more standard way of retrieving the node, but contains more 
information: 
->W,  12 B: /$ctl/daw~~~ 
W->, 156 B: 
/$ctl/daw~~~,ssssssssssssss~on~~conn~~~~emul~~~~config~~ccup~~~~preset~~$on~$bpage~~$btntouch~~~$b
tnvpot~~~~$btnrecrdy~~$btnauto~~~~$btnvsel~~~~$btninsert~~ 
 
Matching the two representations tell us that: 
daw/on is at binary address 3cb129d5,  
daw/conn at 4e5c7f34,  
daw/emul at e5681680,  
daw/config at 42701ca9,  
daw/ccup at ae1538a4,  
daw/preset at 892e512d,  
daw/$on at beefaeab,  
and so on (highlighted values above). 
 
The blob /binary Type Tag can also be used to execute native/binary commands. Using for example the 
daw/$on hash/binary address value of beefaeab, we can set the console in and out of DAW mode, as if one 
would have pressed the DAW button. 
For example, sending any of the following commands will set DAW mode ON: 
/ ,b d7beefaeab01 
->W,   20 B: /~~~,b~~6 bytes: d7beefaeab01 
W->,   12 B: /*~~,s~~OK~~ 
/$ctl/daw/$on ,b 01 
->W,   28 B: /$ctl/daw/$on~~~,b~~1 bytes: 01~~~ 
W->,   12 B: /*~~,s~~OK~~ 
 
In the binary data sent with the line above, the segment 01 is equivalent to asking the value of the parameter 
to be set using a 32bit integer with value 1.  
 
The following lines are requesting to turn OFF DAW mode: 
/ ,b d7beefaeab00 
->W,   20 B: /~~~,b~~6 bytes: d7beefaeab00 
W->,   12 B: /*~~,s~~OK~~ 
/$ctl/daw/$on ,b 00 
->W,   28 B: /$ctl/daw/$on~~~,b~~1 bytes: 00~~~ 
W->,   12 B: /*~~,s~~OK~~ 
 



 
 
 
 

©Patrick-Gilles Maillot 29 WING remote protocols – V 3.0.6-27 
 
 
 

In both blob Type Tag commands above, the console replies with a blob. Depending on the cases, it can also 
return strings. 
 
As seen above, the Tag Type blob can be used to retrieve the description of WING parameters when using the 
native command ‘data description’ a.k.a. ‘dd’; In an example below, still using the DAW ON state, we can get 
the data using the following command: 
 
/$ctl/daw/$on ,b dd 
->W,   28 B: /$ctl/daw/$on~~~,b~~1 bytes: dd~~~ 
 
WING returns the following which includes the hash value for /$ctl/daw/$on and its full description: 
 
W->,   60 B: /$ctl/daw/$on~~~,b~~35 bytes: 
df001fdf17c242beefaeab000003246f6e06444157204f4e00400000000000000001de 
parse 35 bytes node 
    len: 31, parent: df17c242, hash: beefaeab, index: 0, flags: 0040 
    name: $on longname: DAW ON, type: <int> [0..1] 
 
End node 
 
 
The blob Tag Type can be used to retrieve the value of WING parameters when using the native command 
‘data request’, a.k.a. ‘dc’; In an example below, still using the DAW ON state, we can get the data using the 
following command: 
 
->W,   20 B: /~~~,b~~6 bytes: d7beefaeabdc 
W->,   20 B: /~~~,b~~7 bytes: d7beefaeab01de 
 
With 01 indicating the DAW [Remote control] button is in an ON state. 
 
Detailed information on the native/binary interface to WING and data value coding is provided later in this 
document.  



 
 
 
 

©Patrick-Gilles Maillot 30 WING remote protocols – V 3.0.6-27 
 
 
 

Subscribing to OSC Data 
There are three main types of subscription for receiving binary or OSC messages.  
A single OSC subscription is active at any time, provided to the last requestor. Subscriptions must be renewed 
every 10 seconds to keep the subscription alive by sending one of the 3 messages shown below. 
 
 
/*b~ (or /*b~,~~~)  will enable receiving event driven binary messages 
Binary messages are formatted exactly as the binary/native interface and therefore can be sent back to the 
console with no change. 

Example using mutes and faders 
->W,    4 B: /*b~ 
W->,   32 B: /~~~,b~~20 bytes: d738ae75c2d5c3100000d77e463474d5c3100000 
W->,   24 B: /~~~,b~~12 bytes: d7f50f69f801d726855cd301 

 
 
 
/*s~ (or /*s~,~~~) will enable receiving event OSC messages 
OSC messages are received as triplets of data, as previously presented11, and shown below; Sending back data 
to WING will require to select one of the (up to) 3 parameters received, depending on the chosen format. The 
‘string’ argument will always work for all messages.  
 

Example using mutes and faders 
->W,    4 B: /*s~ 
W->,   32 B: /ch/1/fdr~~~,sff~~~~-oo~[0.0000][-144.0000] 
W->,   32 B: /ch/1/$fdr~~,sff~~~~-oo~[0.0000][-144.0000] 
W->,   32 B: /ch/1/mute~~,sfi~~~~1~~~[1.0000][     1] 
W->,   32 B: /ch/1/$mute~,sfi~~~~1~~~[0.5000][     1] 

 
 
 
/*S~ (or /*S~,~~~)  will enable receiving event OSC messages 
OSC messages are received as single tag data, as shown below; WING reports the native format of the OSC 
pattern (ex: ‘f’ for floats, ‘i’ for integers, etc.). Data received with events resulting of a /*S~ subscription can 
be sent back to the console with no change. 
 

Example using mutes and faders 
->W,    4 B: /*S~ 
W->,   20 B: /ch/1/fdr~~~,f~~[-144.0000] 
W->,   20 B: /ch/1/$fdr~~,f~~[-144.0000] 
W->,   20 B: /ch/1/mute~~,i~~[     1] 
W->,   20 B: /ch/1/$mute~,i~~[     1] 

 
 
 
Using the simple forms of subscription requests will provide data from the console to the requesting IP/port. 
It is possible to redirect the data received from WING by prefixing the commands with a port specifier 
element as shown below: 

/%23456/*b~ will subscribe to binary messages, being sent by WING to port 23456. 
/%23456/*s~ will subscribe to OSC messages, being sent by WING to port 23456. 
/%23456/*S~ will subscribe to OSC messages, being sent by WING to port 23456. 
 

 
11 Refer to “Writing (Set) Parameter and Node data”, paragraph “Single Parameters” 



 
 
 
 

©Patrick-Gilles Maillot 31 WING remote protocols – V 3.0.6-27 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 32 WING remote protocols – V 3.0.6-27 
 
 
 

WING ae_data OSC commands list 
The next chapters provide an abridged12 list of all OSC commands available for WING.  
 
All commands and parameters below are part of the ae_data section in JSON snapshot files. Other console 
control commands part of the ce_data section in JSON snapshot files are described later in this document. 

Status 
Command Type Range Text Description 
     
/$stat N   Status node 
/$stat/A N   AES50 A node 
/$stat/A/stat S  -, OK, ERR, UPD AES50 A state [RO] 
/$stat/A/dev S  128 chars max AES50 A Device [RO] 
/$stat/A/errorsc I  0..9999 Corrected error count [RO] 
/$stat/A/errorsu I  0..9999 Uncorrected error count [RO] 
/$stat/A/clrerr I  0..1 Reset error counters 
     
/$stat/B N   AES50 B node 
/$stat/B/stat S  -, OK, ERR, UPD AES50 B state [RO] 
/$stat/B/dev S  128 chars max AES50 B Device [RO] 
/$stat/B/errorsc I  0..9999 Corrected error count [RO] 
/$stat/B/errorsu I  0..9999 Uncorrected error count [RO] 
/$stat/B/clrerr I  0..1 Reset error counters 
     
/$stat/C N   AES50 C node 
/$stat/C/stat S  -, OK, ERR, UPD AES50 C state [RO] 
/$stat/C/dev S  128 chars max AES50 C Device [RO] 
/$stat/C/errorsc I  0..9999 Corrected error count RO] 
/$stat/C/errorsu I  0..9999 Uncorrected error count [RO] 
/$stat/C/clrerr I  0..1 Reset error counters 
     
/$stat/lock I 0..1  Clock lock [RO] 
/$stat/ppm I -200..200  Clock ppm [RO] 
/$stat/solo I 0..1  Solo [RO] 
/$stat/sip I 0..1  Solo In Place [RO] 
/$stat/rtcerr I 0..1  Real Time Clock Error [RO] 
/$stat/time S  12 chars max Clock time (depending on time 

format) [RO] 
/$stat/date S  12 chars max Clock date (depending on date 

format) [RO] 
/$stat/usbstate S  -, ERR, IDLE, BUSY USB Player state [RO] 
/$stat/usbvolname S  20 chars max USB Player volume name [RO] 
/$stat/sc_stat S  OK, ERR StageConnect status [RO] 
/$stat/sc_devices S  128 chars max StageConnect devices [RO] 
/$stat/sc_upcnt I 0..32  StageConnect upstreams [RO] 
/$stat/sc_dncnt I 0..32  StageConnect downstreams [RO] 

 
12 It includes the set of commands for the first element of a series. For example, /ch/1 set of OSC commands are listed, but not 
/ch/2 to /ch/40. 
 



 
 
 
 

©Patrick-Gilles Maillot 33 WING remote protocols – V 3.0.6-27 
 
 
 

/$stat/sc_uprout S  32 char max StageConnect upstream routing [RO] 
/$stat/rmt_a S  16 chars max Name of the console connected on 

AES50 port A [RO] 
/$stat/rmt_b S  16 chars max Name of the console connected on 

AES50 port A [RO] 
/$stat/rmt_c S  16 chars max Name of the console connected on 

AES50 port A [RO] 

  



 
 
 
 

©Patrick-Gilles Maillot 34 WING remote protocols – V 3.0.6-27 
 
 
 

General Configuration 
Command Type Range Text Description 
/cfg N 

  
General Configuration node 

/cfg/mainlink S 
 

OFF, 2, 2-3, 2-4 Main Link 
/cfg/dcamgrp I 0..1 

 
DCA mutegroups (DCA mute mutes 
all channels assigned to DCA) 

     
/cfg/mon N 

  
Monitor buses config node 

/cfg/mon/1 N 1..2 
 

Monitor bus 1 node 
/cfg/mon/1/$lvl F -144..10 -oo..10 in 1024 steps Monitor bus 1 level (dB)13 
/cfg/mon/1/inv I 0..1 

 
Monitor bus 1 invert (polarity) 

/cfg/mon/1/pan F -100..100 201 steps Monitor bus 1 pan 
/cfg/mon/1/wid F -150..150 61 steps Monitor bus 1 width (%) 
     
/cfg/mon/1/eq N 

  
Monitor bus 1 EQ node 

/cfg/mon/1/eq/on I 0..1 
 

Monitor bus 1 EQ off/on 
/cfg/mon/1/eq/lsg F -15..15 301 steps Monitor bus 1 EQ low shelf gain (dB) 
/cfg/mon/1/eq/lsf F 20..2000 641 steps Monitor bus 1 EQ low shelf 

frequency (Hz) 
/cfg/mon/1/eq/1g F -15..15 301 steps Monitor bus 1 EQ band 1 gain (dB) 
/cfg/mon/1/eq/1f F 20..20000 961 steps Monitor bus 1 EQ band 1 frequency 

(Hz) 
/cfg/mon/1/eq/1q F 0.44..10 181 steps Monitor bus 1 EQ band 1 Q 
/cfg/mon/1/eq/2g F -15..15 301 steps Monitor bus 1 EQ band 2 gain (dB) 
/cfg/mon/1/eq/2f F 20..20000 961 steps Monitor bus 1 EQ band 2 frequency 

(Hz) 
/cfg/mon/1/eq/2q F 0.44..10 181 steps Monitor bus 1 EQ band 2 Q 
/cfg/mon/1/eq/3g F -15..15 301 steps Monitor bus 1 EQ band 3 gain (dB) 
/cfg/mon/1/eq/3f F 20..20000 961 steps Monitor bus 1 EQ band 3 frequency 

(Hz) 
/cfg/mon/1/eq/3q F 0.44..10 181 steps Monitor bus 1 EQ band 3 Q 
/cfg/mon/1/eq/4g F -15..15 301 steps Monitor bus 1 EQ band 4 gain (dB) 
/cfg/mon/1/eq/4f F 20..20000 961 steps Monitor bus 1 EQ band 4 frequency 

(Hz) 
/cfg/mon/1/eq/4q F 0.44..10 181 steps Monitor bus 1 EQ band 4 Q 
/cfg/mon/1/eq/5g F -15..15 301 steps Monitor bus 1 EQ band 5 gain (dB) 
/cfg/mon/1/eq/5f F 20..20000 961 steps Monitor bus 1 EQ band 5 frequency 

(Hz) 
/cfg/mon/1/eq/5q F 0.44..10 181 steps Monitor bus 1 EQ band 5 Q 
/cfg/mon/1/eq/6g F -15..15 301 steps Monitor bus 1 EQ band 6 gain (dB) 
/cfg/mon/1/eq/6f F 20..20000 961 steps Monitor bus 1 EQ band 6 frequency 

(Hz) 
/cfg/mon/1/eq/6q F 0.44..10 181 steps Monitor bus 1 EQ band 6 Q 
/cfg/mon/1/eq/hsg F -15..15 301 steps Monitor bus 1 EQ high shelf gain 

(dB) 
/cfg/mon/1/eq/hsf F 50..20000 833 steps Monitor bus 1 EQ high shelf 

frequency (Hz) 
/cfg/mon/1/lim F -40..0 41 steps Monitor bus 1 limiter level(dB) 
     

 
13 This command is considered RO on the full-size WING, and can be set for other devices where the actual surface control 
potentiometer is not present. 



 
 
 
 

©Patrick-Gilles Maillot 35 WING remote protocols – V 3.0.6-27 
 
 
 

/cfg/mon/1/dly N 
  

Monitor bus 1 delay node 
/cfg/mon/1/dly/on I 0..1 

 
Monitor bus 1 delay off/on 

/cfg/mon/1/dly/m F 0.1..100 1000 steps Monitor bus 1 delay (meters) 
/cfg/mon/1/dim F 40..0 41 steps Monitor bus 1 delay dim level (dB) 
/cfg/mon/1/pfldim F 40..0 41 steps Monitor bus 1 PFL Dim (dB) 
/cfg/mon/1/eqbdtrim F 0..24 25 steps Monitor bus 1 band solo trim {dB) 
/cfg/mon/1/srclvl F -144..10 -oo..10 in 1024 steps Monitor bus 1 source level 
/cfg/mon/1/srcmix F -144..10 -oo..10 in 1024 steps Monitor bus 1 source mix (dB) 
/cfg/mon/1/src S 

 
OFF, MAIN.1..MAIN.4, 
MTX.1..MTX.8, BUS.1..BUS.16, 
AUX.1..AUX.8 

Monitor bus 1 source 

/cfg/mon/1/$lvlact F -144..10 -oo..10 in 1024 steps Monitor bus 1 fader level [RO] 
/cfg/mon/1/tags S  Up to 80 chars Monitor bus 1 tags 
     
/cfg/solo N 

  
Solo config node 

/cfg/solo/mode S 
 

LIVE, STUDIO, SIP Solo mode 
/cfg/solo/mon S 

 
PH, SPK, PH+SPK Solo monitor 

/cfg/solo/mute I 0..1 
 

Solo mute 
/cfg/solo/$dim I 0..1 

 
Solo dim off/on 

/cfg/solo/$mono I 0..1 
 

Solo mono off/on 
/cfg/solo/$flip I 0..1 

 
Solo left and right channels flipped 

/cfg/solo/chtap S 
 

PFL, AFL Solo channel tap 
/cfg/solo/bustap S 

 
PFL, AFL Solo bus tap 

/cfg/solo/maintap S 
 

PFL, AFL Solo main tap 
/cfg/solo/mtxtap S 

 
PFL, AFL Solo matrix tap 

/cfg/solo/srcsolo S  OFF, CH39, AUX7 Source Solo Enable 
/cfg/solo/$srcsolo I  0..1  Source Solo 
/cfg/solo/$srcsgrp I 1..13  Source Solo Group 
/cfg/solo/$srcsin I  1..64  Source Solo In 
     
/cfg/rta14 15 N 

  
RTA config node (dsp) 

/cfg/rta/$src I 1..76 
 

RTA source [RO] 
/cfg/rta/$tap S 

 
IN, POST, FILT, PREEQ, POSTEQ, 
PREFDR, GATEK, DYNK, DYNXO, 
PRETAP, SOLO, MON.PH, 
MON.SPK, FXIN, FXOUT 

RTA source tap [RO] 

/cfg/rta/$dec S 
 

SLOW, MED, FAST RTA Decay [RO] 
/cfg/rta/$det S 

 
PEAK, RMS RTA Detector [RO] 

/cfg/rta/rtasrc I 0..76 
 

*RTA source (indexed) 
/cfg/rta/rtatap S 

 
IN, POST, FILT, PREEQ, POSTEQ, 
PREFDR, GATEK, DYNK, DYNXO, 
PRETAP, SOLO, MON.PH, 
MON.SPK, FXIN, FXOUT 

*RTA source tap 

/cfg/rta/rtadecay S 
 

SLOW, MED, FAST *RTA decay 
/cfg/rta/rtadet S 

 
PEAK, RMS, AVG *RTA detector 

/cfg/rta/rtarange F 30, 60 
 

*RTA range (dB) 
/cfg/rta/rtagain F -5..50 56 steps *RTA gain (dB) 
/cfg/rta/rtaauto I 0..1 

 
*RTA autogain 

/cfg/rta/eqdecay S  SLOW, MED, FAST RTA eq decay 

 
14 Tags (marqued with *) are only used with metering RTA and future RTA screen, as opposed to EQ (on-screen) RTA 
15 See also /$ctl/cfg/rta commands 



 
 
 
 

©Patrick-Gilles Maillot 36 WING remote protocols – V 3.0.6-27 
 
 
 

/cfg/rta/eqdet S  PEAK, RMS, AVG RTA eq detector 
/cfg/rta/eqrange F 30, 60  RTA eq range (dB) 
/cfg/rta/eqgain F -5..50 56 steps RTA eq gain (dB) 
/cfg/rta/eqauto I 0..1  RTA eq autogain 
     
/cfg/mtr N   Meter config node 
/cfg/mtr/$scopesrc I 1..76  Meter scope source [RO] 
/cfg/mtr/$scopetap S  IN, POST, FILT, PREEQ, POSTEQ, 

PREFDR, GATEK, DYNK, DYNXO, 
PRETAP, SOLO, MON.PH, 
MON.SPK, FXIN, FXOUT 

Meter scope source tap point [RO] 

/cfg/mtr/scopesrc I 0..76  Meter scope source 
/cfg/mtr/scopetap S  IN, POST, FILT, PREEQ, POSTEQ, 

PREFDR, GATEK, DYNK, DYNXO, 
PRETAP, SOLO, MON.PH, 
MON.SPK 

Meter scope source tap point 

     
/cfg/mtr/mtrsfc N   Meters fader node [Setup→Surface]  
/cfg/mtr/mtrsfc/in S  PRE, POST Meters fader section channel tap 
/cfg/mtr/mtrsfc/bus S  PRE, POST Meters fader section bus tap 
/cfg/mtr/mtrsfc/main S  PRE, POST Meters fader section main tap 
/cfg/mtr/mtrsfc/mtx S  PRE, POST Meters fader section matrix tap 
/cfg/mtr/mtrsfc/dca S  PRE, POST Meters fader section DCA tap 
     
/cfg/mtr/mtrpage N   Meters page node (Meters screen) 
/cfg/mtr/mtrpage/in S  PRE, POST Meters page channels tap 
/cfg/mtr/mtrpage/bus S  PRE, POST Meters page bus tap 
/cfg/mtr/mtrpage/main S  PRE, POST Meters page mains tap 
/cfg/mtr/mtrpage/mtx S  PRE, POST Meters page matrix tap 
/cfg/mtr/mtrpage/dca S  PRE, POST Meters page DCA tap 
     
/cfg/mtr/mainmtr S  [MAIN.1...4, MTX.1…8, MON.PH, 

MON.SPK, SEL_CH 
Main meter 

/cfg/mtr/mainpos S  AUTO, PRE, POST Main position 
     
/cfg/talk N 

  
Talkback config node 

/cfg/talk/assign S 
 

OFF, CH40, AUX8 Talkback assignments 
/cfg/talk/$lvl F -144..10 -oo..10 in 1024 steps Talkback level (dB) [RO] 
     
/cfg/talk/A N 

  
Talkback A node 

/cfg/talk/A/$on I 0..1 
 

Talkback A off/on 
/cfg/talk/A/mode S 

 
AUTO, PUSH, LATCH Talkback A mode 

/cfg/talk/A/mondim I 40..0 41 steps Talkback A monitor dim 
/cfg/talk/A/busdim F 40..0 41 steps Talkback A bus dim 
/cfg/talk/A/indiv I 0..1  Use individual Bus/Main TB send 

levels 
/cfg/talk/A/B1 I 0..1 

 
Talkback A bus 1 assign 

/cfg/talk/A/B2 I 0..1 
 

Talkback A bus 2 assign 
/cfg/talk/A/B3 I 0..1 

 
Talkback A bus 3 assign 

/cfg/talk/A/B4 I 0..1 
 

Talkback A bus 4 assign 
/cfg/talk/A/B5 I 0..1 

 
Talkback A bus 5 assign 

/cfg/talk/A/B6 I 0..1 
 

Talkback A bus 6 assign 



 
 
 
 

©Patrick-Gilles Maillot 37 WING remote protocols – V 3.0.6-27 
 
 
 

/cfg/talk/A/B7 I 0..1 
 

Talkback A bus 7 assign 
/cfg/talk/A/B8 I 0..1 

 
Talkback A bus 8 assign 

/cfg/talk/A/B9 I 0..1 
 

Talkback A bus 9 assign 
/cfg/talk/A/B10 I 0..1 

 
Talkback A bus 10 assign 

/cfg/talk/A/B11 I 0..1 
 

Talkback A bus 11 assign 
/cfg/talk/A/B12 I 0..1 

 
Talkback A bus 12 assign 

/cfg/talk/A/B13 I 0..1 
 

Talkback A bus 13 assign 
/cfg/talk/A/B14 I 0..1 

 
Talkback A bus 14 assign 

/cfg/talk/A/B15 I 0..1 
 

Talkback A bus 15 assign 
/cfg/talk/A/B16 I 0..1 

 
Talkback A bus 16 assign 

/cfg/talk/A/MX1 I 0..1  Talkback A matrix 1 assign 
/cfg/talk/A/MX2 I 0..1  Talkback A matrix 2 assign 
/cfg/talk/A/MX3 I 0..1  Talkback A matrix 3 assign 
/cfg/talk/A/MX4 I 0..1  Talkback A matrix 4 assign 
/cfg/talk/A/MX5 I 0..1  Talkback A matrix 5 assign 
/cfg/talk/A/MX6 I 0..1  Talkback A matrix 6 assign 
/cfg/talk/A/MX7 I 0..1  Talkback A matrix 7 assign 
/cfg/talk/A/MX8 I 0..1  Talkback A matrix 8 assign 
/cfg/talk/A/M1 I 0..1 

 
Talkback A main 1 assign 

/cfg/talk/A/M2 I 0..1 
 

Talkback A main 2 assign 
/cfg/talk/A/M3 I 0..1 

 
Talkback A main 3 assign 

/cfg/talk/A/M4 I 0..1 
 

Talkback A main 4 assign 
     
/cfg/talk/B N 

  
Talkback B node 

/cfg/talk/B/$on I 0..1 
 

Talkback B off/on 
/cfg/talk/B/mode S 

 
AUTO, PUSH, LATCH Talkback B mode 

/cfg/talk/B/mondim F 40..0 41 steps Talkback B monitor dim 
/cfg/talk/B/busdim F 40..0 41 steps Talkback B bus dim 
/cfg/talk/B/indiv I 0..1  Use individual Bus/Main TB send 

levels 
/cfg/talk/B/B1 I 0..1 

 
Talkback B bus 1 assign 

/cfg/talk/B/B2 I 0..1 
 

Talkback B bus 2 assign 
/cfg/talk/B/B3 I 0..1 

 
Talkback B bus 3 assign 

/cfg/talk/B/B4 I 0..1 
 

Talkback B bus 4 assign 
/cfg/talk/B/B5 I 0..1 

 
Talkback B bus 5 assign 

/cfg/talk/B/B6 I 0..1 
 

Talkback B bus 6 assign 
/cfg/talk/B/B7 I 0..1 

 
Talkback B bus 7 assign 

/cfg/talk/B/B8 I 0..1 
 

Talkback B bus 8 assign 
/cfg/talk/B/B9 I 0..1 

 
Talkback B bus 9 assign 

/cfg/talk/B/B10 I 0..1 
 

Talkback B bus 10 assign 
/cfg/talk/B/B11 I 0..1 

 
Talkback B bus 11 assign 

/cfg/talk/B/B12 I 0..1 
 

Talkback B bus 12 assign 
/cfg/talk/B/B13 I 0..1 

 
Talkback B bus 13 assign 

/cfg/talk/B/B14 I 0..1 
 

Talkback B bus 14 assign 
/cfg/talk/B/B15 I 0..1 

 
Talkback B bus 15 assign 

/cfg/talk/B/B16 I 0..1 
 

Talkback B bus 16 assign 
/cfg/talk/B/MX1 I 0..1  Talkback B matrix 1 assign 
/cfg/talk/B/MX2 I 0..1  Talkback B matrix 2 assign 
/cfg/talk/B/MX3 I 0..1  Talkback B matrix 3 assign 
/cfg/talk/B/MX4 I 0..1  Talkback B matrix 4 assign 
/cfg/talk/B/MX5 I 0..1  Talkback B matrix 5 assign 
/cfg/talk/B/MX6 I 0..1  Talkback B matrix 6 assign 



 
 
 
 

©Patrick-Gilles Maillot 38 WING remote protocols – V 3.0.6-27 
 
 
 

/cfg/talk/B/MX7 I 0..1  Talkback B matrix 7 assign 
/cfg/talk/B/MX8 I 0..1  Talkback B matrix 8 assign 
/cfg/talk/B/M1 I 0..1 

 
Talkback B main 1 assign 

/cfg/talk/B/M2 I 0..1 
 

Talkback B main 2 assign 
/cfg/talk/B/M3 I 0..1 

 
Talkback B main 3 assign 

/cfg/talk/B/M4 I 0..1 
 

Talkback B main 4 assign 
     
/cfg/amix N   Automixing node 
/cfg/amix/x I 0..1  Automix X group enable 
/cfg/amix/y I 0..1  Automix Y group enable 

  



 
 
 
 

©Patrick-Gilles Maillot 39 WING remote protocols – V 3.0.6-27 
 
 
 

System Settings 
Command Type Range Text Description 
/$syscfg N   System configuration node 
/$syscfg/consolename S  16 chars max Console name 
/$syscfg/logflags S  256 char max Log flags 
/$syscfg/ipmode S  DHCP, STATIC IP Mode 
/$syscfg/ip0 I 0..255  IP first number 
/$syscfg/ip1 I 0..255  IP second number 
/$syscfg/ip2 I 0..255  IP third number 
/$syscfg/ip3 I 0..255  IP fourth number 
/$syscfg/msk0 I 0..255  IP mask first number 
/$syscfg/msk1 I 0..255  IP mask second number 
/$syscfg/msk2 I 0..255  IP mask third number 
/$syscfg/msk3 I 0..255  IP mask fourth numbe 
/$syscfg/gw0 I 0..255  IP gateway first number 
/$syscfg/gw1 I 0..255  IP gateway second number 
/$syscfg/gw2 I 0..255  IP gateway third number 
/$syscfg/gw3 I 0..255  IP gateway fourth number 
/$syscfg/$ipapply I 0..1  IP applied 
/$syscfg/$firmware S  64 chars max Firmware version number [RO] 
/$syscfg/$serial S  32 chars max Serial number [RO] 
/$syscfg/$cnscfg S  64 chars max Console configuration/build type 

string [RO], typically start with 
“wing”, “wing-rack”, 
“wing-compact” 

/$syscfg/$cnsmdl S  32 chars max Console Model right to Console 
Name in Setup screen [RO], typically 
“ngc-full” for the full sized desk, can 
also be “wing-bk”, ”wing-rack”, 
“wing-compact” 

/$syscfg/$chwversion S  32 chars max Main board HW version [RO] 
/$syscfg /tcplock I 0..1  Prevent modifications from TCP 

input 
/$syscfg/usbh_spd S  FS, HS USB driver speed setting Full Speed, 

High Speed16 
/$syscfg/$usbspd_act S  FS, HS USB driver speed setting Full Speed, 

High Speed [RO] 
/$syscfg/eth/cfg S  SEPARATE, SWITCHED Optional module Ethernet mode 
/$syscfg/opt_mod S  NONE, DANTE, WSG Installed optional module [RO] 

 
16 When in FS, record is limited to 2 tracks/16bits. 4 tracks/24bits playing at once from USB stick may be affected; USB 3.1 capable 
memory sticks are recommended. 



 
 
 
 

©Patrick-Gilles Maillot 40 WING remote protocols – V 3.0.6-27 
 
 
 

Input/Output Settings 
Command Type Range Text Description 
/io N   Input/Output node 
/io/altsw I 0..1  Main/Alt switch 
/io/autoaltovr I 0..1  Global Input Select Override 
     
/io/in N   Input node 
/io/in/LCL N   Local Input node 
/io/in/LCL/1 N 1..2417  Local Input 1 node 
/io/in/LCL/1/mode S  M, ST, M/S Local Input 1 mode 
/io/in/LCL/1/g F -3..45.5 98 steps Local Input 1 gain (dB) 
/io/in/LCL/1/vph I 0..1  Local Input 1 phantom 
/io/in/LCL/1/mute I 0..1  Local Input 1 mute 
/io/in/LCL/1/pol I 0..1  Local Input 1 polarity 
/io/in/LCL/1/col I 1..12  Local Input 1 color 
/io/in/LCL/1/name S  16 chars max Local Input 1 name 
/io/in/LCL/1/icon I 0..999  Local Input 1 icon (indexed) 
/io/in/LCL/1/tags S  80 chars max Local Input 1 tags 
/io/in/LCL/1/$ha I 0..5  Local input 1 ha type [RO] 
/io/in/LCL/1/rmt S  OFF, AES A, AES B, AES C Local input 1 remote control 
/io/in/LCL/1/$ract I 0..1  Local input 1 remote active [RO] 
/io/in/LCL/1/$rdest S  7 chars max Local input 1 remote dest [RO] 
/io/in/LCL/1/rcvc I 0..1  Local input 1 remote  customizations 

sync 
/io/in/LCL/1/$mute I 0..2  Local input 1 mute [RO] 
     
/io/in/AUX N   Aux Input node 
/io/in/AUX/1 N 1..8  Aux Input 1 node 
/io/in/AUX/1/mode S  M, ST, M/S Aux Input 1 mode 
/io/in/AUX/1/mute I 0..1  Aux Input 1 mute 
/io/in/AUX/1/pol I 0..1  Aux Input 1 polarity 
/io/in/AUX/1/col I 1..12  Aux Input 1 color 
/io/in/AUX/1/name S  16 chars max Aux Input 1 name 
/io/in/AUX/1/icon I 0..999  Aux Input 1 icon (indexed) 
/io/in/AUX/1/tags S  80 chars max Aux Input 1 tags 
/io/in/AUX/1/$mute I 0..2  Aux input 1 mute [RO] 
     
/io/in/A N   AES50 A Input node 
/io/in/A/1 N 1..48  AES50 A Input 1 node 
/io/in/A/1/mode S  M, ST, M/S AES50 A Input 1 mode 
/io/in/A/1/g F -3..45.5 98 steps AES50 A Input 1 gain (dB) 
/io/in/A/1/vph I 0..1  AES50 A Input 1 phantom power 
/io/in/A/1/mute I 0..1  AES50 A Input 1 mute 
/io/in/A/1/pol I 0..1  AES50 A Input 1 polarity 
/io/in/A/1/col I 1..12  AES50 A Input 1 color 
/io/in/A/1/name S  16 chars max AES50 A Input 1 name 
/io/in/A/1/icon I 0..999  AES50 A Input 1 icon (indexed) 
/io/in/A/1/tags S  80 chars max AES50 A Input 1 tags 
/io/in/A/1/$ha I 0..5  AES50 A input 1 ha type [RO] 
/io/in/A/1/rmt S  OFF, AES A, AES B, AES C AES50 A input 1 remote control 

 
17 All 24 local inputs may not be available depending on the console model 



 
 
 
 

©Patrick-Gilles Maillot 41 WING remote protocols – V 3.0.6-27 
 
 
 

/io/in/A/1/$ract I 0..1  AES50 A input 1 remote active [RO] 
/io/in/A/1/$rdest S  7 chars max AES50 A input 1 remote dest [RO] 
/io/in/A/1/rcvc I 0..1  AES50 A input 1 remote  

customizations sync 
/io/in/A/1/$mute I 0..2  AES50 A input 1 mute [RO] 
     
/io/in/B N   AES50 B Input node 
/io/in/B/1 N 1..48  AES50 B Input 1 node 
/io/in/B/1/mode S  M, ST, M/S AES50 B Input 1 mode 
/io/in/B/1/g F -3..45.5 98 steps AES50 B Input 1 gain (dB) 
/io/in/B/1/vph I 0..1  AES50 B Input 1 phantom power 
/io/in/B/1/mute I 0..1  AES50 B Input 1 mute 
/io/in/B/1/pol I 0..1  AES50 B Input 1 polarity 
/io/in/B/1/col I 1..12  AES50 B Input 1 color 
/io/in/B/1/name S  16 chars max AES50 B Input 1 name 
/io/in/B/1/icon I 0..999  AES50 B Input 1 icon (indexed) 
/io/in/B/1/tags S  80 chars max AES50 B Input 1 tags 
/io/in/B/1/$ha I 0..5  AES50 B input 1 ha type [RO] 
/io/in/B/1/rmt S  OFF, AES A, AES B, AES C AES50 B input 1 remote control 
/io/in/B/1/$ract I 0..1  AES50 B input 1 remote active [RO] 
/io/in/B/1/$rdest S  7 chars max AES50 B input 1 remote dest [RO] 
/io/in/B/1/rcvc I 0..1  AES50 B input 1 remote 

customizations sync 
/io/in/B/1/$mute I 0..2  AES50 B input 1 mute [RO] 
     
/io/in/C N   AES50 C Input node 
/io/in/C/1 N 1..48  AES50 C Input 1 node 
/io/in/C/1/mode S  M, ST, M/S AES50 C Input 1 mode 
/io/in/C/1/g F -3..45.5 98 steps AES50 C Input 1 gain (dB) 
/io/in/C/1/vph I 0..1  AES50 C Input 1 phantom power 
/io/in/C/1/mute I 0..1  AES50 C Input 1 mute 
/io/in/C/1/pol I 0..1  AES50 C Input 1 polarity 
/io/in/C/1/col I 1..12  AES50 C Input 1 color 
/io/in/C/1/name S  16 chars max AES50 C Input 1 name 
/io/in/C/1/icon I 0..999  AES50 C Input 1 icon (indexed) 
/io/in/C/1/tags S  80 chars max AES50 C Input 1 tags 
/io/in/C/1/$ha I 0..4  AES50 C input 1 ha type [RO] 
/io/in/C/1/rmt S  OFF, AES A, AES B, AES C AES50 C input 1 remote control 
/io/in/C/1/$ract I 0..1  AES50 C input 1 remote active [RO] 
/io/in/C/1/$rdest S  7 chars max AES50 C input 1 remote dest [RO] 
/io/in/C/1/rcvc I 0..1  AES50 C input 1 remote 

customizations sync 
/io/in/C/1/$mute I 0..2  AES50 C input 1 mute [RO] 
     
/io/in/SC N   StageConnect Input node 
/io/in/SC/1 N 1..32  StageConnect Input 1 node 
/io/in/SC/1/mode S  M, ST, M/S StageConnect Input 1 mode 
/io/in/SC/1/mute I 0..1  StageConnect Input 1 mute 
/io/in/SC/1/pol I 0..1  StageConnect Input 1 polarity 
/io/in/SC/1/col I 1..12  StageConnect Input 1 color 
/io/in/SC/1/name S  16 chars max StageConnect Input 1 name 
/io/in/SC/1/icon I 0..999  StageConnect Input 1 icon (indexed) 



 
 
 
 

©Patrick-Gilles Maillot 42 WING remote protocols – V 3.0.6-27 
 
 
 

/io/in/SC/1/tags S  80 chars max StageConnect Input 1 tags 
/io/in/SC/1/$mute I 0..2  StageConnect 1 mute [RO] 
     
/io/in/USB N   USB Input node 
/io/in/USB/1 N 1..48  USB Input 1 node 
/io/in/USB/1/mode S  M, ST, M/S USB Input 1 mode 
/io/in/USB/1/mute I 0..1  USB Input 1 mute 
/io/in/USB/1/pol I 0..1  USB Input 1 polarity 
/io/in/USB/1/col I 1..12  USB Input 1 color 
/io/in/USB/1/name S  16 chars max USB Input 1 name 
/io/in/USB/1/icon I 0..999  USB Input 1 icon (indexed) 
/io/in/USB/1/tags S  80 chars max USB Input 1 tags 
/io/in/USB/1/$mute I 0..2  USB Input 1 mute [RO] 
     
/io/in/CRD N   Card Input node 
/io/in/CRD/1 N 1..64  Card Input 1 node 
/io/in/CRD/1/mode S  M, ST, M/S Card Input 1 mode 
/io/in/CRD/1/mute I 0..1  Card Input 1 mute 
/io/in/CRD/1/pol I 0..1  Card Input 1 polarity 
/io/in/CRD/1/col I 1..12  Card Input 1 color 
/io/in/CRD/1/name S  16 chars max Card Input 1 name 
/io/in/CRD/1/icon I 0..999  Card Input 1 icon (indexed) 
/io/in/CRD/1/tags S  80 chars max Card Input 1 tags 
/io/in/CRD/1/$mute I 0..2  Card Input 1 mute [RO] 
     
/io/in/MOD N   Module Input node 
/io/in/MOD/1 N 1..64  Module Input 1 node 
/io/in/MOD/1/mode S  M, ST, M/S Module Input 1 node 
/io/in/MOD/1/mute I 0..1  Module Input 1 mute 
/io/in/MOD/1/pol I 0..1  Module Input 1 polarity 
/io/in/MOD/1/col I 1..12  Module Input 1 color 
/io/in/MOD/1/name S  16 chars max Module Input 1 name 
/io/in/MOD/1/icon I 0..999  Module Input 1 icon (indexed) 
/io/in/MOD/1/tags S  80 chars max Module Input 1 tags 
/io/in/MOD/1/$mute I 0..2  Module Input 1 mute [RO] 
     
/io/in/PLAY N   USB Player Input node 
/io/in/PLAY/1 N 1..4  USB Player Input 1 node 
/io/in/PLAY/1/mode S  M, ST, M/S USB Player Input 1 mode 
/io/in/PLAY/1/mute I 0..1  USB Player Input 1 mute 
/io/in/PLAY/1/pol I 0..1  USB Player Input 1 polarity 
/io/in/PLAY/1/col I 1..12  USB Player Input 1 color 
/io/in/PLAY/1/name S  16 chars max USB Player Input 1 name 
/io/in/PLAY/1/icon I 0..999  USB Player Input 1 icon (indexed) 
/io/in/PLAY/1/tags S  80 chars max USB Player Input 1 tags 
/io/in/PLAY/1/$mute I 0..2  USB Player Input 1 mute [RO] 
     
/io/in/AES N   AES/EBU Input node 
/io/in/AES/1 N 1..2  AES/EBU Input 1 node 
/io/in/AES/1/mode S  M, ST, M/S AES/EBU Input 1 mode 
/io/in/AES/1/mute I 0..1  AES/EBU Input 1 mute 
/io/in/AES/1/pol I 0..1  AES/EBU Input 1 polarity 



 
 
 
 

©Patrick-Gilles Maillot 43 WING remote protocols – V 3.0.6-27 
 
 
 

/io/in/AES/1/col I 1..12  AES/EBU Input 1 color 
/io/in/AES/1/name S  16 chars max AES/EBU Input 1 name 
/io/in/AES/1/icon I 0..999  AES/EBU Input 1 icon (indexed) 
/io/in/AES/1/tags S  80 chars max AES/EBU Input 1 tags 
/io/in/AES/1/$mute I 0..2  AES/EBU Input 1 mute [RO] 
     
/io/in/USR N   User Signal Input node 
/io/in/USR/1 N 1..56  User Signal Input 1 node: 

1-24 are User Signals, 25-56 are 
User Patches 

/io/in/USR/1/mode S  M, ST, M/S User Signal Input 1 mode 
/io/in/USR/1/mute I 0..1  User Signal Input 1 mute 
/io/in/USR/1/pol I 0..1  User Signal Input 1 polarity 
/io/in/USR/1/col I 1..12  User Signal Input 1 color 
/io/in/USR/1/name S  16 chars max User Signal Input 1 name 
/io/in/USR/1/icon I 0..999  User Signal Input 1 icon (indexed) 
/io/in/USR/1/tags S  80 chars max User Signal Input 1 tags 
/io/in/USR/1/$mute I 0..2  User Signal Input 1 mute [RO] 
     
/io/in/USR/1/user N 1..56  User Signal 1..24 source node 

User Patch 25..56 source node 
/io/in/USR/1/user/grp S 

S 
 OFF, CH, AUX, BUS, MAIN, MTX 

OFF, LCL, AUX, A, B, C, SC, USB, 
CRD, MOD, PLAY, AES 

User Signal source group 
User Patch source group 

/io/in/USR/1/user/in I 
I 

1..40 
1..64 

 User Signal source number 
User Patch source number 

/io/in/USR/1/user/tap18 S  PRE, POST User Signal source tap point 
/io/in/USR/1/user/lr19 S  L+R, L, R User Signal source take 
     
/io/in/OSC N   Oscillator Input node 
/io/in/OSC/1 N 1..2  Oscillator Input 1 node 
/io/in/OSC/1/mode S  M, ST, M/S Oscillator Input 1 mode [RO] 
/io/in/OSC/1/mute I 0..1  Oscillator Input 1 mute 
/io/in/OSC/1/col I 1..12  Oscillator Input 1 color 
/io/in/OSC/1/name S  16 chars max Oscillator Input 1 name 
/io/in/OSC/1/icon I 0..999  Oscillator Input 1 icon (indexed) 
/io/in/OSC/1/tags S  80 chars max Oscillator Input 1 tags 
/io/in/OSC/1/$mute I 0..2  Oscillator Input 1 mute [RO] 
     
/io/in/OSC/1/osc N   Oscillator 1 source node 
/io/in/OSC/1/osc/lvl F -40..6 69 steps Oscillator 1 source level 
/io/in/OSC/1/osc/mode S  SINE, PINK, WHITE Oscillator 1 source mode 
/io/in/OSC/1/osc/f F 20…20000 2323 steps Oscillator 1 source frequency 
     
/io/in/$BUS N   Bus Input node 
/io/in/$BUS/1 N 1..32  Bus Input 1 node 
/io/in/$BUS/1/mode S  M, ST, M/S Bus Input 1 mode [RO] 
/io/in/$BUS/1/col I 1..12  Bus Input 1 color [RO] 
/io/in/$BUS/1/name S  16 chars max Bus Input 1 name [RO] 

 
18 Only for nodes 1..24 [User Signals] 
19 Only for nodes 1..24 [User Signals] 



 
 
 
 

©Patrick-Gilles Maillot 44 WING remote protocols – V 3.0.6-27 
 
 
 

/io/in/$BUS/1/icon I 0..999  Bus Input 1 icon [RO] 
/io/in/$BUS/1/tags S  80 chars max Bus Input 1 tags [RO] 
     
/io/in/$MAIN N   Main Input node 
/io/in/$MAIN/1 N 1..8  Main Input 1 node 
/io/in/$MAIN/1/mode S  M, ST, M/S Main Input 1 mode [RO] 
/io/in/$MAIN/1/col I 1..12  Main Input 1 color [RO] 
/io/in/$MAIN/1/name S  16 chars max Main Input 1 name [RO] 
/io/in/$MAIN/1/icon I 0..999  Main Input 1 icon [RO] 
/io/in/$MAIN/1/tags S  80 chars max Main Input 1 tags [RO] 
     
/io/in/$MTX N   Matrix Input node 
/io/in/$MTX/1 N 1..16  Matrix Input 1 node 
/io/in/$MTX/1/mode S  M, ST, M/S Matrix Input 1 mode [RO] 
/io/in/$MTX/1/col I 1..12  Matrix Input 1 color [RO] 
/io/in/$MTX/1/name S  16 chars max Matrix Input 1 name [RO] 
/io/in/$MTX/1/icon I 0..999  Matrix Input 1 icon [RO] 
/io/in/$MTX/1/tags S  80 chars max Matrix Input 1 tags [RO] 
     
/io/in/$SEND N   FX Send Input node 
/io/in/$SEND/1 N 1..32  FX Send Input 1 node 
/io/in/$SEND/1/mode S  M, ST, M/S FX Send Input 1 mode [RO] 
/io/in/$SEND/1/col I 1..12  FX Send Input 1 color [RO] 
/io/in/$SEND/1/name S  16 chars max FX Send Input 1 name [RO] 
/io/in/$SEND/1/icon I 0..999  FX Send Input 1 icon [RO] 
/io/in/$SEND/1/tags S  80 chars max FX Send Input 1 tags [RO] 
     
/io/in/$MON N   Monitor Input node 
/io/in/$MON/1 N 1..4  Monitor Input 1 node 
/io/in/$MON/1/mode S  M, ST, M/S Monitor Input 1 mode [RO] 
/io/in/$MON/1/col I 1..12  Monitor Input 1 color [RO] 
/io/in/$MON/1/name S  16 chars max Monitor Input 1 name [RO] 
/io/in/$MON/1/icon I 0..999  Monitor Input 1 icon [RO] 
/io/in/$MON/1/tags S  80 chars max Monitor Input 1 tags [RO] 
     
/io/out N   Output node 
/io/out/LCL N   Local Output node 
/io/out/LCL/1 N 1..8  Local Output 1 node 
/io/out/LCL/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

Local Output 1 group 

/io/out/LCL/1/in I 1..64  Local Output 1 input 
     
/io/out/AUX N   Aux Output node 
/io/out/AUX/1 N 1..820  Aux Output 1 node 
/io/out/AUX/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

Aux Output 1 group 

/io/out/AUX/1/in I 1..64  Aux Output 1 input 
     

 
20 Aux 1..6 may be ‘not available’ on some models 



 
 
 
 

©Patrick-Gilles Maillot 45 WING remote protocols – V 3.0.6-27 
 
 
 

/io/out/A N   AES50 A Output node 
/io/out/A/1 N 1..48  AES50 A Output 1 node 
/io/out/A/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

AES50 A Output 1 group 

/io/out/A/1/in I 1..64  AES50 A Output 1 input 
     
/io/out/B N   AES50 B Output node 
/io/out/B/1 N 1..48  AES50 B Output 1 node 
/io/out/B/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

AES50 B Output 1 group 

/io/out/B/1/in I 1..64  AES50 B Output 1 input 
     
/io/out/C N   AES50 C Output node 
/io/out/C/1 N 1..48  AES50 C Output 1 node 
/io/out/C/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

AES50 C Output 1 group 

/io/out/C/1/in I 1..64  AES50 C Output 1 input 
     
/io/out/SC N   StageConnect Output node 
/io/out/SC/1 N 1..32  StageConnect Output 1 node 
/io/out/SC/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

StageConnect Output 1 group 

/io/out/SC/1/in I 1..64  StageConnect Output 1 input 
     
/io/out/USB N   USB Output Audio node 
/io/out/USB/1 N 1..48  USB Output Audio 1 node 
/io/out/USB/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

USB Output Audio 1 group 

/io/out/USB/1/in I 1..64  USB Output Audio 1 input 
     
/io/out/CRD N   Card Output node 
/io/out/CRD/1 N 1..64  Card Output 1 node 
/io/out/CRD/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

Card Output 1 group 

/io/out/CRD/1/in I 1..64  Card Output 1 input 
     
/io/out/MOD N   Module Output node 
/io/out/MOD/1 N 1..64  Module Output 1 node 
/io/out/MOD/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

Module Output 1 group 

/io/out/MOD/1/in I 1..64  Module Output 1 input 
     
/io/out/REC N   USB Record Output node 
/io/out/REC/1 N 1..4  USB Record Output 1 node 



 
 
 
 

©Patrick-Gilles Maillot 46 WING remote protocols – V 3.0.6-27 
 
 
 

/io/out/REC/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 
CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

USB Record Output 1 group 

/io/out/REC/1/in I 1..64  USB Record Output 1 input 
     
/io/out/AES N   AES/EBU Output node 
/io/out/AES/1 N 1..2  AES/EBU Output 1 node 
/io/out/AES/1/grp S  OFF, LCL, AUX, A, B, C, SC, USB, 

CRD, MOD, PLAY, AES, USR, OSC, 
BUS, MAIN, MTX, SEND, MON 

AES/EBU Output 1 group 

/io/out/AES/1/in I 1..64  AES/EBU Output 1 input 
     

  



 
 
 
 

©Patrick-Gilles Maillot 47 WING remote protocols – V 3.0.6-27 
 
 
 

Channel Settings 
Command Type Range Text Description 
/ch N   Channel node 
/ch/1 N 1..40  Channel 1 node 
/ch/1/in N   Channel 1 input node 
/ch/1/in/set N   Channel 1 input set node 
/ch/1/in/set/$mode S  M, ST, M/S Channel 1 input mode [RO] 
/ch/1/in/set/srcauto I 0..1  Channel 1 input auto source switch 
/ch/1/in/set/altsrc I 0..1  Channel 1 input main/alt switch 
/ch/1/in/set/inv I 0..1  Channel 1 input phase invert switch 
/ch/1/in/set/trim F -18..18 361 steps Channel 1 input trim (dB) 
/ch/1/in/set/bal F -9..9 181 steps Channel 1 input balance (dB) 
     
/ch/1/in/set/$g F -2.5..45 

-3.0..45.5 
20 steps (LCL) 
98 steps (AES) 

Channel 1 input gain (dB) – depends on 
source type 

/ch/1/in/set/$vph I 0..1  Channel 1 input phantom power – 
depends on source type 

/ch/1/in/set/dlymode S  M, FT, MS, SMP Meters, feet, milliseconds, samples 
/ch/1/in/set/dly F 0..150 m / 

0.5..500 ft / 
0.5..500 ms 

/ 16..500 
smp 

1501 steps / 
1000 steps / 
4996 steps / 
485 steps 

Channel 1 input delay (meters, feet, ms, 
samples) 

/ch/1/in/set/dlyon I 0..1  Channel 1 input delay 
     
/ch/1/in/conn N   Channel 1 input connection node 
/ch/1/in/conn/grp S  OFF, LCL, AUX, A, B, C, SC, 

USB, CRD, MOD, PLAY, AES, 
USR, OSC, BUS, MAIN, MTX 

Channel 1 main input connection group 

/ch/1/in/conn/in I 1..64  Channel 1 main input connection group 
index 

/ch/1/in/conn/altgrp S  OFF, LCL, AUX, A, B, C, SC, 
USB, CRD, MOD, PLAY, AES, 
USR, OSC, BUS, MAIN, MTX 

Channel 1 alt input connection group 

/ch/1/in/conn/altin I 1..64  Channel 1 alt input connection group 
index 

     
/ch/1/flt N   Channel 1 filter node 
/ch/1/flt/lc I 0..1  Channel 1 low cut switch 
/ch/1/flt/lcf F 20..2000 641 steps Channel 1 low cut frequency (Hz) 
/ch/1/flt/lcs S  6, 12, 18, 24 Channel 1 low cut slope 
/ch/1/flt/hc I 0..1  Channel 1 high cut switch 
/ch/1/flt/hcf F 50..20000 833 steps Channel 1 high cut frequency (Hz) 
/ch/1/flt/hcs S  6, 12 Channel 1 high cut slope 
/ch/1/flt/tf I 0..1  Channel 1 tool filter switch 
/ch/1/flt/mdl S  TILT, MAX, AP1, AP2 Channel 1 filter model (see Appendix on 

Filter plugins for parameters details, 
OSC patterns in italic below correspond 
to TILT) 

/ch/1/flt/tilt21 F -6..6 49 steps Channel 1 tilt level (dB) 

 
21 This is for the TILT filter model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 48 WING remote protocols – V 3.0.6-27 
 
 
 

     
/ch/1/clink I 0..1  Channel 1 custom link 
/ch/1/col I 1..12  Channel 1 color 
/ch/1/name S  16 chars max Channel 1 name 
/ch/1/icon I 0..999  Channel 1 icon 
/ch/1/led I 0..1  Channel 1 scribble light 
/ch/1/$col I 1..12  Channel 1 color [RO] reflects linked 

source or current strip value 
/ch/1/$name S  16 chars max Channel 1 name [RO] reflects linked 

source or current strip value 
/ch/1/$icon I 0..999  Channel 1 icon [RO] reflects linked 

source or current strip value 
/ch/1/mute I 0..1  Channel 1 mute 
/ch/1/fdr F -144..10 -oo..10 in 1024 steps Channel 1 fader 
/ch/1/pan F -100..100 201 steps Channel 1 pan 
/ch/1/wid F -150..150 61 steps Channel 1 width (%) 
/ch/1/$solo I 0..1  Channel 1 solo switch 
/ch/1/$sololed I 0..2  Channel 1 solo LED [RO] 
/ch/1/solosafe I 0..1  Channel 1 solo safe 
/ch/1/mon S  A, B, A+B Channel 1 monitor mode 
/ch/1/proc S  GEDI, GEID, GIED, IGED, 

GDEI, GDIE, GIDE, IGDE, 
EGDI, EGID, EIGD, IEGD, 
EDGI, EDIG, EIDG, IEDG, 
DEGI, DEIG, DIEG, IDEG, 
DGEI, DGIE, DIGE, IDGE 

Channel 1 process order (G: Gate, E: EQ, 
D: Dynamics, I: Insert 

/ch/1/ptap S  IN, FILT, 3, 4, 5, PFL, AFL, 
POST 

Channel 1 pretap (to sends) 

/ch/1/$presolo I 0..1  Channel 1 presolo 
     
/ch/1/peq N   Channel 1 PreSend EQ node 
/ch/1/peq/on I 0..1  Channel 1 PEQ switch 
/ch/1/peq/1g F -15..15 301 steps Channel 1 PEQ band 1 gain (dB) 
/ch/1/peq/1f F 20..20000 960 steps Channel 1 PEQ band 1 frequency (Hz) 
/ch/1/peq/1q F 0.44..10 181 steps Channel 1 PEQ band 1 Q 
/ch/1/peq/2g F -15..15 301 steps Channel 1 PEQ band 2 gain 9dB) 
/ch/1/peq/2f F 20..20000 960 steps Channel 1 PEQ band 2 frequency (Hz) 
/ch/1/peq/2q F 0.44..10 181 steps Channel 1 PEQ band 2 Q 
/ch/1/peq/3g F -15..15 301 steps Channel 1 PEQ band 3 gain 9dB) 
/ch/1/peq/3f F 20..20000 960 steps Channel 1 PEQ band 3 frequency (Hz) 
/ch/1/peq/3q F 0.44..10 181 steps Channel 1 PEQ band 3 Q 
     
/ch/1/gate N   Channel 1 gate node 
/ch/1/gate/on I 0..1  Channel 1 gate switch 
/ch/1/gate/mdl S  GATE, DUCK, E88, 9000G, 

D241, DS902, WAVE, DEQ, 
WARM, 76LA, LA, RIDE, PSE, 
CMB 

Channel 1 gate model (see Appendix on 
Gate plugins for parameters details, OSC 
patterns in italic below correspond to 
GATE) 

/ch/1/gate/thr22 F -80..0 161 steps Channel 1 gate threshold (dB) 
/ch/1/gate/range F 3..60 115 steps Channel 1 gate range (dB) 

 
22 This is for the GATE gate model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 49 WING remote protocols – V 3.0.6-27 
 
 
 

/ch/1/gate/att F 0..120 121 steps Channel 1 gate attack (ms) 
/ch/1/gate/hld F 0..200 200 steps Channel 1 gate hold (ms) 
/ch/1/gate/rel F 4..4000 130 steps Channel 1 gate release(ms) 
/ch/1/gate/acc F 0..100 21 steps Channel 1 gate accent (5) 
/ch/1/gate/ratio S  1:1.5, 1:2, 1:3, 1:4, gate Channel 1 gate ratio 
     
/ch/1/gatesc N   Channel 1 gate sidechain node 
/ch/1/gatesc/type S  Off, LP12, HP12, BP Channel 1 gate sidechain type 
/ch/1/gatesc/f F 20..20000 961 steps Channel 1 gate sidechain frequency (Hz) 
/ch/1/gatesc/q F 0.44..10 181 steps Channel 1 gate sidechain Q 
/ch/1/gatesc/src S  SHELF, CH.1..CH.40 Channel 1 gate sidechain source 
/ch/1/gatesc/tap S  IN, FILT, 3, 4, 5, PFL, AFL, 

POST 
Channel 1 gate sidechain tap 

/ch/1/gatesc/$solo I 0..1  Channel 1 gate sidechain solo 
     
/ch/1/eq N   Channel 1 EQ node 
/ch/1/eq/on I 0..1  Channel 1 EQ switch 
/ch/1/eq/mdl S  STD, SOUL, E88, E84, F110, 

PULSAR, MACH4 
Channel 1 EQ model (see Appendix on 
EQ plugins for parameters details, OSC 
patterns in italic below correspond to 
STD) 

/ch/1/eq/mix F 0..125 126 steps Channel 1 EQ mix (%) 
/ch/1/eq/$solo I 0..1  Channel 1 EQ solo 
/ch/1/eq/$solobd I 0..6  Channel 1 EQ solo band 
/ch/1/eq/lg23 F -15..15 301 steps Channel 1 EQ low gain (dB) 
/ch/1/eq/lf F 20..2000 641 steps Channel 1 EQ low frequency (Hz) 
/ch/1/eq/lq F 0.44..10 181 steps Channel 1 EQ low Q 
/ch/1/eq/leq S  PEQ, SHV Channel 1 EQ low type 
/ch/1/eq/1g F -15..15 301 steps Channel 1 EQ band 1 gain (dB) 
/ch/1/eq/1f F 20..20000 961 steps Channel 1 EQ band 1 frequency (Hz) 
/ch/1/eq/1q F 0.44..10 181 steps Channel 1 EQ band 1 Q 
/ch/1/eq/2g F -15..15 301 steps Channel 1 EQ band 2 gain (dB) 
/ch/1/eq/2f F 20..20000 961 steps Channel 1 EQ band 2 frequency (Hz) 
/ch/1/eq/2q F 0.44..10 181 steps Channel 1 EQ band 2 Q 
/ch/1/eq/3g F -15..15 301 steps Channel 1 EQ band 3 gain (dB) 
/ch/1/eq/3f F 20..20000 961 steps Channel 1 EQ band 3 frequency (Hz) 
/ch/1/eq/3q F 0.44..10 181 steps Channel 1 EQ band 3 Q 
/ch/1/eq/4g F -15..15 301 steps Channel 1 EQ band 4 gain (dB) 
/ch/1/eq/4f F 20..20000 961 steps Channel 1 EQ band 4 frequency (Hz) 
/ch/1/eq/4q F 0.44..10 181 steps Channel 1 EQ band 4 Q 
/ch/1/eq/hg F -15..15 301 steps Channel 1 EQ high gain (dB) 
/ch/1/eq/hf F 50..20000 833 steps Channel 1 EQ high frequency (Hz) 
/ch/1/eq/hq F 0.44..10 181 steps Channel 1 EQ high Q 
/ch/1/eq/heq S  PEQ, SHV Channel 1 EQ high type 
     
/ch/1/dyn N   Channel 1 dynamic (compressor) node 
/ch/1/dyn/on I 0..1  Channel 1 compressor switch 
/ch/1/dyn/mdl S  COMP, EXP, B160, B560, 

D241, ECL33, 9000C, SBUS, 
RED3, 76LA, LA, F670, BLISS, 

Channel 1 compressor model (see 
Appendix on Compressor plugins for 

 
23 This is for the STD eq model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 50 WING remote protocols – V 3.0.6-27 
 
 
 

NSTR, WAVE, RIDE, 2250, 
L100, CMB24 

parameters details, OSC patterns in 
italic below correspond to COMP) 

/ch/1/dyn/mix F 0..100 101 steps Channel 1 compressor mix (%) 
/ch/1/dyn/gain F -6..12 37 steps Channel 1 compressor gain (dB) 
/ch/1/dyn/thr25 F -60..0 121 steps Channel 1 compressor threshold (dB) 
/ch/1/dyn/ratio S  1.1, 1.2, 1.3, 1.5, 1.7, 2.0, 

2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 
8.0,  10,  20,  50, 100 

Channel 1 compressor ratio 

/ch/1/dyn/knee I 0..5  Channel 1 compressor knee 
/ch/1/dyn/det S  PEAK, RMS Channel 1 compressor detect 
/ch/1/dyn/att F 0..120 121 steps Channel 1 compressor attack (ms) 
/ch/1/dyn/hld F 1..200 200 steps Channel 1 compressor hold (ms) 
/ch/1/dyn/rel F 4..4000 130 steps Channel 1 compressor release (ms) 
/ch/1/dyn/env S  LIN, LOG Channel 1 compressor envelope 
/ch/1/dyn/auto I 0..1  Channel 1 compressor auto switch 
     
/ch/1/dynxo N   Channel 1 compressor crossover node 
/ch/1/dynxo/depth F 0..20 41 steps Channel 1 compressor crossover depth 

(dB) 
/ch/1/dynxo/type S  OFF, LO6, LO12, HI6, HI12, 

PC 
Channel 1 compressor crossover type 

/ch/1/dynxo/f F 20..20000 901 steps Channel 1 compressor crossover 
frequency (Hz) 

/ch/1/dynxo/$solo I 0..1  Channel 1 compressor crossover solo 
     
/ch/1/dynsc N   Channel 1 compressor sidechain node 
/ch/1/dynsc/type S  Off, LP12, HP12, BP Channel 1 compressor sidechain type 
/ch/1/dynsc/f F 20..20000 901 steps Channel 1 compressor sidechain 

frequency (Hz) 
/ch/1/dynsc/q F 0.44..10 181 steps Channel 1 compressor sidechain Q 
/ch/1/dynsc/src S  SELF, CH.1..CH.40 Channel 1 compressor sidechain source 
/ch/1/dynsc/tap S  IN, FILT, 3, 4, 5, PFL, AFL, 

POST 
Channel 1 compressor sidechain tap 

/ch/1/dynsc/$solo I 0..1  Channel 1 compressor sidechain solo 
     
/ch/1/preins N   Channel 1 pre-insert node 
/ch/1/preins/on I 0..1  Channel 1 pre-insert switch 
/ch/1/preins/ins S  NONE, FX1..FX16 Channel 1 pre-insert FX slot 
/ch/1/preins/$stat S  -, OK, N/A Channel 1 pre-insert status [RO] 
     
/ch/1/main N   Channel 1 Main node 
/ch/1/main/1 N 1..426  Channel 1 Main 1 node 
/ch/1/main/1/on I 0..1  Channel 1 Main 1 on switch 
/ch/1/main/1/lvl F -144..10 -oo..10 in 1024 steps Channel 1 Main 1 fader level (dB) 
/ch/1/main/1/pre I 0..1  Channel 1 sent pre fader to Main 1 
     
/ch/1/send N   Channel 1 sends node 
/ch/1/send/1 N 1..16  Channel 1 sends 1 node 

 
24 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot 
25 This is for the COMP dyn model. Can use more parameters depending on model type 
26 1..8 on WING Rack model, used for the 4 headphones stereo outputs on the back on the rack. 



 
 
 
 

©Patrick-Gilles Maillot 51 WING remote protocols – V 3.0.6-27 
 
 
 

/ch/1/send/1/on I 0..1  Channel 1 sends 1 on switch 
/ch/1/send/1/lvl F -144..10 -oo..10 in 1024 steps Channel 1 sends 1 fader level (dB) 
/ch/1/send/1/pon I 0..1  Channel 1 sends 1 pre always on switch 
/ch/1/send/1/mode S  PRE, POST, GRP Channel 1 sends 1 mode 
/ch/1/send/1/plink I 0..1  Channel 1 sends 1 pan link 

(0=individual) 
/ch/1/send/1/pan F -100..100 201 steps Channel 1 sends 1 pan 
     
/ch/1/send/MX<x> N <x>:1..8  Channel 1 sends matrix <x> node 
/ch/1/send/MX<x>/on I 0..1  Channel 1 sends mtx on switch 
/ch/1/send/MX<x>/lvl F -144..10 -oo..10 in 1024 steps Channel 1 sends mtx fader level (dB) 
/ch/1/send/MX<x>/pon I 0..1  Channel 1 sends mtx pre always on 

switch 
/ch/1/send/MX<x>/mode S  PRE, POST, GRP Channel 1 sends mtx mode 
/ch/1/send/MX<x>/plink I 0..1  Channel 1 sends mtx pan link 

(0=individual) 
/ch/1/send/MX<x>/pan F -100..100 201 steps Channel 1 sends mtx pan 
     
/ch/1/tapwid F -150..150  Channel 1 width 
     
/ch/1/postins N   Channel 1 post insert node 
/ch/1/postins/on I 0..1  Channel 1 post insert on switch 
/ch/1/postins/mode S  FX, AUTO_X, AUTO_Y Channel 1 post insert mode 
/ch/1/postins/ins S  NONE, FX1..FX16 Channel 1 post insert FX slot 
/ch/1/postins/w F -12..12 241 steps Channel 1 post insert autogain weight 
/ch/1/postins/$stat S  -, OK, N/A Channel 1 post insert status [RO] 
     
/ch/1/tags S  80 chars max Channel 1 tags27 
/ch/1/$fdr F -144..10 -oo..10 in 1024 steps Channel 1 fader level as affected by dca 

(dB) [RO] 
/ch/1/$mute I 0..2  Channel 1 mute [RO] 
/ch/1/$muteovr I 0..1  Channel 1 mute override 

  

 
27 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment 



 
 
 
 

©Patrick-Gilles Maillot 52 WING remote protocols – V 3.0.6-27 
 
 
 

Aux Settings 
Command Type Range Text Description 
/aux N   Aux node 
/aux/1 N 1..8  Aux 1 node 
/aux/1/in N   Aux 1 input node 
/aux/1/in/set N   Aux 1 input set node 
/aux/1/in/set/$mode S  M, ST, M/S Aux 1 input mode [RO] 
/aux/1/in/set/srcauto I 0..1  Aux 1 input auto source switch 
/aux/1/in/set/altsrc I 0..1  Aux 1 input main/alt switch 
/aux/1/in/set/inv I 0..1  Aux 1 input phase invert switch 
/aux/1/in/set/trim F -18..18 361 steps Aux 1 input trim (dB) 
/aux/1/in/set/bal F -9..9 181 steps Aux 1 input balance (dB) 
/aux/1/in/set/$g F -3..45 98 steps Aux 1 input gain (dB) 
/aux/1/in/set/$vph I 0..1  Aux 1 input phantom power 
/aux/1/in/set/dlymode S  M, FT, MS, SMP Meters, feet, milliseconds, samples 
/aux/1/in/set/dly F 0..150 m / 

0.5..500 ft / 
0.5..500 ms / 
16..500 smp 

1501 steps / 
1000 steps / 
4996 steps / 
485 steps 

Aux 1 input delay (meters, feet, ms, 
samples) 

/aux/1/in/set/dlyon I 0..1  Aux 1 input delay 
     
/aux/1/in/conn N   Aux 1 input connection node 
/aux/1/in/conn/grp S  OFF, LCL, AUX, A, B, C, SC, 

USB, CRD, MOD, PLAY, AES, 
USR, OSC, BUS, MAIN, MTX 

Aux 1 input connection group 

/aux/1/in/conn/in I 1..64  Aux 1 input connection group index 
/aux/1/in/conn/altgrp S  OFF, LCL, AUX, A, B, C, SC, 

USB, CRD, MOD, PLAY, AES, 
USR, OSC, BUS, MAIN, MTX 

Aux 1 alt input connection group 

/aux/1/in/conn/altin I 1..64  Aux 1 alt input connection group 
index 

     
/aux/1/clink I 0..1  Aux 1 custom link 
/aux/1/col I 1..12  Aux 1 color 
/aux/1/name S  16 chars max Aux 1 name 
/aux/1/icon I 0..999  Aux 1 icon 
/aux/1/led I 0..1  Aux 1 scribble light 
/aux/1/$col I 1..12  Aux 1 color [RO] reflects linked 

source or current strip value 
/aux/1/$name S  16 chars max Aux 1 name [RO] reflects linked 

source or current strip value 
/aux/1/$icon I 0..999  Aux 1 icon [RO] reflects linked 

source or current strip value 
/aux/1/mute I 0..1  Aux 1 mute 
/aux/1/fdr F -144..10 -oo..10 in 1024 steps Aux 1 fader level (dB) 
/aux/1/pan F -100..100 201 steps Aux 1 pan 
/aux/1/wid F -150..150 61 steps Aux 1 width (%) 
/aux/1/$solo I 0..1  Aux 1 solo 
/aux/1/$sololed I 0..2  Aux 1 solo LED [RO] 
/aux/1/solosafe I 0..1  Aux 1 solo safe 
/aux/1/mon S  A, B, A+B Aux 1 monitor mode 
     



 
 
 
 

©Patrick-Gilles Maillot 53 WING remote protocols – V 3.0.6-27 
 
 
 

/aux/1/eq N   Aux 1 EQ node 
/aux/1/eq/on I 0..1  Aux 1 EQ switch 
/aux/1/eq/mdl S  STD, SOUL, E88, E84, F110, 

PULSAR 
Aux 1 EQ model (see Appendix on 
EQ plugins for parameters details, 
OSC patterns in italic below 
correspond to STD) 

/ aux /1/eq/mix F 0..125 126 steps Aux 1 EQ mix (%) 
/ aux /1/eq/$solo I 0..1  Aux 1 EQ solo 
/ aux /1/eq/$solobd I 0..6  Aux 1 EQ solo band 
/ aux /1/eq/lg28 F -15..15 301 steps Aux 1 EQ low gain (dB) 
/ aux /1/eq/lf F 20..2000 641 steps Aux 1 EQ low frequency (Hz) 
/ aux /1/eq/lq F 0.44..10 181 steps Aux 1 EQ low Q 
/ aux /1/eq/leq S  PEQ, SHV, CUT Aux 1 EQ low type 
/ aux /1/eq/1g F -15..15 301 steps Aux 1 EQ band 1 gain (dB) 
/ aux /1/eq/1f F 20..20000 961 steps Aux 1 EQ band 1 frequency (Hz) 
/ aux /1/eq/1q F 0.44..10 181 steps Aux 1 EQ band 1 Q 
/ aux /1/eq/2g F -15..15 301 steps Aux 1 EQ band 2 gain (dB) 
/ aux /1/eq/2f F 20..20000 961 steps Aux 1 EQ band 2 frequency (Hz) 
/ aux /1/eq/2q F 0.44..10 181 steps Aux 1 EQ band 2 Q 
/ aux /1/eq/3g F -15..15 301 steps Aux 1 EQ band 3 gain (dB) 
/ aux /1/eq/3f F 20..20000 961 steps Aux 1 EQ band 3 frequency (Hz) 
/ aux /1/eq/3q F 0.44..10 181 steps Aux 1 EQ band 3 Q 
/ aux /1/eq/4g F -15..15 301 steps Aux 1 EQ band 4 gain (dB) 
/ aux /1/eq/4f F 20..20000 961 steps Aux 1 EQ band 4 frequency (Hz) 
/ aux /1/eq/4q F 0.44..10 181 steps Aux 1 EQ band 4 Q 
/ aux /1/eq/hg F -15..15 301 steps Aux 1 EQ high gain (dB) 
/ aux /1/eq/hf F 50..20000 833 steps Aux 1 EQ high frequency (Hz) 
/ aux /1/eq/hq F 0.44..10 181 steps Aux 1 EQ high Q 
/ aux /1/eq/heq S  PEQ, SHV, CUT Aux 1 EQ high type 
     
/aux/1/dyn N   Aux 1 dynamic (PSE/LA combo) node 
/aux/1/dyn/on I 0..1  Aux 1 compressor switch 
/aux/1/dyn/thr F -36..12 97 steps Aux 1 compressor threshold (dB) 
/aux/1/dyn/depth F 0..20 41 steps Aux 1 compressor depth (dB) 
/aux/1/dyn/fast I 0..1  Aux 1 compressor fast switch 
/aux/1/dyn/peak I 0..1  Aux 1 compressor peak switch 
/aux/1/dyn/ingain F 0..100 101 steps Aux 1 compressor input gain 
/aux/1/dyn/cpeak F 0..100 101 steps Aux 1 compressor peak 
/aux/1/dyn/cmode S  COMP, LIM Aux 1 compressor mode 
     
/aux/1/preins N   Aux 1 pre-insert node 
/aux/1/preins/on I 0..1  Aux 1 pre-insert switch 
/aux/1/preins/ins S  NONE, FX1..FX16 Aux 1 pre-insert FX slot 
/aux/1/preins/$stat S  -, OK, N/A Aux 1 pre-insert status [RO] 
     
/aux/1/main N   Aux 1 Main node 
/aux/1/main/1 N 1..4  Aux 1 Main 1 node 
/aux/1/main/1/on I 0..1  Aux 1 Main 1 on switch 
/aux/1/main/1/lvl F -144..10 -oo..10 in 1024 steps Aux 1 Main 1 fader level (dB) 
/aux/1/main/1/pre I 0..1  Aux 1 sent pre fader to Main 1 

 
28 This is for the STD eq model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 54 WING remote protocols – V 3.0.6-27 
 
 
 

     
/aux/1/send N   Aux 1 sends node 
/aux/1/send/1 N 1..16  Aux 1 sends 1 node 
/aux/1/send/1/on I 0..1  Aux 1 sends 1 on switch 
/aux/1/send/1/lvl F -144..10 -oo..10 in 1024 steps Aux 1 sends 1 fader level (dB) 
/aux/1/send/1/pon I 0..1  Aux 1 sends 1 pre always on switch 
/aux/1/send/1/mode S  PRE, POST, GRP Aux 1 sends 1 mode 
/aux/1/send/1/plink I 0..1  Aux 1 sends 1 pan link (0=individual) 
/aux/1/send/1/pan F -100..100 201 steps Aux 1 sends 1 pan 
     
/aux/1/send/MX<x> N <x>:1..8  Aux 1 sends matrix <x> node 
/aux/1/send/MX<x>/on I 0..1  Aux 1 sends mtx on switch 
/aux/1/send/MX<x>/lvl F -144..10 -oo..10 in 1024 steps Aux 1 sends mtx fader level (dB) 
/aux/1/send/MX<x>/pon I 0..1  Aux 1 sends mtx pre always on 

switch 
/aux/1/send/MX<x>/mode S  PRE, POST, GRP Aux 1 sends mtx mode 
/aux/1/send/MX<x>/plink I 0..1  Aux 1 sends mtx pan link 

(0=individual) 
/aux/1/send/MX<x>/pan F -100..100 201 steps Aux 1 sends mtx pan 
     
/aux/1/tags S 80 chars max  Aux 1 tags29 
/aux/1/$fdr F -144..10 -oo..10 in 1024 steps Aux 1 fader level as affected by dca 

(dB)[RO] 
/aux/1/$mute I 0..2  Aux 1 mute {RO] 
/aux/1/$muteovr I 0..1  Aux 1 mute override 

  

 
29 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment 



 
 
 
 

©Patrick-Gilles Maillot 55 WING remote protocols – V 3.0.6-27 
 
 
 

Bus Settings 
Command Type Range Text Description 
/bus N   Bus node 
/bus/1 N 1..16  Bus 1 node 
/bus/1/in N   Bus 1 input node 
/bus/1/in/set N   Bus 1 input set node 
/bus/1/in/set/inv I 0..1  Bus 1 input phase invert 
/bus/1/in/set/trim F -18..18 361 steps Bus 1 input trim (dB) 
/bus/1/in/set/bal F -9..9 181 steps Bus 1 input balance (dB) 
/bus/1/col I 1..12  Bus 1 color 
/bus/1/name S  16 chars max Bus 1 name 
/bus/1/icon I 0..999  Bus 1 icon 
/bus/1/led I 0..1  Bus 1 scribble light 
/bus/1/$col I 1..12  Bus 1 color [RO] reflects linked 

source or current strip value 
/bus/1/$name S  16 chars max Bus 1 name [RO] reflects linked 

source or current strip value 
/bus/1/$icon I 0..999  Bus 1 icon [RO] reflects linked 

source or current strip value 
/bus/1/busmono I 0..1  Bus 1 mono switch 
/bus/1/mute I 0..1  Bus 1 mute 
/bus/1/fdr F -144..10 -oo..10 in 1024 steps Bus 1 fader level (dB) 
/bus/1/pan F -100..100 201 steps Bus 1 pan 
/bus/1/wid F -150..150 61 steps Bus 1 width (%) 
/bus/1/$solo I 0..1  Bus 1 solo 
/bus/1/$sololed I 0..2  Bus 1 solo LED {RO] 
/bus/1/mon S  A, B, A+B Bus 1 monitor mode 
     
/bus/1/eq  N   Bus 1 EQ node 
/bus/1/eq/on I 0..1  Bus 1 EQ on switch 
/bus/1/eq/mdl S  STD, SOUL, E88, E84, F110, 

PULSAR, PIA 
Bus 1 EQ model (see Appendix on 
EQ plugins for parameters details, 
OSC patterns in italic below 
correspond to STD) 

/bus/1/eq/mix F 0..100 126 steps Bus 1 EQ mix 
/bus/1/eq/$solo I 0..1  Bus 1 EQ solo 
/bus/1/eq/$solobd I 0..1  Bus 1 EQ band solo 
/bus/1/eq/lg30 F -15..15 301 steps Bus 1 EQ low gain (dB) 
/bus/1/eq/lf F 20..2000 641 steps Bus 1 EQ low frequency (Hz) 
/bus/1/eq/lq F 0.44..10 181 steps Bus 1 EQ low Q 
/bus/1/eq/leq S  PEQ, SHV, CUT, BW6, BW12, 

BS12, LR12, BW18, BW24, BS24, 
LR24, BW48, LR48 

Bus 1 EQ low type 

/bus/1/eq/1g F -15..15 301 steps Bus 1 EQ band 1 gain (dB) 
/bus/1/eq/1f F 20..20000 961 steps Bus 1 EQ band 1 frequency (Hz) 
/bus/1/eq/1q F 0.44..10 181 steps Bus 1 EQ band 1 Q 
/bus/1/eq/2g F -15..15 301 steps Bus 1 EQ band 2 gain (dB) 
/bus/1/eq/2f F 20..20000 961 steps Bus 1 EQ band 2 frequency (Hz) 
/bus/1/eq/2q F 0.44..10 181 steps Bus 1 EQ band 2 Q 
/bus/1/eq/3g F -15..15 301 steps Bus 1 EQ band 3 gain (dB) 

 
30 This is for the STD eq model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 56 WING remote protocols – V 3.0.6-27 
 
 
 

/bus/1/eq/3f F 20..20000 961 steps Bus 1 EQ band 3 frequency (Hz) 
/bus/1/eq/3q F 0.44..10 181 steps Bus 1 EQ band 3 Q 
/bus/1/eq/4g F -15..15 301 steps Bus 1 EQ band 4 gain (dB) 
/bus/1/eq/4f F 20..20000 961 steps Bus 1 EQ band 4 frequency (Hz) 
/bus/1/eq/4q F 0.44..10 181 steps Bus 1 EQ band 4 Q 
/bus/1/eq/5g F -15..15 301 steps Bus 1 EQ band 5 gain (dB) 
/bus/1/eq/5f F 20..20000 961 steps Bus 1 EQ band 5 frequency (Hz) 
/bus/1/eq/5q F 0.44..10 181 steps Bus 1 EQ band 5 Q 
/bus/1/eq/6g F -15..15 301 steps Bus 1 EQ band 6 gain (dB) 
/bus/1/eq/6f F 20..20000 961 steps Bus 1 EQ band 6 frequency (Hz) 
/bus/1/eq/6q F 0.44..10 181 steps Bus 1 EQ band 6 Q 
/bus/1/eq/hg F -15..15 301 steps Bus 1 EQ high gain (dB) 
/bus/1/eq/hf F 50..20000 833 steps Bus 1 EQ high frequency (Hz) 
/bus/1/eq/hq F 0.44..10 181 steps Bus 1 EQ high Q 
/bus/1/eq/heq S  PEQ, SHV, CUT, BW6, BW12, 

BS12, LR12, BW18, BW24, BS24, 
LR24, BW48, LR48 

Bus 1 EQ high type 

/bus/1/eq/tilt F -6..6 49 steps Bus 1 EQ tilt level 
     
/bus/1/dyn N   Bus 1 dynamic (compressor) node 
/bus/1/dyn/on I 0..1  Bus 1 compressor switch 
/bus/1/dyn/mdl S  COMP, EXP, B160, B560, D241, 

ECL33, 9000C, SBUS, RED3, 76LA, 
LA, F670, BLISS, NSTR, WAVE, 
RIDE, 2250, L100, CMB31 

Bus 1 compressor model, (see 
Appendix on Compressor plugins for 
parameters details, OSC patterns in 
italic below correspond to COMP) 

/bus/1/dyn/mix F 0..100 101 steps Bus 1 compressor mix (%) 
/bus/1/dyn/gain F -6..12 37 steps Bus 1 compressor gain (dB) 
/bus/1/dyn/thr32 F -60..0 121 steps Bus 1 compressor threshold (dB) 
/bus/1/dyn/ratio F 1.1..100  Bus 1 compressor ratio 
/bus/1/dyn/knee I 0..5  Bus 1 compressor knee 
/bus/1/dyn/det S  PEAK, RMS Bus 1 compressor detect 
/bus/1/dyn/att F 0..120 121 steps Bus 1 compressor attack (ms) 
/bus/1/dyn/hld F 1..200 200 steps Bus 1 compressor hold (ms) 
/bus/1/dyn/rel F 4..4000 130 steps Bus 1 compressor release (ms) 
/bus/1/dyn/env S  LIN, LOG Bus 1 compressor envelope 
/bus/1/dyn/auto I 0..1  Bus 1 compressor auto switch 
     
/bus/1/dynxo N   Bus 1 compressor crossover node 
/bus/1/dynxo/depth F 0..20 41 steps Bus 1 compressor crossover depth 

(dB) 
/bus/1/dynxo/type S  OFF, LO6, LO12, HI6, HI12, PC Bus 1 compressor crossover type 
/bus/1/dynxo/f F 20..20000 901 steps Bus 1 compressor crossover 

frequency (Hz) 
/bus/1/dynxo/$solo I 0..1  Bus 1 compressor crossover solo 
     
/bus/1/dynsc N   Bus 1 compressor sidechain node 
/bus/1/dynsc/type S  OFF, LP12, HP12, BP Bus 1 compressor sidechain type 
/bus/1/dynsc/f F 20..20000 901 steps Bus 1 compressor sidechain 

frequency (Hz) 

 
31 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot 
32 This is for the COMP dyn model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 57 WING remote protocols – V 3.0.6-27 
 
 
 

/bus/1/dynsc/q F 0.44..10 181 steps Bus 1 compressor sidechain Q 
/bus/1/dynsc/src S  SELF, BUS.1..BUS.16, 

MAIN.1..MAIN.4, MTX.1..MTX.8, 
AUX.1..AUX.8 

Bus 1 compressor sidechain source 

/bus/1/dynsc/tap S  BUS, DYN, PFL, AFL, EQ, INS2 Bus 1 compressor sidechain tap 
/bus/1/dynsc/$solo I 0..1  Bus 1 compressor sidechain solo 
     
/bus/1/preins N   Bus 1 pre-insert node 
/bus/1/preins/on I 0..1  Bus 1 pre-insert switch 
/bus/1/preins/ins S  NONE, FX1..FX16 Bus 1 pre-insert FX slot 
/bus/1/preins/$stat S  -, OK, N/A Bus 1 pre-insert status [RO] 
     
/bus/1/main N   Bus 1 Main node 
/bus/1/main/1 N 1..4  Bus 1 Main 1 node 
/bus/1/main/1/on I 0..1  Bus 1 Main 1 on switch 
/bus/1/main/1/lvl F -144..10 -oo..10 in 1024 steps Bus 1 Main 1 fader level (dB) 
/bus/1/main/1/pre I 0..1  Bus 1 sent pre fader to Main 1 
     
/bus/1/send N   Bus 1 sends node 
/bus/1/send/1 N 1..16  Bus 1 sends 1 node 
/bus/1/send/1/on I 0..1  Bus 1 sends 1 on switch33 
/bus/1/send/1/lvl F -144..10 -oo..10 in 1024 steps Bus 1 sends 1 fader level (dB) 
/bus/1/send/1/pre I 0..1  Bus 1 sends 1 pre/post switch 
     
/bus/1/send/MX<x> N <x>:1..8  Bus 1 matrix <x> sends node 
/bus/1/send/MX<x>/on I 0..1  Bus 1 mtx on switch 
/bus/1/send/MX<x.>/lvl F -144..10 -oo..10 in 1024 steps Bus 1 mtx fader level (dB) 
/bus/1/send/MX<x>/pre I 0..1  Bus 1 mtx pre/post switch 
     
/bus/1/postins N   Bus 1 post insert node 
/bus/1/postins/on I 0..1  Bus 1 post insert on switch 
/bus/1/postins/ins S  NONE, FX1..FX16 Bus 1 post insert mode 
/bus/1/postins/$stat S  -, OK, N/A Bus 1 post insert status [RO] 
     
/bus/1/dly N   Bus 1 delay node 
/bus/1/dly/on I 0..1  Bus 1 delay on 
/bus/1/dly/mode S  M, FT, MS, SMP Meters, feet, milliseconds, samples 
/bus/1/dly/dly F 0..150 m / 

0.5..500 ft/ 
0.5..500 ms/ 
16..500 smp 

1501 steps / 
1000 steps / 
4996 steps / 
485 steps 

Bus 1 delay (meters, feet, ms, 
samples) 

     
/bus/1/tags S  80 chars max Bus 1 tags34 
/bus/1/$fdr F -144..10 -oo..10 in 1024 steps Bus 1 fader level as affected by dca 

(dB)[RO] 
/bus/1/$mute I 0..2  Bus 1 mute [RO] 
/bus/1/$muteovr I 0..1  Bus 1 mute override 

 
33 Sending bus ‘n’ to bus ‘n’ is not possible. For ex. trying to enable /bus/1/send/1/on will be ignored.  
34 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment 



 
 
 
 

©Patrick-Gilles Maillot 58 WING remote protocols – V 3.0.6-27 
 
 
 

 
  



 
 
 
 

©Patrick-Gilles Maillot 59 WING remote protocols – V 3.0.6-27 
 
 
 

Mains Settings 
Command Type Range Text Description 
/main N   Main node 
/main/1 N 1..4  Main 1 node 
/main/1/in N   Main 1 input node 
/main/1/in/set N   Main 1 input set node 
/main/1/in/set/inv I 0..1  Main 1 input phase invert switch 
/main/1/in/set/trim F -18..18 361 steps Main 1 input trim 
/main/1/in/set/bal F -9..9 181 steps Main 1 input balance 
/main/1/col I 1..12  Main 1 color 
/main/1/name S  16 chars max Main 1 name 
/main/1/icon I 0..999  Main 1 icon 
/main/1/led I 0..1  Main 1 scribble light 
/main/1/$col I 1..12  Main 1 color [RO] reflects linked 

source or current strip value 
/main/1/$name S  16 chars max Main 1 name [RO] reflects linked 

source or current strip value 
/main/1/$icon I 0..999  Main 1 icon [RO] reflects linked 

source or current strip value 
/main/1/busmono I 0..1  Main 1 mono switch 
/main/1/mute I 0..1  Main 1 mute 
/main/1/fdr F -144..10 -oo..10 in 1024 steps Main 1 fader level (dB) 
/main/1/pan F -100..100 201 steps Main 1 pan 
/main/1/wid F -150..150 61 steps Main 1 width (%) 
/main/1/$solo I 0..1  Main 1 solo switch 
/main/1/$sololed I 0..2  Main 1 solo LED [RO] 
/main/1/mon S  A, B, A+B Main 1 monitor mode 
     
/main/1/eq N   Main 1 EQ node 
/main/1/eq/on I 0..1  Main 1 EQ on switch 
/main/1/eq/mdl S  STD, SOUL, E88, E84, F110, 

PULSAR, PIA 
Main 1 EQ model, (see Appendix on 
EQ plugins for parameters details, 
OSC patterns in italic below 
correspond to STD) 

/main/1/eq/mix F 0..100 126 steps Main 1 EQ mix 
/main/1/eq/$solo I 0..1  Main 1 EQ solo 
/main/1/eq/$solobd I 0..1  Main 1 EQ band solo 
/main/1/eq/lg35 F -15..15 301 steps Main 1 EQ low gain (dB) 
/main/1/eq/lf F 20..2000 641 steps Main 1 EQ low frequency (Hz) 
/main/1/eq/lq F 0.44..10 181 steps Main 1 EQ low Q 
/main/1/eq/leq S  PEQ, SHV, CUT, BW6, BW12, 

BS12, LR12, BW18, BW24, 
BS24, LR24, BW48, LR48 

Main 1 EQ low type 

/main/1/eq/1g F -15..15 301 steps Main 1 EQ band 1 gain (dB) 
/main/1/eq/1f F 20..20000 961 steps Main 1 EQ band 1 frequency (Hz) 
/main/1/eq/1q F 0.44..10 181 steps Main 1 EQ band 1 Q 
/main/1/eq/2g F -15..15 301 steps Main 1 EQ band 2 gain (dB) 
/main/1/eq/2f F 20..20000 961 steps Main 1 EQ band 2 frequency (Hz) 
/main/1/eq/2q F 0.44..10 181 steps Main 1 EQ band 2 Q 
/main/1/eq/3g F -15..15 301 steps Main 1 EQ band 3 gain (dB) 

 
35 This is for the STD eq model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 60 WING remote protocols – V 3.0.6-27 
 
 
 

/main/1/eq/3f F 20..20000 961 steps Main 1 EQ band 3 frequency (Hz) 
/main/1/eq/3q F 0.44..10 181 steps Main 1 EQ band 3 Q 
/main/1/eq/4g F -15..15 301 steps Main 1 EQ band 4 gain (dB) 
/main/1/eq/4f F 20..20000 961 steps Main 1 EQ band 4 frequency (Hz) 
/main/1/eq/4q F 0.44..10 181 steps Main 1 EQ band 4 Q 
/main/1/eq/5g F -15..15 301 steps Main 1 EQ band 5 gain (dB) 
/main/1/eq/5f F 20..20000 961 steps Main 1 EQ band 5 frequency (Hz) 
/main/1/eq/5q F 0.44..10 181 steps Main 1 EQ band 5 Q 
/main/1/eq/6g F -15..15 301 steps Main 1 EQ band 6 gain (dB) 
/main/1/eq/6f F 20..20000 961 steps Main 1 EQ band 6 frequency (Hz) 
/main/1/eq/6q F 0.44..10 181 steps Main 1 EQ band 6 Q 
/main/1/eq/hg F -15..15 301 steps Main 1 EQ high gain (dB) 
/main/1/eq/hf F 50..20000 833 steps Main 1 EQ high frequency (Hz) 
/main/1/eq/hq F 0.44..10 181 steps Main 1 EQ high Q 
/main/1/eq/heq S  PEQ, SHV, CUT, BW6, BW12, 

BS12, LR12, BW18, BW24, 
BS24, LR24, BW48, LR48 

Main 1 EQ high type 

/main/1/eq/tilt F -6..6 49 steps Main 1 EQ tilt level 
     
/main/1/dyn N   Main 1 dynamic (compressor) node 
/main/1/dyn/on I 0..1  Main 1 compressor switch 
/main/1/dyn/mdl S  COMP, EXP, B160, B560, D241, 

ECL33, 9000C, SBUS, RED3, 
76LA, LA, F670, BLISS, NSTR, 
WAVE, RIDE, 2250, L100, 
CMB36 

Main 1 compressor switch, (see 
Appendix on Compressor plugins for 
parameters details, OSC patterns in 
italic below correspond to COMP) 

/main/1/dyn/mix F 0..100 101 steps Main 1 compressor mix (%) 
/main/1/dyn/gain F -6..12 37 steps Main 1 compressor gain (dB) 
/main/1/dyn/thr37 F -60..0 121 steps Main 1 compressor threshold (dB) 
/main/1/dyn/ratio F 1.1..100  Main 1 compressor ratio 
/main/1/dyn/knee I 0..5  Main 1 compressor knee 
/main/1/dyn/det S  PEAK, RMS Main 1 compressor detect 
/main/1/dyn/att F 0..120 121 steps Main 1 compressor attack (ms) 
/main/1/dyn/hld F 1..200 200 steps Main 1 compressor hold (ms) 
/main/1/dyn/rel F 4..4000 130 steps Main 1 compressor release (ms) 
/main/1/dyn/env S  LIN, LOG Main 1 compressor envelope 
/main/1/dyn/auto I 0..1  Main 1 compressor auto switch 
     
/main/1/dynxo N   Main 1 compressor crossover node 
/main/1/dynxo/depth F 0..20 41 steps Main 1 compressor crossover depth 

(dB) 
/main/1/dynxo/type S  OFF, LO6, LO12, HI6, HI12, PC Main 1 compressor crossover type 
/main/1/dynxo/f F 20..20000 901 steps Main 1 compressor crossover 

frequency (Hz) 
/main/1/dynxo/$solo I 0..1  Main 1 compressor crossover solo 
     
/main/1/dynsc N   Main 1 compressor sidechain node 
/main/1/dynsc/type S  OFF, LP12, HP12, BP Main 1 compressor sidechain type 

 
36 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot 
37 This is for the COMP dyn model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 61 WING remote protocols – V 3.0.6-27 
 
 
 

/main/1/dynsc/f F 20..20000 901 steps Main 1 compressor sidechain 
frequency (Hz) 

/main/1/dynsc/q F 0.44..10 181 steps Main 1 compressor sidechain Q 
/main/1/dynsc/src S  SELF, BUS.1..BUS.16, 

MAIN.1..MAIN.4, 
MTX.1..MTX.8, AUX.1..AUX.8 

Main 1 compressor sidechain source 

/main/1/dynsc/tap S  BUS, DYN, PFL, AFL, EQ, INS2 Main 1 compressor sidechain tap 
/main/1/dynsc/$solo I 0..1  Main 1 compressor sidechain solo 
     
/main/1/preins N   Main 1 pre-insert node 
/main/1/preins/on I 0..1  Main 1 pre-insert switch 
/main/1/preins/ins S  NONE, FX1..FX16 Main 1 pre-insert FX slot 
/main/1/preins/$stat S  -, OK, N/A Main 1 pre-insert status [RO] 
     
/main/1/send N   Main 1 sends node 
/main/1/send/MX<x> N <x>: 1..8  Main 1 matrix <x> sends node 
/main/1/send/MX<x>/on I 0..1  Main 1 mtx on switch 
/main/1/send/MX<x>/lvl F -144..10 -oo..10 in 1024 steps Main 1 mtx fader level (dB) 
/main/1/send/MX<x>/pre I 0..1  Main 1 mtx pre/post switch 
     
/main/1/postins N   Main 1 post insert node 
/main/1/postins/on I 0..1  Main 1 post insert on switch 
/main/1/postins/ins S  NONE, FX1..FX16 Main 1 post insert mode 
/main/1/postins/$stat S  -, OK, N/A Main 1 post insert status [RO] 
     
/main/1/dly N   Main 1 delay node 
/main/1/dly/on I 0..1  Main 1 delay on switch 
/main/1/dly/mode S  M, FT, MS, SMP Meters, feet, milliseconds, samples 
/main/1/dly/dly F 0..150 m / 

0.5..500 ft/ 
0.5..500 ms/ 
16..500 smp 

1501 steps / 
1000 steps / 
4996 steps / 
485 steps 

Main 1 delay (meters, feet, ms, 
samples) 

     
/main/1/tags     
/main/1/$fdr S  80 chars max Main 1 tags38 
/main/1/$mute F -144..10 -oo..10 in 1024 steps Main 1 fader level as affected by dca 

(dB)[RO] 
/main/1/$muteovr I 0..2  Main 1 mute [RO] 
 I 0..1  Main 1 mute override 

  

 
38 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment 



 
 
 
 

©Patrick-Gilles Maillot 62 WING remote protocols – V 3.0.6-27 
 
 
 

Matrix Settings 
Command Type Range Text Description 
/mtx N   Matrix node 
/mtx/1 N 1..8  Matrix 1 node 
/mtx/1/in N   Matrix 1 input node 
/mtx/1/in/set N   Matrix 1 input set node 
/mtx/1/in/set/inv I 0..1  Matrix 1 input phase invert 
/mtx/1/in/set/trim F -18..18 361 steps Matrix 1 input trim 
/mtx/1/in/set/bal F -9..9 181 steps Matrix 1 input balance 
     
/mtx/1/dir N   Matrix 1 direct input signal 
/mtx/1/dir/on I 0..1  Matrix 1 direct in on switch 
/mtx/1/dir/lvl F -144..10 -oo..10 in 1024 steps Matrix 1 direct in fader level (dB) 
/mtx/1/dir/inv I 0..1  Matrix 1 direct in invert 
/mtx/1/dir/in S  OFF, AES, MON.PH, MON.SPK, 

MON.BUS 
Matrix 1 direct in input source 

/mtx/1/col I 1..12  Matrix 1 color 
/mtx/1/name S  16 chars max Matrix 1 name 
/mtx/1/icon I 0..999  Matrix 1 icon 
/mtx/1/led I 0..1  Matrix 1 scribble light 
/mtx/1/$col I 1..12  Matrix 1 color [RO] reflects linked 

source or current strip value 
/mtx/1/$name S  16 chars max Matrix 1 name [RO] reflects linked 

source or current strip value 
/mtx/1/$icon I 0..999  Matrix 1 icon [RO] reflects linked 

source or current strip value 
/mtx/1/busmono I 0..1  Matrix 1 mono switch 
/mtx/1/mute I 0..1  Matrix 1 mute 
/mtx/1/fdr F -144..10 -oo..10 in 1024 steps Matrix 1 fader level (dB) 
/mtx/1/pan F -100..100  201 steps Matrix 1 pan 
/mtx/1/wid F -150..150  61 steps Matrix 1 width (%) 
/mtx/1/$solo I 0..1  Matrix 1 solo switch 
/mtx/1/$sololed I 0..2  Matrix 1 solo LED [RO] 
/mtx/1/mon S  A, B, A+B Matrix 1 monitor mode 
     
/mtx/1/eq N   Matrix 1 EQ node 
/mtx/1/eq/on I 0..1  Matrix 1 EQ on switch 
/mtx/1/eq/mdl S  STD, SOUL, E88, E84, F110, 

PULSAR, PIA 
Matrix 1 EQ model, (see Appendix 
on EQ plugins for parameters 
details, OSC patterns in italic below 
correspond to STD) 

/mtx/1/eq/mix F 0..125 126 steps Matrix 1 EQ mix (%) 
/mtx/1/eq/$solo I 0..1  Matrix 1 EQ solo 
/mtx/1/eq/$solobd I 0..8  Matrix 1 EQ solo band 
/mtx/1/eq/lg39 F -15..15 301 steps Matrix 1 EQ low gain (dB) 
/mtx/1/eq/lf F 20..2000 641 steps Matrix 1 EQ low frequency 
/mtx/1/eq/lq F 0.44..10 181 steps Matrix 1 EQ low Q 
/mtx/1/eq/leq S  PEQ, SHV, CUT, BW6, BW12, 

BS12, LR12, BW18, BW24, BS24, 
LR24, BW48, LR48 

Matrix 1 EQ low type 

 
39 This is for the STD eq model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 63 WING remote protocols – V 3.0.6-27 
 
 
 

/mtx/1/eq/1g F -15..15 301 steps Matrix 1 EQ band 1 gain (dB) 
/mtx/1/eq/1f F 20..20000 961 steps Matrix 1 EQ band 1 frequency (Hz) 
/mtx/1/eq/1q F 0.44..10 181 steps Matrix 1 EQ band 1 Q 
/mtx/1/eq/2g F -15..15 301 steps Matrix 1 EQ band 2 gain (dB) 
/mtx/1/eq/2f F 20..20000 961 steps Matrix 1 EQ band 2 frequency (Hz) 
/mtx/1/eq/2q F 0.44..10 181 steps Matrix 1 EQ band 2 Q 
/mtx/1/eq/3g F -15..15 301 steps Matrix 1 EQ band 3 gain (dB) 
/mtx/1/eq/3f F 20..20000 961 steps Matrix 1 EQ band 3 frequency (Hz) 
/mtx/1/eq/3q F 0.44..10 181 steps Matrix 1 EQ band 3 Q 
/mtx/1/eq/4g F -15..15 301 steps Matrix 1 EQ band 4 gain (dB) 
/mtx/1/eq/4f F 20..20000 961 steps Matrix 1 EQ band 4 frequency (Hz) 
/mtx/1/eq/4q F 0.44..10 181 steps Matrix 1 EQ band 4 Q 
/mtx/1/eq/5g F -15..15 301 steps Matrix 1 EQ band 5 gain (dB) 
/mtx/1/eq/5f F 20..20000 961 steps Matrix 1 EQ band 5 frequency (Hz) 
/mtx/1/eq/5q F 0.44..10 181 steps Matrix 1 EQ band 5 Q 
/mtx/1/eq/6g F -15..15 301 steps Matrix 1 EQ band 6 gain (dB) 
/mtx/1/eq/6f F 20..20000 961 steps Matrix 1 EQ band 6 frequency (Hz) 
/mtx/1/eq/6q F 0.44..10 181 steps Matrix 1 EQ band 6 Q 
/mtx/1/eq/hg F -15..15 301 steps Matrix 1 EQ high gain (dB) 
/mtx/1/eq/hf F 50..20000 833 steps Matrix 1 EQ high frequency (Hz) 
/mtx/1/eq/hq F 0.44..10 181 steps Matrix 1 EQ high Q 
/mtx/1/eq/heq S  PEQ, SHV, CUT, BW6, BW12, 

BS12, LR12, BW18, BW24, BS24, 
LR24, BW48, LR48 

Matrix 1 EQ high type 

/mtx/1/eq/tilt F -6..6 49 steps Matrix 1 EQ tilt level (dB) 
     
/mtx/1/dyn N   Matrix 1 dynamic (compressor) node 
/mtx/1/dyn/on I 0..1  Matrix 1 compressor switch 
/mtx/1/dyn/mdl S  COMP, EXP, B160, B560, D241, 

ECL33, 9000C, SBUS, RED3, 76LA, 
LA, F670, BLISS, NSTR, WAVE, 
RIDE, 2250, L100, CMB40 

Matrix 1 compressor model, (see 
Appendix on Compressor plugins for 
parameters details, OSC patterns in 
italic below correspond to COMP) 

/mtx/1/dyn/mix F 0..100 101 steps Matrix 1 compressor mix (%) 
/mtx/1/dyn/gain F -6..12 37 steps Matrix 1 compressor gain (dB) 
/mtx/1/dyn/thr41 F -60..0 121 steps Matrix 1 compressor threshold (dB) 
/mtx/1/dyn/ratio F 1.1..100  Matrix 1 compressor ratio 
/mtx/1/dyn/knee I 0..5  Matrix 1 compressor knee 
/mtx/1/dyn/det S  PEAK, RMS Matrix 1 compressor detect 
/mtx/1/dyn/att F 0..120 121 steps Matrix 1 compressor attack (ms) 
/mtx/1/dyn/hld F 1..200 200 steps Matrix 1 compressor hold (ms) 
/mtx/1/dyn/rel F 4..4000 130 steps Matrix 1 compressor release (ms) 
/mtx/1/dyn/env S  LIN, LOG Matrix 1 compressor envelope 
/mtx/1/dyn/auto I 0..1  Matrix 1 compressor auto switch 
     
/mtx/1/dynxo N   Matrix 1 compressor crossover node 
/mtx/1/dynxo/depth F 0..20 41 steps Matrix 1 compressor crossover 

depth (dB) 
/mtx/1/dynxo/type S  OFF, LO6, LO12, HI6, HI12, PC Matrix 1 compressor crossover type 

 
40 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot 
41 This is for the COMP dyn model. Can use more parameters depending on model type 



 
 
 
 

©Patrick-Gilles Maillot 64 WING remote protocols – V 3.0.6-27 
 
 
 

/mtx/1/dynxo/f F 20..20000 901 steps Matrix 1 compressor crossover 
frequency (Hz) 

/mtx/1/dynxo/$solo I 0..1  Matrix 1 compressor crossover solo 
     
/mtx/1/dynsc N   Matrix 1 compressor sidechain node 
/mtx/1/dynsc/type S  OFF, LP12, HP12, BP Matrix 1 compressor sidechain type 
/mtx/1/dynsc/f F 20..20000 901 steps Matrix 1 compressor sidechain 

frequency (Hz) 
/mtx/1/dynsc/q F 0.44..10 181 steps Matrix 1 compressor sidechain Q 
/mtx/1/dynsc/src S  SELF, BUS.1..BUS.16, 

MAIN.1..MAIN.4, MTX.1..MTX.8, 
AUX.1..AUX.8 

Matrix 1 compressor sidechain 
source 

/mtx/1/dynsc/tap S  BUS, DYN, PFL, AFL, EQ, INS2 Matrix 1 compressor sidechain tap 
/mtx/1/dynsc/$solo I 0..1  Matrix 1 compressor sidechain solo 
     
/mtx/1/preins N   Matrix 1 pre-insert node 
/mtx/1/preins/on I 0..1  Matrix 1 pre-insert switch 
/mtx/1/preins/ins S  NONE, FX1..FX16 Matrix 1 pre-insert FX slot 
/mtx/1/preins/$stat S  -,OK, N/A Matrix 1 pre-insert status [RO] 
     
/mtx/1/postins N   Matrix 1 post insert node 
/mtx/1/postins/on I 0..1  Matrix 1 post insert on switch 
/mtx/1/postins/ins S  NONE, FX1..FX16 Matrix 1 post insert mode 
/mtx/1/postins/$stat S  -,OK, N/A Matrix 1 post insert status [RO] 
     
/mtx/1/dly N   Matrix 1 delay node 
/mtx/1/dly/on I 0..1  Matrix 1 delay on switch 
/mtx/1/dly/mode S  M, FT, MS, SMP Meters, feet, milliseconds, samples 
/mtx/1/dly/dly F 0..150 m / 

0.5..500 ft/ 
0.5..500 ms/ 
16..500 smp 

1501 steps / 
1000 steps / 
4996 steps / 
485 steps 

Matrix 1 delay (meters, feet, ms, 
samples) 

     
/mtx/1/tags S  80 chars max Matrix 1 tags42 
/mtx/1/$fdr F -144..10 -oo..10 in 1024 steps Matrix 1 fader level as affected by 

dca (dB)[RO] 
/mtx/1/$mute I 0..2  Matrix 1 mute [RO] 
/mtx/1/$muteovr I 0..1  Matrix 1 mute override 

  

 
42 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment 



 
 
 
 

©Patrick-Gilles Maillot 65 WING remote protocols – V 3.0.6-27 
 
 
 

DCA Settings 
Command Type Range Text Description 
/dca N   DCA node 
/dca/1 N 1..16  DCA 1 node 
/dca/1/name S  8 chars max DCA 1 name 
/dca/1/col I 1..12  DCA 1 color 
/dca/1/icon I 0..999  DCA 1 icon 
/dca/1/led I 0..1  DCA 1 scribble light 
/dca/1/mute I 0..1  DCA 1 mute 
/dca/1/fdr F -144..10 -oo..10 in 1024 steps DCA 1 fader (dB) 
/dca/1/$solo I 0..1  DCA 1 solo 
/dca/1/$sololed I 0..1  DCA 1 solo LED [RO] 
/dca/1/mon S  A, B, A+B DCA 1 monitor mode 
 

 

 

 

 

Mutegroup Settings 
Command Type Range Text Description 
/mgrp N   Mutegroup node 
/mgrp/1 N 1..8  Mutegroup 1 node 
/mgrp/1/name S  8 chars max Mutegroup 1 name 
/mgrp/1/mute I 0..1  Mutegroup 1 mute 

  



 
 
 
 

©Patrick-Gilles Maillot 66 WING remote protocols – V 3.0.6-27 
 
 
 

Effects Settings 
Command Type Range Text Description 
/fx N   FX node 
/fx/1 N 1..16  FX 1 node 
/fx/1/mdl S  For /fx/1../fx/8: 

NONE, EXT, HALL, ROOM, 
CHAMBER, PLATE, 
CONCERT, AMBI, V-ROOM, 
V-REV, V-PLATE, GATED, 
REVERSE, DEL/REV, 
SHIMMER, SPRING, 
DIMCRS, CHORUS, 
FLANGER, ST-DL, TAP-DL, 
TAPE-DL, OILCAN, BBD-DL, 
PITCH, D-PITCH, VSS3, 
BPLATE, GEQ, PIA, DOUBLE, 
PCORR, LIMITER, DE-S2, 
ENHANCE, EXCITER, P-BASS, 
ROTARY, PHASER, PANNER, 
TAPE, MOOD, SUB, 
RACKAMP, UKROCK, 
ANGEL, JAZZC, DELUXE, 
BODY, SOUL, E88, E84, 
F110, PULSAR, MACH4, C5-
CMB, SUB-M, V-IMG, 
SPKMAN, DEQ3, *EVEN*, 
*SOUL*, *VINTAGE*, 
*BUS*, *MASTER* 
 
For /fx/9../fx/16: 
NONE, EXT, GEQ, PIA, 
DOUBLE, PCORR, LIMITER, 
DE-S2, ENHANCE, EXCITER, 
P-BASS, ROTARY, PHASER, 
PANNER, TAPE, MOOD, 
SUB, RACKAMP, UKROCK, 
ANGEL, JAZZC, DELUXE, 
BODY, SOUL, E88, E84, 
F110, PULSAR, MACH4, C5-
CMB, SUB-M, V-IMG, 
SPKMAN, DEQ3, *EVEN*, 
*SOUL*, *VINTAGE*, 
*BUS*, *MASTER* 

FX 1 model (see Appendix for details, 
graphics and parameter values) 

/fx/1/fxmix F 0..100 101 steps FX 1 mix % (depends on FX) 
/fx/1/$esrc I 0..400  FX 1 source [RO] 
/fx/1/$emode S  M, ST, M/S FX 1 mode [RO] 
/fx/1/$a_chn I 0..76  FX 1 channel assigned to it [RO] 
/fx/1/$a_pos I 0..1  FX 1 channel insert (0=pre, 1=post) [RO] 
/fx/1/…  /fx/1/… contains up to 4043 parameters that depend on the selected model (/fx/1/mdl), as 

listed in the Appendix section.  
For the current version of FW, the highest parameter number used is 33 

 
43 1..40 are for FX parameters, 41 is for FX Mix 



 
 
 
 

©Patrick-Gilles Maillot 67 WING remote protocols – V 3.0.6-27 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 68 WING remote protocols – V 3.0.6-27 
 
 
 

Cards Settings 
Command Type Range Text Description 
/cards N   Cards node 
/cards/$type S  NONE, WLIVE, 

WDANTE 
Cards type [RO] 

/cards/$ver S  32 chars max Cards version [RO] 
     
/cards/wlive N   Cards W-Live node 
/cards/wlive/sdlink S  IND, PAR Cards W-Live SD parallel mode 
/cards/wlive/$actlink S  IND, PAR Cards W-Live ACT link [RO] 
/cards/wlive/$battstate S  NONE, GOOD, LOW Cards W-Live battery status [RO] 
/cards/wlive/autoin S  OFF, 1, 2 Cards W-Live auto input 
/cards/wlive/meters I 0..1  Cards show meters 
/cards/wlive/auto_stop S  KEEP, MAIN, ALT Cards W-Live settings when Stop 
/cards/wlive/auto_play S  KEEP, MAIN, ALT Cards W-Live settings when Play 
/cards/wlive/auto_rec S  KEEP, MAIN, ALT Cards W-Live settings when Rec 
     
/cards/wlive/1 N 1..2  Cards W-Live 1 node 
/cards/wlive/1/$ctl N   Cards W-Live 1 ctl node 
/cards/wlive/1/$ctl/control S  STOP, PPAUSE, PLAY, 

REC 
Cards W-Live 1 control 

/cards/wlive/1/$ctl/opensession I 0..100  Cards W-Live 1 open session # 
/cards/wlive/1/$ctl/editmarker I 0..100  Cards W-Live 1 edit marker (set 

marker to current PAUSE time or last 
start PLAY time) 

/cards/wlive/1/$ctl/gotomarker I 0..101  Cards W-Live 1 goto marker # 
101 is used to validate stime data 

/cards/wlive/1/$ctl/deletemarker I 0..100  Cards W-Live 1 delete marker # 
/cards/wlive/1/$ctl/deletesession I 0..100  Cards W-Live 1 delete session # 
/cards/wlive/1/$ctl/stime F 0..36000000 36000000 steps Cards W-Live 1 time (ms). Must be 

followed by a $ctl/gotomarker 
101 to be taken into account 

/cards/wlive/1/$ctl/namesession S  19 chars max Cards W-Live 1 name session. Works 
only in STOP mode. 

/cards/wlive/1/$ctl/setmarker I 0..1  Cards W-Live 1 set marker 
/cards/wlive/1/$ctl/formatsdcard I 0..1  Cards W-Live 1 format SD card 
     
/cards/wlive/1/cfg N   Cards W-Live 1 cfg node 
/cards/wlive/1/cfg/rectracks S  32, 16, 8 Cards W-Live 1 rec tracks 
/cards/wlive/1/cfg/playmode S  PLAY, A->B, LOOP Cards W-Live 1 play mode 
     
/cards/wlive/1/$stat N   Cards W-Live 1 status node 
/cards/wlive/1/$stat/state S  STOP, PPAUSE, PLAY, 

REC 
Cards W-Live 1 state [RO] 

/cards/wlive/1/$stat/etime F 0..36000000 36000000 steps Cards W-Live 1 etime (current time) 
/cards/wlive/1/$stat/sdfree F 0..36000000 36000000 steps Cards W-Live 1 SD free time 
/cards/wlive/1/$stat/sdsize I 0..1024  Cards W-Live 1 SD size (Gb) [RO] 
/cards/wlive/1/$stat/sdstate S  NONE, READY, 

PROTECT, ERASE, 
ERROR 

Cards W-Live 1 SD state [RO] 



 
 
 
 

©Patrick-Gilles Maillot 69 WING remote protocols – V 3.0.6-27 
 
 
 

/cards/wlive/1/$stat/sessionlist S  Ex: 2020-04-04 
10:16:36, 2020-01-27 
19:59:02, … 

Cards W-Live 1 list of session 
recorded date and time 

/cards/wlive/1/$stat/markerlist S   Cards W-Live 1 current marker time 
/cards/wlive/1/$stat/snamelist S  Ex: CC Hard Candy Fi, 

CC Mr Jones 
Cards W-Live 1 session names list44 
[RO] 

/cards/wlive/1/$stat/sessions I 0..100  Cards W-Live 1 total number of 
sessions [RO] 

/cards/wlive/1/$stat/markers I 0..100  Cards W-Live 1 total number of 
markers [RO] 

/cards/wlive/1/$stat/sessionlen F 0..36000000 36000000 steps Cards W-Live 1 session length [RO] 
/cards/wlive/1/$stat/sessionpos I 0..100  Cards W-Live 1 session position 
/cards/wlive/1/$stat/markerpos I 0..100  Cards W-Live 1 marker position 
/cards/wlive/1/$stat/tracks S  32, 16, 8 Cards W-Live 1 track number in 

current session [RO] 
/cards/wlive/1/$stat/rate S  44.1, 48 Cards W-Live 1 sample rate [RO] 
/cards/wlive/1/$stat/linkedpos I 0..100  Cards W-Live session link position in 

the other card (only when a linked 
session is active)45 

/cards/wlive/1/$stat/start F 0..36000000 36000000 steps Cards W-Live 1 start 
/cards/wlive/1/$stat/stop F 0..36000000 36000000 steps Cards W-Live 1 stop 
/cards/wlive/1/$stat/errormessage S  32 chars max Cards W-Live 1 error message [RO] 
/cards/wlive/1/$stat/errorcode I 0..34  Cards W-Live 1 error code [RO] 

  

 
44 Only the first name of the list is returned by std OSC command. You must use the node definition command (OSC or native 
interface) to get the full contents. 
45 There can be a maximum of 100 sessions per card 



 
 
 
 

©Patrick-Gilles Maillot 70 WING remote protocols – V 3.0.6-27 
 
 
 

USB Player Settings 
Command Type Range Text Description 
/play46 N   USB Player node 
/play/$songs S  List of strings List of songs in the current playlist 

[RO]47 
/play/$actlist S  256 chars max Path to USB files [RO] 
/play/$actidx I  1..n Current active entry in the playlist 
/play/$actionidx I  1..n [RO] 
/play/$playfile S  256 chars max Full path to a song to play using 

/play/$action ,s PLAYFILE 
/play/$action S  IDLE, STOP, PLAY, PAUSE, NEXT, 

PREV, PLAYFILE 
USB Player action 

/play/$actstate S  STOP, PLAY, PAUSE, ERROR USB Player active state [RO] 
/play/$actfile S  256 chars max USB Player active file [RO] 
/play/$song S  64 chars max USB Player song [RO] 
/play/$album S  64 chars max USB Player album [RO] 
/play/$artist S  64 chars max USB Player artist [RO] 
/play/$pos F 0..35999 36000 steps USB Player position 
/play/$total F 0..35999 36000 steps USB Player total time [RO] 
/play/$resolution S  16, 24 USB Player resolution [RO] 
/play/$channels S  1, 2, 3, 4 USB Player channels [RO] 
/play/$rate S  44.1, 48 USB Player sample rate [RO] 
/play/$format S  WAV, MP3, FLAC USB Player format [RO] 
/play/repeat I 0..1  USB Player repeat 
     
/rec N   USB Recorder node 
/rec/$actstate S  STOP, REC, PAUSE, ERROR USB Recorder active state 
/rec/$actfile S   USB Recorder active filename 
/rec/$action S  STOP, REC, PAUSE, NEWFILE USB Recorder action 
/rec/path S   USB Recorder filename path 
/rec/resolution S  16, 24 USB Recorder resolution 
/rec/channels S  2, 4 USB Recorder channels 
/rec/$time F   USB Recorder time 
 
 
 
 
 
  

 
46 These commands are valid only when a playlist is active, and opened. 
47 Will provide only the first element of the list. Use the node level request to get the full list of songs in the playlist, for ex: 
/play~~~,s~~?~~~ 



 
 
 
 

©Patrick-Gilles Maillot 71 WING remote protocols – V 3.0.6-27 
 
 
 

WING ce_data OSC commands list 
Control Settings, listed below, form a large set of OSC commands and parameters, all48 under the ce_data 
section in JSON snapshot files. 
 

Control Settings 
Command Type Range Text Description 
/$ctl N   Control node 
/$ctl/$stat N   Control status node 
/$ctl/$stat/selidx I 1..76  Channel strip selected ID49 
/$ctl/$stat/pageidx I 0..30  Channel page ID 
/$ctl/$stat/bandidx I 1..8  Channel EQ band ID 
/$ctl/$stat/sof I -1..76  Sends on fader (SoF) status [-1 is the 

currently selected channel] 
/$ctl/$stat/cnslock S  19 chars when locked 

0 chars if unlocked 
Console lock [RO] –  
The console lock string is made of 19 
characters 0 or 1 depending on which 
screen buttons were pressed to lock the 
console. Characters 1 to 7 map to the 
buttons on the screen left, starting with 
HOME [ASSIGN is char #7], and characters 
18 & 19 map to the buttons on the right 
side of the screen. Other characters are 
always 0.  
Ex: 1001001000000000000 - buttons 
HOME, ROUTING and ASSIGN have been 
used to lock the desk. 

/$ctl/$stat/sendpage S  BUS, MATRIX Bus or matrix Sends being displayed on 
screen 

/$ctl/$stat/chsetuptab I 1..4 1: OVERVIEW 
2: ICON/COLOR 
3: NAME 
4: TAGS 

HOME page tab being displayed on 
screen 

     
/$ctl/cfg N   Control config node 
/$ctl/cfg/lights N   Lights node 
/$ctl/cfg/lights/btns I 0..100  Buttons backlight intensity 
/$ctl/cfg/lights/leds I 5..100  Buttons/LED light intensity 
/$ctl/cfg/lights/meters I 0..100  Meters intensity 
/$ctl/cfg/lights/rgbleds I 0..100  Color LED intensity (scribble lights) 
/$ctl/cfg/lights/chlcds I 5..100  Channel LCD intensity (scribble 

backlight) 
/$ctl/cfg/lights/chlcdctr I 0..100  Channel LCD contrast (scribble contrast) 
/$ctl/cfg/lights/chedit I 5..100  Channel strip intensity 
/$ctl/cfg/lights/main I 5..100  Touchscreen intensity 
/$ctl/cfg/lights/glow I 0..100  Under console light intensity 
/$ctl/cfg/lights/patch I 0..100  Patch panel light intensity 
/$ctl/cfg/lights/lamp I 0..100  Lamp light intensity 

 
48 Except for /$ctl/$stat, and parameters /$ctl/cfg/$noautosave and /$ctl/cfg/savenow 
49 The get command reports values between 0 and 75, but index 1 to 76 should be used when setting values. 



 
 
 
 

©Patrick-Gilles Maillot 72 WING remote protocols – V 3.0.6-27 
 
 
 

     
/$ctl/cfg/rta50 N   RTA node (view options) 
/$ctl/cfg/rta/homedisp S  OFF, 1/3, FULL RTA home size/mode 
/$ctl/cfg/rta/homecol S  RD25, RD50, RD75, AM25, 

AM50, AM75, BL25, BL50, 
BL75 

RTA home color 

/$ctl/cfg/rta/hometap S  IN, EQ, POST RTA home tap 
/$ctl/cfg/rta/eqdisp S  Off, 1/4, 1/3, 1/2, OVL/3, 

OVL 
RTA EQ size/mode 

/$ctl/cfg/rta/eqcol S  RD25, RD50, RD75, AM25, 
AM50, AM75, BL25, BL50, 
BL75 

RTA EQ color 

/$ctl/cfg/rta/cheqtap S  PRE, POST RTA EQ tap 
/$ctl/cfg/rta/chflttap S  PRE, POST RTA Channel filter tap 
/$globals/muteovr I 0..1  Chan strip mute overrides mute group 
/$ctl/cfg/soloexcl I 0..1  Solo exclusive 
/$ctl/cfg/selfsolo I 0..1  Select follows solo 
/$ctl/cfg/solofsel I 0..1  Solo follows select 
/$ctl/cfg/sof2solo I 0..1  Bus SOF activates solo 
/$ctl/cfg/layerlinkl I 0..1  User Layer link left/center 
/$ctl/cfg/layerlinkr I 0..1  User Layer link center/right 
/$ctl/cfg/autoview I 0..1  Screen follows channel strip 
/$ctl/cfg/csctouch I 0..1  Channel strip touch select 
/$ctl/cfg/autosel_L I 0..1  Channel auto select left 
/$ctl/cfg/autosel_C I 0..1  Channel auto select center 
/$ctl/cfg/autosel_R I 0..1  Channel auto select right 
/$ctl/cgf/autosel_CMPCT I 0..1  Compact Layer 
/$ctl/cgf/autosel_RCK I 0..1  Rack Layer 
/$ctl/cgf/autosel_EXT I 0..1  Ext Layer51 
/$ctl/cgf/autosel_VRT I 0..1  Virtual Layer 
/$ctl/cfg/fdrbanking I 0..1  Full fader paging 
/$ctl/cfg/soffdr S  L/C, ALL SOF Faders (L/C: left/center) 
/$ctl/cfg/sofbutton S  AUTO, ON, FLASH SOF button mode 
/$ctl/cfg/sofframe I 0..1  SOF frame 
/$ctl/cfg/sofmode I 0..1  Alternative SOF mode 
/$ctl/cfg/seldblclick S  OFF, HOME, BUSFX Where Double click select takes you 
/$ctl/cfg/usrmode S  BUS, CC Use F1-F3 as BUS or Custom Control 
/$ctl/cfg/mfdr S  OFF, MAIN.1, .., MAIN.4, 

MTX.1,.., MTX.8, DCA.1, .., 
DCA.16 

What functionality is assigned to the 
Compact model fader 13/Main 

/$ctl/cfg/cscmode S  BUS, DCA, MAIN, USER Operation mode for the 16 buttons of 
Compact model 

/$ctl/cfg/rackmode S  CH, MGRP, CC, USB, SD-A, 
SD-B 

Operation mode for the 4 CC section on 
Rack model 

/$ctl/cfg/busspill I 0..1  Compact model only:  
1: push->bus spill, hold->bus send 
0: push->bus send, hold->bus spill 

/$ctl/cfg/mainspill I 0..1  Compact model only:  
1: push->main spill, hold->main send 
0: push->main send, hold->main spill 

 
50 See also /cfg/rta commands 
51 EXT: Reserved in the present FW release 



 
 
 
 

©Patrick-Gilles Maillot 73 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/cfg/mtxspill I 0..1  Compact model only:  
1: push->mtx spill, hold->mtx send 
0: push->mtx send, hold->mtx spill 

/$ctl/cfg/dcaspill I 0..1  1: push->dca spill, hold->dca [un]select 
0: push->dca show, hold->dca [un]select 

/$ctl/cfg/dcacc I 0..1  16 User Custom Control buttons on DCA 
buttons activated [Compact only] 

/$ctl/cfg/showfdr I 0..1  Temporarily show fader value on 
respective scribble when moving faders  

     
/$ctl/layer N   Layer node 
/$ctl/layer/L N   Left WING [only] layer node 
/$ctl/layer/L/sel I 1..22 1..7 settable52  

8..9 no-op 
10..22 fixed/pre-assigned 

Left WING [only] layer select53 
 1: Ch 1..Ch 12 
 2: Ch 13..Ch 24 
 3: Ch 25..Ch 36 
 4: Ch 36..Ch 40 / Aux 1..Aux 8 
 5: Bus 1..Bus 12 
 6: User 1 
 7: User 2 
 8: No-op 
 9: No-op 
10: Ch 1..Ch 8 
11: Ch 9..Ch 16 
12: Ch 17..Ch 24 
13: Ch 25..Ch 32 
14: Ch 33..Ch 40 
15: Aux 1..Aux 8 
16: Bus 1..Bus 8 
17: Bus 9..Bus 16 
18: Main 1..Main 4 
19: Matrix 1..Matrix 8 
20: DCA 1..DCA 8 
21: DCA 9..DCA 16 
22: spilled layer 

/$ctl/layer/L/spidx I 0..63  Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 
33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 
63: SOF 

     
/$ctl/layer/L/1 N 1..7  Left WING [only] layer 1 node (see 

above) 
/$ctl/layer/L/1/ofs I 0..12  Left WING [only] layer 1 offset (from <4 

or4> keys for ex.) 
/$ctl/layer/L/1/name S  10 chars max 

CH1-12, CH13-24, CH25-36, 
CH37-AUX, BUSES, USER1, 
USER2 

Left WING [only] layer 1 name 

     

 
52 Full size console has 7 layers whereas Compact console has 9 
53 Full-size console layers names 



 
 
 
 

©Patrick-Gilles Maillot 74 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/layer/L/1/1 N 1..24  Left WING [only] layer 1, node 1 
/$ctl/layer/L/1/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Left WING [only]  layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/L/1/1/i I 1..127  Left WING [only] layer 1, node 1 index 
/$ctl/layer/L/1/1/dst I 1..28  Left WING [only] layer 1, node 1 

destination index (used for type SEND) 
/$ctl/layer/L/1/1/val I 0..127  Left WING [only]  layer 1, node 1 value 

(when type MIDI) 
     
/$ctl/layer/L/$spill    Left WING [only] $spill 
/$ctl/layer/L/$spill/ofs I 0..64  Left WING [only] $spill offset 
/$ctl/layer/L/$spill/name S  10 chars max Left WING [only] layer $spill name54 
     
/$ctl/layer/L/$spill/1 N 1..76  Left WING [only] layer $spill, node 1 
/$ctl/layer/L/$spill/1/type S  OOFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Left WING [only]  layer $spill, node 1 
type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/L/$spill1/i I 1..127  Left WING [only] layer $spill, node 1 
index 

/$ctl/layer/L/$spill/1/dst I 1..28  Left WING [only] layer $spill, node 1 
destination index (used for type SEND) 

/$ctl/layer/L/$spill/1/val I 0..127  Left WING [only]  layer $spill, node 1 
value (when type MIDI) 

     
/$ctl/layer/C N   Center WING [only] layer node 
/$ctl/layer/C/sel I 1..22 1..6 settable  

7..9 No-op 
10..22 fixed/pre-assigned 

Center WING [only] layer select55: 
 1: DCA 
 2: Main/Matrix 
 3: Aux/FX 
 4: Bus/Master 
 5: User 1 
 6: User 2  
 7: No-op 
 8: No-op 
 9: No-op 
10: Ch 1..Ch 8 
11: Ch 9..Ch 16 
12: Ch 17..Ch 24 
13: Ch 25..Ch 32 
14: Ch 33..Ch 40 
15: Aux 1..Aux 8 
16: Bus 1..Bus 8 
17: Bus 9..Bus 16 
18: Main 1..Main 4 
19: Matrix 1..Matrix 8 
20: DCA 1..DCA 8 
21: DCA 9..DCA 16 
22: spilled layer 

/$ctl/layer/C/spidx I 0..62  Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 

 
54 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL 
55 Full-size console layers names 



 
 
 
 

©Patrick-Gilles Maillot 75 WING remote protocols – V 3.0.6-27 
 
 
 

33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 
63: SOF 

     
/$ctl/layer/C/1 N 1..9  Center WING [only] layer 1 node (see 

above) 
/$ctl/layer/C/1/ofs I 0..8  Center WING [only] layer 1 offset 
/$ctl/layer/C/1/name S  10 chars max 

DCA, MAIN, AUX, BUSES, 
USER1, USER2 

Center WING [only] layer 1 name 

     
/$ctl/layer/C/1/1 N 1..16  Center WING [only] layer 1, node 1 
/$ctl/layer/C/1/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Center WING [only] layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/C/1/1/i I 1..127  Center WING [only] layer 1, node 1 
index 

/$ctl/layer/C/1/1/dst I 1..28  Center WING [only] layer 1, node 1 
destination index (used for type SEND) 

/$ctl/layer/C/1/1/val I 0..127  Center WING [only]  layer 1, node 1 
value (when type MIDI) 

     
/$ctl/layer/C/$spill    Center WING [only] $spill 
/$ctl/layer/C/$spill/ofs I 0..64  Center WING [only] $spill offset 
/$ctl/layer/C/$spill/name S  10 chars max Center WING [only] layer $spill name56 
     
/$ctl/layer/C/$spill/1 N 1..76  Center WING [only] layer $spill, node 1 
/$ctl/layer/C/$spill/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Center WING [only]  layer $spill, node 1 
type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/C/$spill1/i I 1..127  Center WING [only] layer $spill, node 1 
index 

/$ctl/layer/C/$spill/1/dst I 1..28  Center WING [only] layer $spill, node 1 
destination index (used for type SEND) 

/$ctl/layer/C/$spill/1/val I 0..127  Center WING [only]  layer $spill, node 1 
value (when type MIDI) 

     
/$ctl/layer/R N   Right WING [only] layer node 
/$ctl/layer/R/sel I 1..22 1..7 settable  

8, 9 No-op 
10..22 fixed/pre-assigned 
 
 

Right WING [only] layer select57:  
 1: Main 
 2: DCA 
 3: Channels 
 4: Aux/FX 
 5: Bus/Master 
 6: User 1 
 7: User 2 
 8: No-op 
 9: No-op 

 
56 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL 
57 Full-size console layers names 



 
 
 
 

©Patrick-Gilles Maillot 76 WING remote protocols – V 3.0.6-27 
 
 
 

10: Ch 1..Ch 4 
11: Ch 9..Ch 12 
12: Ch 17..Ch 20 
13: Ch 25..Ch 28 
14: Ch 33..Ch 36 
15: Aux 1..Aux 4 
16: Bus 1..Bus 4 
17: Bus 9..Bus 12 
18: Main 1..Main 4 
19: Matrix 1..Matrix 4 
20: DCA 1..DCA 4 
21: DCA 9..DCA 12 
22: spilled layer 

/$ctl/layer/R/spidx I 0..63    Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 
33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 
63: SOF 

     
/$ctl/layer/R/1 N 1..9  Right WING [only] layer 1 node (see 

above) 
/$ctl/layer/R/1/ofs I 0..15  Right WING [only] layer 1 offset 
/$ctl/layer/R/1/name S  MAIN, DCA, CH1-40, AUX, 

BUSES, USER1, USER2 
Right WING [only] layer 1 name 

     
/$ctl/layer/R/1/1 N 1..16 

(40 for… 
/R/3…)  

 Right WING [only] layer 1, node 1.  
16 nodes except for type CH1-40: 40 nodes 

/$ctl/layer/R/1/1/type S  OFF, CH, BUS, DCA, MIDI, 
SEND, FX, SENDS 

Right WING [only] layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/R/1/1/i I 0..127  Right WING [only] layer 1, node 1 index 
/$ctl/layer/R/1/1/dst I 1..28  Right WING [only] layer 1, node 1 

destination index (used for type SEND) 
/$ctl/layer/R/1/1/val I 0..127  Right WING [only] layer 1, node 1 value 

(when type MIDI) 
     
/$ctl/layer/R/$spill    Right WING [only] $spill 
/$ctl/layer/R/$spill/ofs I 0..64  Right WING [only] $spill offset 
/$ctl/layer/R/$spill/name S  10 chars max Right WING [only] layer $spill name58 
     
/$ctl/layer/R/$spill/1 N 1..76  Right WING [only] layer $spill, node 1 
/$ctl/layer/R/$spill/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Right WING [only]  layer $spill, node 1 
type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/R/$spill1/i I 1..127  Right WING [only] layer $spill, node 1 
index 

 
58 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL 



 
 
 
 

©Patrick-Gilles Maillot 77 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/layer/R/$spill/1/dst I 1..28  Right WING [only] layer $spill, node 1 
destination index (used for type SEND) 

/$ctl/layer/R/$spill/1/val I 0..127  Right WING [only]  layer $spill, node 1 
value (when type MIDI) 

     
/$ctl/layer/CMPCT     
/$ctl/layer/CMPCT/sel I 1..22 1..7 settable  

8..22 [TBV] 
 
 

Compact [only] layer select59 
 1: Ch 1..Ch 12 
 2: Ch 13..Ch 24 
 3: Ch 25..Ch 36 
 4: Ch 36..Ch 40 / Aux 1..Aux 8 
 5: Bus 1..Bus 12 
 6: User 1 
 7: User 2 
 8..21: [TBV] 
22: spilled layer 

/$ctl/layer/CMPCT/spidx I 0..63    Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 
33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 
63: SOF 

     
/$ctl/layer/CMPCT/1 N 1..9  Compact [only] layer 1 node (see above) 
/$ctl/layer/CMPCT/1/ofs I 0..12  Compact [only] layer 1 offset 
/$ctl/layer/CMPCT/1/name S  10 chars max 

CH1-12, CH13-24, CH25-36, 
CH37-AUX, BUSES, … [TBV] 

Compact [only] layer 1 name 

     
/$ctl/layer/CMPCT/1/1 N 1..24  Compact [only] layer 1, node 1 
/$ctl/layer/CMPCT/1/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Compact [only]  layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/CMPCT/1/1/i I 1..127  Compact [only] layer 1, node 1 index 
/$ctl/layer/CMPCT/1/1/dst I 1..28  Compact [only] layer 1, node 1 

destination index (used for type SEND) 
/$ctl/layer/CMPCT/1/1/val I 0..127  Compact [only]  layer 1, node 1 value 

(when type MIDI) 
     
/$ctl/layer/CMPCT/$spill    Compact WING [only] $spill 
/$ctl/layer/CMPCT/$spill/ofs I 0..64  Compact WING [only] $spill offset 
/$ctl/layer/CMPCT/$spill/name S  10 chars max Compact WING [only] layer $spill 

name60 
     
/$ctl/layer/CMPCT/$spill/1 N 1..76  Compact WING [only] layer $spill, node 

1 
/$ctl/layer/CMPCT/$spill/1/typ
e 

S  OFF, CH, BUS, DCA, MIDI, 
SEND, FX, SENDS 

Compact WING [only]  layer $spill, node 
1 type 
(OSC patterns in italic below correspond 

 
59 Compact console layers names 
60 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL 



 
 
 
 

©Patrick-Gilles Maillot 78 WING remote protocols – V 3.0.6-27 
 
 
 

to MIDI type) 
/$ctl/layer/CMPCT/$spill1/i I 1..127  Compact WING [only] layer $spill, node 

1 index 
/$ctl/layer/CMPCT/$spill/1/dst I 1..28  Compact WING [only] layer $spill, node 

1 destination index (used for type SEND) 
/$ctl/layer/CMPCT/$spill/1/val I 0..127  Compact WING [only]  layer $spill, node 

1 value (when type MIDI) 
     
/$ctl/layer/RCK     
/$ctl/layer/RCK/sel I 1..22 1..7 settable  

8..22 [TBV] 
 
 

Rack [only] layer select61 
 1: Ch 1..Ch 12 
 2: Ch 13..Ch 24 
 3: Ch 25..Ch 36 
 4: Ch 36..Ch 40 / Aux 1..Aux 8 
 5: Bus 1..Bus 12 
 6: User 1 
 7: User 2 
 8..21: [TBV] 
22: spilled layer 

/$ctl/layer/RCK/spidx I 0..63    Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 
33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 
63: SOF 

     
/$ctl/layer/RCK/1 N 1..5  Rack [only] layer 1 node (see above) 
/$ctl/layer/RCK/1/ofs I 0..36  Rack [only] layer 1 offset 
/$ctl/layer/RCK/1/name S  10 chars max 

CH1-12, CH13-24, CH25-36, 
CH37-AUX, BUSES, … [TBV] 

Rack [only] layer 1 name 

     
/$ctl/layer/RCK/1/1 N 1..40  Rack [only] layer 1, node 1 
/$ctl/layer/RCK/1/1/type S  OOFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Rack [only]  layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/RCK/1/1/i I 1..127  Rack [only] layer 1, node 1 index 
/$ctl/layer/RCK/1/1/dst I 1..28  Rack [only] layer 1, node 1 destination 

index (used for type SEND) 
/$ctl/layer/RCK/1/1/val I 0..127  Rack [only]  layer 1, node 1 value (when 

type MIDI) 
     
/$ctl/layer/RCK/$spill    Rack WING [only] $spill 
/$ctl/layer/RCK/$spill/ofs I 0..64  Rack WING [only] $spill offset 
/$ctl/layer/RCK/$spill/name S  10 chars max Rack WING [only] layer $spill name62 
     
/$ctl/layer/RCK/$spill/1 N 1..76  Rack WING [only] layer $spill, node 1 

 
61 Rack console layers names 
62 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL 



 
 
 
 

©Patrick-Gilles Maillot 79 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/layer/RCK/$spill/1/type S  OFF, CH, BUS, DCA, MIDI, 
SEND, FX, SENDS 

Rack WING [only]  layer $spill, node 1 
type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/RCK/$spill1/i I 1..127  Rack WING [only] layer $spill, node 1 
index 

/$ctl/layer/RCK/$spill/1/dst I 1..28  Rack WING [only] layer $spill, node 1 
destination index (used for type SEND) 

/$ctl/layer/RCK/$spill/1/val I 0..127  Rack WING [only]  layer $spill, node 1 
value (when type MIDI) 

     
/$ctl/layer/EXT     
/$ctl/layer/EXT/sel I 1..22 1..7 settable  

8..22 [TBV] 
 
 

Extern [only] layer select63 
 1: Ch 1..Ch 12 
 2: Ch 13..Ch 24 
 3: Ch 25..Ch 36 
 4: Ch 36..Ch 40 / Aux 1..Aux 8 
 5: Bus 1..Bus 12 
 6: User 1 
 7: User 2 
 8..21: [TBV] 
22: spilled layer 

/$ctl/layer/EXT/spidx I 0..62    Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 
33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 

     
/$ctl/layer/EXT/1 N 1..8  Extern [only] layer 1 node (see above) 
/$ctl/layer/EXT/1/ofs I 0..8  Extern [only] layer 1 offset 
/$ctl/layer/EXT/1/name S  10 chars max 

… [TBV] 
Extern [only] layer 1 name 

     
/$ctl/layer/EXT/1/1 N 1..16  Extern [only] layer 1, node 1 
/$ctl/layer/EXT/1/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Extern [only]  layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/EXT/1/1/i I 1..127  Extern [only] layer 1, node 1 index 
/$ctl/layer/EXT/1/1/dst I 1..28  Extern [only] layer 1, node 1 destination 

index (used for type SEND) 
/$ctl/layer/EXT/1/1/val I 0..127  Extern [only]  layer 1, node 1 value 

(when type MIDI) 
     
/$ctl/layer/EXT/$spill    Extern WING [only] $spill 
/$ctl/layer/EXT/$spill/ofs I 0..64  Extern WING [only] $spill offset 
/$ctl/layer/EXT/$spill/name S  10 chars max Extern WING [only] layer $spill name64 
     
/$ctl/layer/EXT/$spill/1 N 1..76  Extern WING [only] layer $spill, node 1 

 
63 Ext console layers names [TBV] 
64 Can be set, but will likely be replaced by default names from console layer changes 



 
 
 
 

©Patrick-Gilles Maillot 80 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/layer/EXT/$spill/1/type S  OOFF, CH, BUS, DCA, MIDI, 
SEND, FX, SENDS 

Extern WING [only]  layer $spill, node 1 
type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/EXT/$spill1/i I 1..127  Extern WING [only] layer $spill, node 1 
index 

/$ctl/layer/EXT/$spill/1/dst I 1..28  Extern WING [only] layer $spill, node 1 
destination index (used for type SEND) 

/$ctl/layer/EXT/$spill/1/val I 0..127  Extern WING [only]  layer $spill, node 1 
value (when type MIDI) 

     
/$ctl/layer/VRT     
/$ctl/layer/VRT/sel I 1..22 1..7 settable  

8..22 [TBV] 
 
 

Virtual [only] layer select65 
 1: Ch 1..Ch 12 
 2: Ch 13..Ch 24 
 3: Ch 25..Ch 36 
 4: Ch 36..Ch 40 / Aux 1..Aux 8 
 5: Bus 1..Bus 12 
 6: User 1 
 7: User 2 
 8..21: [TBV] 
22: spilled layer 

/$ctl/layer/VRT/spidx I 0..62    Spilled group  
 0: OFF 
 1..16: DCA 1..16 
17-32: FX 1..16 
33-48: BUS 1..16 [TBV] 
49..56: MTX 1..16 [TBV] 
57..60: MAIN 1..4 [TBV] 
61: AUTOX 
62: AUTOY 

     
/$ctl/layer/VRT/1 N 1..8  Virtual [only] layer 1 node (see above) 
/$ctl/layer/VRT/1/ofs I 0..8  Virtual [only] layer 1 offset 
/$ctl/layer/VRT/1/name S  10 chars max 

… [TBV] 
Virtual [only] layer 1 name 

     
/$ctl/layer/VRT/1/1 N 1..16  Virtual [only] layer 1, node 1 
/$ctl/layer/VRT/1/1/type S  OFF, CH, BUS, DCA, MIDI, 

SEND, FX, SENDS 
Virtual [only]  layer 1, node 1 type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/VRT/1/1/i I 1..127  Virtual [only] layer 1, node 1 index 
/$ctl/layer/VRT/1/1/dst I 1..28  Virtual [only] layer 1, node 1 destination 

index (used for type SEND) 
/$ctl/layer/VRT/1/1/val I 0..127  Virtual [only]  layer 1, node 1 value 

(when type MIDI) 
     
/$ctl/layer/VRT/$spill    Virtual WING [only] $spill 
/$ctl/layer/VRT/$spill/ofs I 0..64  Virtual WING [only] $spill offset 
/$ctl/layer/VRT/$spill/name S  10 chars max Virtual WING [only] layer $spill name66 
     
/$ctl/layer/VRT/$spill/1 N 1..76  Virtual WING [only] layer $spill, node 1 

 
65 VRT console layers names [TBV] 
66 Can be set, but will likely be replaced by default names from console layer changes 



 
 
 
 

©Patrick-Gilles Maillot 81 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/layer/VRT/$spill/1/type S  OFF, CH, BUS, DCA, MIDI, 
SEND, FX, SENDS 

Virtual WING [only]  layer $spill, node 1 
type 
(OSC patterns in italic below correspond 
to MIDI type) 

/$ctl/layer/VRT/$spill1/i I 1..127  Virtual WING [only] layer $spill, node 1 
index 

/$ctl/layer/VRT/$spill/1/dst I 1..28  Virtual WING [only] layer $spill, node 1 
destination index (used for type SEND) 

/$ctl/layer/VRT/$spill/1/val I 0..127  Virtual WING [only] layer $spill, node 1 
value (when type MIDI) 

     
/$ctl/user N   User node 
/$ctl/user/sel I 1..16  User select67 
/$ctl/user/mode S  USER, 2TRK, WLIVE, MGRP, 

SHOW 
User button mode (5 buttons above the 
wheel on the full-size console) 

/$ctl/user/cmode S  HA, GATE, COMP, FLT, U1, 
U2, U3, PAN 

User channel mode (8 buttons top right 
corner of the full-size console) 

     
/$ctl/user/gpio N   User GPIO node 
/$ctl/user/gpio/1 N 1..4  User GPIO 1 node 
/$ctl/user/gpio/1/bu N   User GPIO 1 up node 
/$ctl/user/gpio/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User GPIO 1 up function (see appendix 
on buttons) 

/$ctl/user/gpio/1/bu/name S  16 chars max User GPIO 1 up name (use a leading ’|’ 
to invert characters) 

/$ctl/user/gpio/1/bu/$fname S  16 chars max User GPIO 1 up $fname [RO] 
     
/$ctl/user/user N   User Layer node (bottom with Link 

enabled) 
/$ctl/user/user/1 N 1..4  User layer button 1 node 
/$ctl/user/user/1/bu N   User layer button 1 upper row node 
/$ctl/user/user/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 

User layer button1 upper row function 
(see appendix on buttons) 

 
67 Setting values using the range 1..16, reported int values are in the range 0..15, string values in the range 1..16 



 
 
 
 

©Patrick-Gilles Maillot 82 WING remote protocols – V 3.0.6-27 
 
 
 

MARKERA, SDRECB, 
SESSIONB, MARKERB 

/$ctl/user/user/1/bu/name S  16 chars max User layer button 1 upper row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/user/1/bu/$fname S  16 chars max User layer button 1 upper row function 
name [RO] 

     
/$ctl/user/user/1/bd N   User layer button 1 lower row node 
/$ctl/user/user/1/bd/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User layer button 1 lower row function 
(see appendix on buttons) 

/$ctl/user/user/1/bd/name S  16 chars max User layer button 1 lower row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/user/1/bd/$fname S  16 chars max User layer button 1 lower row function 
name [RO] 

     
/$ctl/user/daw1 N   User DAW1 node 
/$ctl/user/daw1/1 N 1..4  User DAW1 button 1 node 
/$ctl/user/daw1/1/bu N   User DAW1 button 1 upper row node 
/$ctl/user/daw1/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User DAW1 button 1 upper row 
function (see appendix on buttons) 

/$ctl/user/daw1/1/bu/name S  16 chars max User DAW1 button 1 upper row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw1/1/bu/$fname S  16 chars max User DAW1 button 1 upper row 
function name [RO] (see Appendix) 

     
/$ctl/user/daw1/1/bd N   User DAW1 button 1 lower row node 
/$ctl/user/daw1/1/bd/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 

User DAW1 button 1 lower row function 
(see appendix on buttons) 



 
 
 
 

©Patrick-Gilles Maillot 83 WING remote protocols – V 3.0.6-27 
 
 
 

MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

/$ctl/user/daw1/1/bd/name S  16 chars max User DAW1 button 1 lower row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw1/1/bd/$fname S  16 chars max User DAW1 button 1 lower row function 
name [RO] (see Appendix) 

     
/$ctl/user/daw2 N   User DAW2 node 
/$ctl/user/daw2/1 N 1..4  User DAW2 button 1 node 
/$ctl/user/daw2/1/bu N   User DAW2 button 1 upper row node 
/$ctl/user/daw2/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User DAW2 button 1 upper row 
function (see appendix on buttons) 

/$ctl/user/daw2/1/bu/name S  16 chars max User DAW2 button 1 upper row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw2/1/bu/$fname S  16 chars max User DAW2 button 1 upper row 
function name [RO] (see Appendix) 

     
/$ctl/user/daw2/1/bd N   User DAW2 button 1 lower row node 
/$ctl/user/daw2/1/bd/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User DAW2 button 1 lower row function 
(see appendix on buttons) 

/$ctl/user/daw2/1/bd/name S  16 chars max User DAW2 button 1 lower row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw2/1/bd/$fname S  16 chars max User DAW2 button 1 lower row function 
name [RO] (see Appendix) 

     
/$ctl/user/daw3 N   User DAW3 node 
/$ctl/user/daw3/1 N 1..4  User DAW3 button 1 node 
/$ctl/user/daw3/1/bu N   User DAW3 button 1 upper row node 
/$ctl/user/daw3/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
User DAW3 button 1 upper row 
function (see appendix on buttons) 



 
 
 
 

©Patrick-Gilles Maillot 84 WING remote protocols – V 3.0.6-27 
 
 
 

SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

/$ctl/user/daw3/1/bu/name S  16 chars max User DAW3 button 1 upper row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw3/1/bu/$fname S  16 chars max User DAW3 button 1 upper row 
function name [RO] 

     
/$ctl/user/daw3/1/bd N   User DAW3 button 1 lower row node 
/$ctl/user/daw3/1/bd/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User DAW3 button 1 lower row function 
(see appendix on buttons) 

 /$ctl/user/daw3/1/bd/name S  16 chars max User DAW3 button 1 lower row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw3/1/bd/$fname S  16 chars max User DAW3 button 1 lower row function 
name [RO] (see Appendix) 

     
/$ctl/user/daw4 N   User DAW4 node 
/$ctl/user/daw4/1 N   User DAW4 button 1 node 
/$ctl/user/daw4/1/bu N 1..4  User DAW4 button 1 upper row node 
/$ctl/user/daw4/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User DAW4 button 1 upper row 
function (see appendix on buttons) 

/$ctl/user/daw4/1/bu/name S  16 chars max User DAW4 button 1 upper row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw4/1/bu/$fname S  16 chars max User DAW4 button 1 upper row 
function name [RO] (see Appendix) 

     



 
 
 
 

©Patrick-Gilles Maillot 85 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/user/daw4/1/bd N   User DAW4 button 1 lower row node 
/$ctl/user/daw4/1/bd/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User DAW4 button 1 lower row function 
(see appendix on buttons) 

/$ctl/user/daw4/1/bd/name S  16 chars max User DAW4 button 1 lower row name 
(use a leading ’|’ to invert characters) 

/$ctl/user/daw4/1/bd/$fname S  16 chars max User DAW4 button 1 lower row function 
name [RO] (see Appendix) 

     
/$ctl/user/1 N 1..16, 

U1..U4, 
MM, 

D1..D4 

 User 1 node68 

/$ctl/user/1/1 N 1..4  User 1 button/encoder 1 node 
/$ctl/user/1/1/led I 0..1  User 1 LED 1 off/on switch 
/$ctl/user/1/1/col I 1..12  User 1 LED 1 color 
     
/$ctl/user/1/1/enc N   User 1 encoder 1 node69 
/$ctl/user/1/1/enc/mode S  OFF, FDR, PAN, DCA, SSND, 

FSND, FX, DAWMCU, MON, 
OTHER, MIDICC, SD A, SD B 

User 1 encoder 1 function (see 
appendix on buttons) 

/$ctl/user/1/1/enc/name S  16 chars max User 1 encoder 1 name (use a leading 
’|’ to invert characters, use a leading ‘*’ 
to ensure value is displayed, or ‘|*’ for 
both actions) 

/$ctl/user/1/1/enc/$fname S  16 chars max User 1 encoder 1 function name [RO] 
     
/$ctl/user/1/1/bu N   User 1 button 1 upper row node 
/$ctl/user/1/1/bu/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User 1 button 1 upper row function (see 
appendix on buttons) 

 
68 Some /$ctl/user/xx values [i.e U1..4, MM, D1..4] are specific to Compact (U1..4: User, MM: Main/Matrix, D1..4: DCA) 
69 Not valid on Compact models 



 
 
 
 

©Patrick-Gilles Maillot 86 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/user/1/1/bu/name S  16 chars max User 1 button 1 upper row name (use a 
leading bu/mode’|’ to invert characters) 

/$ctl/user/1/1/bu/$fname S  16 chars max User 1 button 1 upper row function 
name [RO] 

     
/$ctl/user/1/1/bd N   User 1 button 1 lower row node70 
/$ctl/user/1/1/bd/mode S  OFF, MUTE, SOLO, INS1, 

INS2, MGRP, DCAMUTE, 
SOF, SPILL, FXPAR, 
DAWBTN, DAWENC, 
CHPAGE, PAGE, FDRPAGE, 
VIEWPAGE, OTHER, GPIO, 
FSTART, SHOWCTL, SCENES, 
MIDICCT, MIDICCP, MIDINT, 
MIDINP, MIDIPGM, USBPR, 
SDRECA, SESSIONA, 
MARKERA, SDRECB, 
SESSIONB, MARKERB 

User 1 button 1 lower row function (see 
appendix on buttons) 

/$ctl/user/1/1/bd/name S  16 chars max User 1 button 1 lower row name (use a 
leading ’|’ to invert characters) 

/$ctl/user/1/1/bd/$fname S  16 chars max User 1 button 1 lower row function 
name [RO] 

     
/$ctl/user/cuser N 1..3  Cuser node 
/$ctl/user/cuser/1 N  1, 2, 3, … , 23, 24 Cuser 1 rotary knob position; Keeps the 

bus send value assigned to respective 
channel for the F1..F3 section. Can be 
set/changed by holding the F1..F3 key 
and turning the knob. 
1..16 maps to SEND 1..16 
17..24 maps to SEND MX 1..8 

     
/$ctl/gpio N   GPIO node 
/$ctl/gpio/1 N 1..4  GPIO 1 node 
/$ctl/gpio/1/mode S  TGLNO, TGLNC, INNO, 

INNC, OUTNO, OUTNC 
GPIO 1 mode (TGL: toggle; NO: normally 
open; NC: normally closed) 

/$ctl/gpio/1/$state I 0..1  GPIO 1 state [RO] 
/$ctl/gpio/1/gpstate I 0..1  GPIO 1 gpio state 
     
/$ctl/safes N   Global Safes node 
/$ctl/safes/ch S  40 chars max Ch safes switches (+ or space) 
/$ctl/safes/aux S  8 chars max Aux safes switches (+ or space) 
/$ctl/safes/bus S  16 chars max Bus safes switches (+ or space) 
/$ctl/safes/main S  4 chars max Main safes switches (+ or space) 
/$ctl/safes/mtx S  8 chars max Matrix safes switches (+ or space) 
/$ctl/safes/dca S  16 chars max DCA safes switches (+ or space) 
/$ctl/safes/mute S  8 chars max Mute safes switches (+ or space) 
/$ctl/safes/fx S  16 chars max FX safes switches (+ or space) 
     
/$ctl/safes/source N   Source Safes node 
/$ctl/safes/source/LCL S  24 chars max LCL source safes switches (+ or space) 

 
70 Not valid on Compact models 



 
 
 
 

©Patrick-Gilles Maillot 87 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/safes/source/AUX S  8 chars max AUX source safes switches (+ or space) 
/$ctl/safes/source/A S  48 chars max A source safes switches (+ or space) 
/$ctl/safes/source/B S  48 chars max B source safes switches (+ or space) 
/$ctl/safes/source/C S  48 chars max C source safes switches (+ or space) 
/$ctl/safes/source/SC S  32 chars max SC source safes switches (+ or space) 
/$ctl/safes/source/USB S  48 chars max USB source safes switches (+ or space) 
/$ctl/safes/source/CRD S  64 chars max CRD source safes switches (+ or space) 
/$ctl/safes/source/MOD S  64 chars max MOD source safes switches (+ or space) 
/$ctl/safes/source/PLAY S  4 chars max REC source safes switches (+ or space) 
/$ctl/safes/source/AES S  2 chars max AES source safes switches (+ or space) 
/$ctl/safes/source/USR S  48 chars max USR source safes switches (+ or space) 
/$ctl/safes/source/OSC S  2 chars max Osc source safes switches (+ or space) 
     
/$ctl/safes/output N   Output Safes node 
/$ctl/safes/output/LCL S  8 chars max LCL out safes switches (+ or space) 
/$ctl/safes/output/AUX S  8 chars max AUX out safes switches (+ or space) 
/$ctl/safes/outpu/A S  48 chars max A out safes switches (+ or space) 
/$ctl/safes/output/B S  48 chars max B out safes switches (+ or space) 
/$ctl/safes/output/C S  48 chars max C out safes switches (+ or space) 
/$ctl/safes/output/SC S  32 chars max SC out safes switches (+ or space) 
/$ctl/safes/output/USB S  48 chars max USB out safes switches (+ or space) 
/$ctl/safes/output/CRD S  64 chars max CRD out safes switches (+ or space) 
/$ctl/safes/output/MOD S  64 chars max MOD out safes switches (+ or space) 
/$ctl/safes/output/REC S  4 chars max REC out safes switches (+ or space) 
/$ctl/safes/output/AES S  2 chars max AES out safes switches (+ or space) 
     
/$ctl/safes/area N   Area safes node 
/$ctl/safes/area/LEFT S  7 chars max Left area safes switches (+ or space) 
/$ctl/safes/area/CENTER S  6 chars max Center area safes switches (+ or space) 
/$ctl/safes /area/RIGHT S  7 chars max Right area safes switches (+ or space) 
/$ctl/safes/area/COMPACT S  9 chars max Compact area safes switches (+ or 

space) 
/$ctl/safes/area/RACK S  5 chars max Rack area safes switches (+ or space) 
/$ctl/safes /area/EXTERN S  8 chars max Extern area safes switches (+ or space) 
/$ctl/safes /area/VIRTUAL S  8 chars max Virtual area safes switches (+ or space) 
     
/$ctl/safes/custom S  31 chars max Custom area safes switches (+ or space) 
/$ctl/safes/setup S  3 chars max Setup area safes switches (+ or space) 
     
/$ctl/daw N   DAW node 
/$ctl/daw/on I 0..1  DAW enable 
/$ctl/daw/conn S  DIN, USB DAW connection 
/$ctl/daw/emul S  MCU, HUI DAW emulation 
/$ctl/daw/config S  CC, MSTR, MSTR1EXT, 

MSTR2EXT 
DAW configuration 

/$ctl/daw/ccup I 0..1  DAW use upper cc 
/$ctl/daw/disjog I 0..1  DAW disable wheel during play 
/$ctl/daw/preset S  -, cubase, live, logicx, 

nuendo, protools, reaper, 
studioone 

DAW last loaded preset 

/$ctl/daw /$on I 0..1  DAW enable switch 
/$ctl/daw/$bpage I 0..4  DAW on button page 



 
 
 
 

©Patrick-Gilles Maillot 88 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/daw/$btntouch I 0..1  DAW on button sel fader touch 
/$ctl/daw/$btnvpot I 0..1  DAW on button sel vpot 
/$ctl/daw/$btnrecrdy I 0..1  DAW on button sel record ready 
/$ctl/daw/$btnauto I 0..1  DAW on button sel auto 
/$ctl/daw/$btnvsel I 0..1  DAW on button sel v-sel 
/$ctl/daw/$btninsert I 0..1  DAW on button sel insert 
     
/$ctl/midi N   Midi node 
/$ctl/midi/enchctl S  OFF, DIN, USB Channel control (FDR, MUTE, PAN) 
/$ctl/midi/enfxctl S  OFF, DIN, USB FX parameter control 
/$ctl/midi/encustctl S  OFF, DIN, USB Custom control (RX only) 
/$ctl/midi/ensysex S  OFF, DIN, USB SYSEX control 
/$ctl/midi/enmidicc S  OFF, DIN, USB External MIDI control 
/$ctl/midi/enscenes S  OFF, DIN, USB Scene change 
/$ctl/midi/enshowctl S  OFF, DIN, USB Show control 
/$ctl/midi/enscenetx S  OFF, DIN, USB Scene MIDI TX 
     
/$ctl/OSC N   OSC node  
/$ctl/OSC/ronly I 0..1  Console OSC read only switch 
     
/$ctl/lib N   Library node (Shows, Scenes, Snaps, …) 
/$ctl/lib/$scenes S  Ex: scene_1, scene_2, 

scene_3 
List of Scene71 names [RO] 72 in the 
currently opened show 

/$ctl/lib/$actidx I 0..n  Scene number currently loaded/active 
[RO]73 

/$ctl/lib/$active S  256 chars max Name of the active scene [RO], ex: 
I:SHOW2/scene_1.snap 

/$ctl/lib/$actshow S  256 chars max Name of the active show [RO], after 
having pressed on the “OPEN SHOW” 
icon, ex: I:SHOW2 

/$ctl/lib/$action S  IDLE, GOPREV, GONEXT, 
GO, PREV, NEXT, GOTAG 

Show control actions, after having 
pressed on the “OPEN SHOW” icon74 

/$ctl/lib/$actionidx I 0..16384  Scene number user selection, in the list 
of Scenes. A show must be opened. 
Use /$ctl/lib/$action ,s GO to load 
the Scene entity $actionidx points to, 
or GOTAG if $actionidx refers to the tag 
number of a tagged scene in the show. 
$actionidx should be 0 to enable NEXT 
or PREV to work as expected with a GO 
command. 

/$ctl/lib/$activeid I 0..128  Tag of the active scene if present [RO] 
     
/$ctl/$globals N   CTL Global Settings node 
/$ctl/$globals/fdrsel I 0..1  Screen Touch Fader Select 
/$ctl/$globals/fdrres S  NORM, FINE, AUTO Fader resolution 
/$ctl/$globals/fdrspd S  SLOW, MED, FAST Fader speed 

 
71 A Scene is a Snap, a Snippet, a Preset, an Audio clip, or a combination thereof, referenced in a Show file 
72 Only the first name of the list is returned by std OSC command. You must use the node definition command (OSC or native 
interface). To get the full contents, for ex: /$ctl/lib~~~,s~~?~~~. A show must be opened for the command to be active 
73 A show must be opened for the command to be active. 0 means “no show Scene loaded” 
74 Make sure /$ctl/lib/$actionidx is set to 0 if you want to use NEXT or PREV followed by a GO. 



 
 
 
 

©Patrick-Gilles Maillot 89 WING remote protocols – V 3.0.6-27 
 
 
 

/$ctl/$globals/mousetchdis I 0..1  Mouse disable touch 
/$ctl/$globals/mousespd F 0.1..2.0 191 steps Mouse speed 
/$ctl/$globals/tapflash S  OFF, 8X, ON Tap Tempo Flash 
/$ctl/$globals/srcdisp I 0..1  Show source on scribble 
/$ctl/$globals/lockmtr I 0..1  Show meter page when locked 
/$ctl/$globals/showscene I 0..1  Always show active scene 
/$ctl/$globals/cf_load I 0..1  Confirm Snapshot Load 
/$ctl/$globals/cf_upd I 0..1  Confirm Snapshot Update 
/$ctl/$globals/usewheel I 0..1  Use wheel to navigate in lists of items 

(snaps, files,…) 
/$ctl/$globals/timefmt S  24H, 12H Time format 
/$ctl/$globals/date fmt S  YMD, DMY Date format 
/$ctl/$globals/$filesort S  NAME, TYPE, 0->9, 9->0 File sort order 
/$ctl/$globals/$noautosave I 0..1  Auto save switch (0=autosave) 
/$ctl/$globals/$savenow I 0..1  Save console data now75 

 

Global Settings 
Command Type Range Text Description 
/$globals N   Global Settings node 
/$globals/clkrate S  48000.0, 44100.0 Master clock rate 
/$globals/clksrc S  INT, A, B, C, AES, CARD, 

MOD 
Master clock source 

/$globals/startmute I 0..1  Mute outputs on startup 
/$globals/usbacfg S  2/2, 8/8, 16/16, 32/32, 

48/48 
USB Input/Output configuration 

/$globals/sccfg S  AUTO, 0/32, 1/31, 2/30, 
3/29, 4/28, 5/27, 6/26, 
7/25, 8/24, 9/23, 10/22, 
11/21, 12/20, 13/19, 14/18, 
15/17, 16/16, 17/15, 18/14, 
19/13, 20/12, 21/11, 22/10, 
23/9, 24/8, 25/7, 26/6, 
27/5, 28/4, 29/3, 30/2, 
31/1, 32/0 

SC Configuration 

     
/$globals/harmt N   HA remote node 
/$globals/harmt/a I 0..1  Enable HA remote on AES-A 
/$globals/harmt/b I 0..1  Enable HA remote on AES-B 
/$globals/harmt/c I 0..1  Enable HA remote on AES-C 
     
/$globals/custsync N   Custom Sync node 
/$globals/custsync /a I 0..1  Enable Cust Sync on AES-A 
/$globals/custsync /b I 0..1  Enable Cust Sync on AES-B 
/$globals/custsync /c I 0..1  Enable Cust Sync on AES-C 

  

 
75 This command should not be used as part of a program loop as it will eventually wear the flash memory where data is saved. This 
command may change in the future. 



 
 
 
 

©Patrick-Gilles Maillot 90 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

WING native / binary data interface 

 

  



 
 
 
 

©Patrick-Gilles Maillot 91 WING remote protocols – V 3.0.6-27 
 
 
 

WING native / binary data interface 
WING exposes a binary structure that contains all data presented above in the WING snapshot JSON structure 
chapter, and more objects. Some objects are READ ONLY while others can bet accessible for get() and set() 
functions. One can access the object data, effectively getting access to the value assigned to the object, or to 
the object description, a special class that provides the object name, type, min/max values, or enumerated 
values.  
As mentioned before, communication takes place using TCP. We give all the basic/necessary details for 
communicating with WING below; this data is coming from Behringer. 
Applications can communicate with the console using TCP port 2222. The console will reject further connection 
requests, if the maximum number of simultaneous connections (currently 16) is reached. Open connections 
will time out after 10 seconds of inactivity (on the receiving side). 

Communication Channels 
Communication uses 14 distinct channels [1..14] corresponding to the Channel IDs presented below 
 

Table 1. Channel Usage 
channel ChID Usage 
1 0 n/u 
2 1 Audio Engine & Control requests 
3 2 n/u 
4 3 Meter Data Requests 
5 4 n/u 
6 5 n/u 
7 6 n/u 
8 7 n/u 
9 8 n/u 
10 9 n/u 
11 A n/u 
12 B n/u 
13 C n/u 
14 D n/u 

 
 
To select/change the active channel, use the following sequence 
0xdf, 0xd<ChID>     

 
When communicating with WING, the escape byte 0xdf should be handled carefully, as shown in the two 
routines shown below for sending and receiving data. 
  



 
 
 
 

©Patrick-Gilles Maillot 92 WING remote protocols – V 3.0.6-27 
 
 
 

Sample receive routine 
 
#define NRP_ESCAPE_CODE         0xdf 
#define NRP_CHANNEL_ID_BASE     0xd0 
#define NRP_NUM_CHANNELS        14 
 
void Cnrpclientconnector::nrpc_data_rx(byte db) 
{ 
  if (db == NRP_ESCAPE_CODE && !escf) escf = true; 
  else { 
    if (escf) { 
      if (db != NRP_ESCAPE_CODE) { 
        escf = false; 
        if (db == NRP_ESCAPE_CODE - 1) db = NRP_ESCAPE_CODE; 
        else if (db >= NRP_CHANNEL_ID_BASE &&  
        db < NRP_CHANNEL_ID_BASE + NRP_NUM_CHANNELS) { 
          if (ch_id_rx != db - NRP_CHANNEL_ID_BASE) { 
            ch_id_rx = db - NRP_CHANNEL_ID_BASE; 
          } 
          return; 
        } else if (ch_id_rx >= 0) data_rx(ch_id_rx, NRP_ESCAPE_CODE); 
      } 
    } 
    if (ch_id_rx >= 0) data_rx(ch_id_rx, db); 
  } 
} 

 
 

Example: The sequence D702DFDEAF0E02 will in fact represent D702DFAF0E02 

Sample transmit routine 
 
void Cnrpclientconnector::data_tx(int ch_id, const void* data, int len) 
{ 
  assert(ch_id >= 1 && ch_id <= NRP_NUM_CHANNELS); 
 
  if (ch_id_tx != ch_id) { 
    ch_id_tx = ch_id; 
    nrpc_data_tx_flush(); 
    nrpc_data_tx(NRP_ESCAPE_CODE); 
    nrpc_data_tx(ch_id + NRP_CHANNEL_ID_BASE); 
  } 
 
  bool esc = false; 
  byte* dpp = (byte*)data; 
  while (len-- > 0) { 
    byte db = *dpp++; 
    if (db == NRP_ESCAPE_CODE) esc = true; 
    else { 
      if (esc && db >= NRP_CHANNEL_ID_BASE &&  
   db <= NRP_CHANNEL_ID_BASE + NRP_NUM_CHANNELS) { 
        db = NRP_ESCAPE_CODE - 1; 
        dpp--; 
        len++; 
      } 
      esc = false; 
    } 
    nrpc_data_tx(db); 
  } 
  if (esc) nrpc_data_tx(NRP_ESCAPE_CODE - 1); 
} 

 
 



 
 
 
 

©Patrick-Gilles Maillot 93 WING remote protocols – V 3.0.6-27 
 
 
 

Examples: With current tx channel being 3, sending d702dfaf0e02 to channel 1 will transfer dfd0d702dfaf0e02, 
sending d702dfdf0e02 to channel 2 will transfer dfd1d702dfdf0e02, and sending d702dfd10e02 to channel 1 
again will transfer dfd0d702dfded10e02 

  



 
 
 
 

©Patrick-Gilles Maillot 94 WING remote protocols – V 3.0.6-27 
 
 
 

Channel 2: Audio Engine 
Communication with the audio engine uses a token/data based binary stream protocol. Words are 2 bytes 
(big endian), longs are 4 bytes (big endian). 

Binary Stream Format 
 
 

 
Navigation within the nodes tree can be done by using root, 1 level up, node index, _node name, or node 
hash tokens. 
Definitions of all sub-nodes within the current node can be requested with the request node definition 
token. 
 
Node Definition Response 
0xdf, len.w, [len.l], parent.l, hash.l, index.w, namelen.b, name, longnamelen.b, longname, flags.w, 
 (If len.w==0 then len.l is used) 
        node:   - 
        linf:   min.f, max.f, steps.l 
        logf:   min.f, max.f, steps.l 
        fdr:    - 
        int:    min.l, max.l 
        enum:   count.w, [itemlen.b, item, longitemlen.b, longitem] * count 
        fenum:  count.w, [itemval.f, longitemlen.b, longitem] * count 
        string: maxlen.w 

 
 
Where the node type can be derived from the flags as follows: 

Table 3. Node Flags 
Flags Function Details 
b0…b3 unit 0: none 

1: dB 
2: % 
3: ms 
4: Hz 
5: mtrs 

Table 2. Binary Stream Protocol Tokens 
Token Data Function 
0x00 

 
false; off; 0 

0x01 
 

true; on; 1 
0x02…0x3f 

 
int 2…63 

0x40…0x7f 
 

node index 1…64 
0x80…0xbf 

 
string[1…64] 

0xc0…0xcf 
 

node name[1…16] 
0xd0 

 
empty string 

0xd1 byte string[1…256] 
0xd2 word node index 1…65536 
0xd3 word int16 
0xd4 long int32 
0xd5 long float32 
0xd6 long raw float32 (0.0…1.0) 
0xd7 long node hash 
0xd8 

 
click (toggle) 

0xd9 byte step (inc/dec) 
0xda 

 
node tree: goto root node 

0xdb 
 

node tree: 1 level up 
0xdc 

 
data request 

0xdd 
 

request node definition (current node) 
0xde 

 
end of data/def request 

0xdf word node definition response (word: data 
length in bytes) 

0xe0…0xff 
 

not used 



 
 
 
 

©Patrick-Gilles Maillot 95 WING remote protocols – V 3.0.6-27 
 
 
 

6: seconds 
7: octaves 

b4…b7 type 0: node 
1: lin float 
2: log float 
3: fader level 
4: integer 
5: string enum 
6: float enum 
7: string 

b9 r/o read-only flag 

  



 
 
 
 

©Patrick-Gilles Maillot 96 WING remote protocols – V 3.0.6-27 
 
 
 

Channel 3: Metering 
Use this channel to request metering data from the console. The data is sent back to the client IP to the 
specified port. Meter data times out after 5 seconds. 
Each metering data block is prefixed by a client-specified 4byte report id. 
To avoid confusion on the receiver side, the client should use different report id values for different meter 
collections.  
Meter collections are specified by using multiple type/index elements. Specified meters are sent back in the 
sequence corresponding to the request message. 
 
Meter values are coded on 2 bytes (signed, big endian). Level values are in 1/256 dB.  
 
Most data are returned in 1/256 steps. This is typically the case for Gate gain and Dyn gain values. The 
returned value is multiplied/adjusted with a fixed value to cover for the plugin model data range in use.  
For most of them 1.0 (256) maps to 20 dB gain reduction. Standard Wing gate is 60 dB. 
 
fx meter subscriptions return 4 levels and 6 state meters (see table below: Meter Data). Band gain reduction 
is in the first 5 of these. Value in dB = return value * 6.0 / 2048. 
 
Gate LED and Dyn State in * V2 subscriptions return a value of 0 or 1, depending on the state of the 
respective channel’s Gate and Dyn LEDs, respectively. 

Meter Request Tokens 
 

Table 4. Meter Request Tokens 
Token Data Function 
0xd3 word client UDP port (2 bytes big endian; set at least once) 
0xd4 long report id (repeat this token with current id to reset transmission 

timeout) 
0xdc 

 
start of meter collection definition  

0xa0 channel (1…40)  
0xa1 aux (1…8)  
0xa2 bus (1…16)  
0xa3 main (1…4)  
0xa4 matrix (1…8)  
0xa5 dca (1…8)  
0xa6 fx processor (1…16)  
0xa7 source (input) device (1…16)  
0xa8 output device (1…11)  
0xa9 monitor (no index)  
0xaa rta (no index) 

 0xab channel V2 (1…40) 
 0xac aux V2 (1…8) 
 0xad bus V2 (1…16) 
 0xae main V2 (1…4) 
 0xaf matrix V2 (1…8)  

0x00…0x7f index 1…128 (can be repeated multiple times) 
0xde 

 
end of meter collection definition 

 
 
Example specification 

0xdc 0xa0 0x00 0x01 0x08 0xa6 0x04 0xde 

Requests meter data for channels strips 1,2,9, and fx 5. 
 
 



 
 
 
 

©Patrick-Gilles Maillot 97 WING remote protocols – V 3.0.6-27 
 
 
 

Meter Data Packet Structure := <report id (4 bytes)><Meter Data (n words)> 

Meter Data 
 

Table 5. Meter Data 
Section Contents 
channel 
aux 
bus 
main 
matrix 

input left 
input right 
output left 
output right 
gate key 
gate gain 
dyn key 
dyn gain 

dca pre fader left 
pre fader right 
post fader left 
post fader right 

fx input left 
input right 
output left 
output right 
state meters (1…6) 

source source group levels (i.e. local ins: 8 meters) 
output output group levels (i.e. local outs: 8 meters) 
monitor solo bus left 

solo bus right 
mon 1 left 
mon 1 right 
mon 2 left 
mon 2 right 

rta rta slot meters (120) 
Channel V2 
aux V2 
bus V2 
main V2 
matrix V2 

input left 
input right 
output left 
output right 
gate key 
gate gain 
gate led 
dyn key 
dyn gain 
dyn state 
automix gain 

 
 
We show below a typical binary communication sequence for requesting metering data: 
 
→W  7 B: dfd3d33737dfd1   // Declaring port to use is 0x3737 = 14135 
→W 13 B: dfd3d400000002dca001dedfd1  // Meters request id = 2, channel 02 
→W  9 B: dfd3d400000002dfd1   // Renew request id = 2 meter data for 5s 
 
  



 
 
 
 

©Patrick-Gilles Maillot 98 WING remote protocols – V 3.0.6-27 
 
 
 

Introducing wapi [wapi] 
The previous chapters on JSON structures and binary, token-based communication may not be very accessible 
to many programmers.  For that reason, a more accessible API (Application Programming Interface) available 
as a set of include files and libraries is proposed here. It is written in C, which ensure it can easily be used in 
many applications, providing good performance. 
 
There are two include files that should always be part of your programs as they contain information about the 
JSON structure and the objects respective binary pointers in WING. The API provides an abstraction layer to 
the binary interface and procedure calls for standard functions to get, set, manipulate WING data. 
 
At the API level, WING data can be 32bit int, 32bit float or string data. All API data in little-endian, enabling 
easy use in standard programming languages. 
 
Besides this document, the wapi API consists of two include files and a library: 

wapi.h is the main include file containing enumerated types for errors, token types, and wapi 
abstraction enumerated tokens. 
wext.h is a file containing the definitions of external library calls to wapi.lib the actual library of API 
functions. 
wapi.lib is a static-link library for linking with your application. The library contains all wapi functions 
that can be used and are described later in this document. 

 
A typical program accessing WING starts with an ‘open’ function and ends with a ‘close’ function. These two 
functions establish the communication path to WING on your local network and ensure data is properly 
cleaned when leaving the program. 
 
Programs communicate with WING over network. The API call wOpen() is used to establish communication link 
between WING and the application.  
 
WING supports multiple formats, including integers, floats, and strings types. The API will try to ensure 
conversions as best as possible in order to match the requested format either by WING or by the API 
command. For example, if you request float data from a WING token which is an integer, the API will convert 
the integer to float before returning the data. Similarly, if you set a WING token of type string by sending it a 
float value, the float data will be changed to string before being sent to WING. 

wapi tokens 
wapi makes use of tokens (an enumerated 32bits integer acting as a unique identifier) to identify the subtrees 
and leaves of the WING JSON hierarchy structure. WING tokens are easily identified by their name, based on 
their corresponding JSON structure name taken from the WING hierarchical data tree we already presented in 
this document. 
 
For example the identifier for “channel 1 mute control”, a.k.a. “ch.1.mute” in the JSON tree is known as token 
CH_1_MUTE. The respective parameter in WING internal data structure is an integer that can be 0 or 1 and as 
written above, can be modified (or set) from integer, float or even string data types, and can be returned to 
the application also as an integer, a float or string.  
Following the naming convention above “channel 1 fader value” will be identified as “CH_1_FDR”, “bus 14 
panoramic value” will be identify as “BUS_14_PAN”, and so on. 



 
 
 
 

©Patrick-Gilles Maillot 99 WING remote protocols – V 3.0.6-27 
 
 
 

 
Some identifiers can have names that are not as obvious, and this typical of some of the dynamically 
assignable subtrees of the JSON tree. Typically, the filter, gate, compressor, and equalizer of WING channels 
can be assigned different plugin models, set for example using the wapi CH_1_EQ_MDL token (or OSC 
ch/1/eq/mdl), known as channel 1 EQ model in the case of channel 1 and its EQ setting. If you report to the 
different types (or models) of EQ plugins in the appendices of this document, you will see that the EQ model 
can be one of several choices, each model having different settings. In fact, every single setting maps to a 
given token, based on their respective listing number, i.e. setting #7, a.k.a. “1q” for EQ model “STD” will have 
the same token value as setting #7 for EQ model SOUL, known as “lmg”. 
 
To enable wapi managing these different mapping, all JSON “dynamic” parameters are named after their listing 
number, rather than their name for a given effect or plugin model. As a result, and taking the case of EQ 
models “STD” and “SOUL” above, setting “1q” and “lmg” will have the share the same token ending with “7” (for 
listing #7). 
 
The naming convention above applies to the following: 

 Channel: filter, gate, compressor, equalizer [“1”, ”2”, … “33”] 
 Bus, Mains, Matrix: compressor, equalizer [“1”, ”2”, … “33”] 
 FX: all fx meter settings [“1”, ”2”, … “33”] 
 GPIOs [“1”, ”2”] 
 User buttons [“1”, ”2”, “3”] 
 Layered user encoders and buttons [“1”, ”2”, “3”] 

 
 
Some tokens correspond to read-only data; trying to change their value will result in an error returned to the 
calling function. 
 
WING tokens are listed in an include file: wapi.h that must be included in your program. The wapi.h include 
file also contains the status or error codes that can be returned by API function calls. 

Compiling a program using wapi 
All function calls are regrouped in a binary library: wapi.lib, that you must include at link time.  
A typical compilation of a source file wtest.c in a Windows environment can be as follows: 
gcc -O3 -Wall -c -fmessage-length=0 -o wtest.o “wtest.c”  
gcc “-LC:<path to wapi.lib>” -o wtest.exe wtest.o -lwapi -lws2_32 
 
Don’t forget to set the correct path to the wapi.lib file in the above compilation/link lines! 
Depending on your application, you may need to provide additional Windows dynamic libraries references 
(i.e. -lgdi32, -lcomdlg32, etc.) 
 
 
WING parameters can be set (or modified) using the wSetxxx API family of calls; Similarly, the parameters can 
be retrieved from WING using the wGetxxx API family of calls. The following pages will present all API functions 
and will include examples of source code to help you in your first steps with wapi. 
Additional calls will serve establishing the communication path with the console, and several services and 
utility functions needed to parse, or help with data. 
 



 
 
 
 

©Patrick-Gilles Maillot 100 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

wapi Reference Guide 
 
 
 
 
 
 
 
 
 
 
 
  



 
 
 
 

©Patrick-Gilles Maillot 101 WING remote protocols – V 3.0.6-27 
 
 
 

wapi Reference Guide 

Open and Close 
 

Int wOpen(char* wip) 
wOpen() initializes global variables for the application and opens the communication with a WING console 
responding at IP address wip. 
wip is a string containing the console IP data in the form “xxx.xxx.xxx.xxx”; if the console IP address is 
unknown, wip should be an empty string and provide enough characters to store the IP address where WING 
will be found. The wOpen() function will attempt a network broadcast announce on the /2476 of the local 
network to identify the first WING that will reply on the local network. 
Upon successful completion the function will return WSUCCESS and if the wip parameter was an empty string 
when calling the function, it will contain the IP at which the console was found. Other values can be returned 
in case of issues or errors reported. 
Once connection is established with the console, it will be kept active for about 10 seconds after which the 
console will close the link. The wKeepAlive() function can be called (before the desk closes communication) to 
extend the link active another 10 seconds. 
It must be noted that if a connection is kept active, changes made directly at the console (by moving a fader, 
or pressing buttons for example) will generate data the application will continuously receive. This can 
represent a lot of data the application must be ready to accept and manage. It can also be the source of 
incorrect data returned to Get functions and specific care should be taken when developing live or 
event-driven applications. 
 
 
 

void wClose() 
wClose() ensures data is correctly disposed of when your program ends. It should be the last call before the 
return statement or exit call in your application. 
 
 
 

unsigned int wVer() 
wVer() returns the version of the wapi library file being used. The returned version is in the form 
‘major.minor.revision-update’, and its value is provided as 0xMMmmVVuu, with MM.mm being the standard 
major.minor version number corresponding as close as possible to the Wing FW release wapi was based on, 
and VV-uu represents a software build revision number and update within MM.mm. 
  

 
76 For example, 198.51.100.0/24 is the prefix of the Internet Protocol version 4 network starting at the given address, having 24 bits 
allocated for the network prefix, and the remaining 8 bits reserved for host addressing. Addresses in the range 198.51.100.0 to 
198.51.100.255 belong to this network. 



 
 
 
 

©Patrick-Gilles Maillot 102 WING remote protocols – V 3.0.6-27 
 
 
 

Setting Values 
 

int wSetTokenFloat(wtoken token, float fval) 
The wSetTokenFloat() sets WING token token to float value fval. If the token token is of a different type than 
float, fval will be adapted to the format expected by token token; if token token corresponds to a dynamic 
parameter named 1 to 32, no format change will take place and the function will set token token using fval as 
float. 
For example, sending value 444.0 to WING token CH_1_PEQ_1F will be sent as a 32bit float value. WING will 
nevertheless adjust it to the nearest valid value of 444.533997. Sending that same value 444.0 to WING token 
CH_1_PEQ_ON will result in a setting to 1; Finally, sending value 444.0 to WING token CH_1_NAME will change the 
channel name to 444.00. 
To change the value of CH_1_EQ_1 to say ‘ten’ should be sent as float 10.0, assuming the parameter’s value 
expected type is float. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting the value of fval, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE. 
 
 
 

int wSetTokenInt(wtoken token, int ival) 
The wSetTokenInt() sets WING token token to int value ival. If the token token is of a different type than int, 
ival will be adapted to the format expected by token token; if token token corresponds to a dynamic 
parameter named 1 to 32, no format change will take place and the function will set token token using ival as 
int. 
For example, sending value 444 to WING token CH_1_PEQ_ON will result in a setting to 1; Finally, sending integer 
value 444 to WING token CH_1_NAME will change the channel name to 444. 
To change the value of CH_1_GATE_5 to say ‘one’ with CH_1_GATE_MDL set to “9000G” should be sent as int 1, as 
the parameter’s value expected type is int. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting the value of ival, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE. 
 
 
 

int wSetTokenString(wtoken token, char* str) 
The wSetTokenString()  function takes as input a WING token token and a string str. It sends to WING the 
value of str after it has been adapted to the format expected by the WING token it is sent to.  
For example, sending string “444” to WING token CH_1_PEQ_1F will be sent as a 32bit float value of 444.0; 
WING will the adjust it to the nearest valid value of 444.533997. Sending that same string “444” to WING token 
CH_1_PEQ_ON will result in a setting to 1, Finally, sending string “444” to WING token CH_1_NAME will change the 
channel name to 444. 
To change the value of CH_1_GATE_6 to say ‘gate’ with CH_1_GATE_MDL set to “9000G” should be sent as “GATE”, 
as the parameter’s value expected type is string. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting the string str, or WSEND_TCP_ERROR if an error took place 
while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE. 
 



 
 
 
 

©Patrick-Gilles Maillot 103 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

int wToggleTokenInt(wtoken token) 
The wToggleTokenInt() function toggles the 0/1 value of WING token token. Token token must be of type int. 
This function offers a way to change or update 0/1 parameter values without having to go through a 
“read/test/set” roundtrip with the console, providing a more efficient communication path.  
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WTYPE if the parameter format for token token is not of type integer, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE. 
 
 
 

int wClickTokenByte(wtoken token, char ival) 
The wClickTokenByte() function increments or decrements the value of token token by the amount 
represebted by signed byte ival. Token token can be of type int or float. 
The value of byte ival is in the range [-128..+127]. 
This function offers a way to change or update parameter values without having to go through a 
“read/test/set” roundtrip with the console, providing a more efficient communication path.  
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WTYPE if the parameter format for token token is not of type integer or float, or WSEND_TCP_ERROR if an error 
took place while communicating with WING. Attempting to set a value on a token of type NODE will return 
WNODE. 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 104 WING remote protocols – V 3.0.6-27 
 
 
 

Getting Values 
wapi offers several procedure calls to retrieve data from WING; specific datasets can be of use when getting 
data. These are defined in wapi.h: 
 
wvalue is a union type definition to enable receiving several types of data in a single 32bits field. 
 

typedef union { 
    unsigned int uval; // unisgned integer type data 
    int   ival; // integert type data 
    float  fval; // float type data 
    char*  sval; // pointer to string 
} wvalue; 

 
 

wtype is an enumerated list of ints to provide the data type returned in wvalue. 
 

typedef enum wtype { 
    UNKN = -1, 
    NODE, // node type (unsigned int) 
    I32, // int type 
    F32, // float type 
    S32, // string (char*) type 
    V32  // an unsigned int or void type to accept all the above 
} wtype; 

 
 
wTV is a C structure defined in the wapi.h file as follows: 
 

typedef struct { 
    wtoken    token; 
    wtype     type; 
    union { 
        unsigned int udata; 
        int          idata; 
        float        fdata; 
        char*        sdata; 
    } d; 
} wTV; 

 
The filling of the structure is obvious for int and float data; string data sets are dynamically allocated and 
the pointer of the allocated string is saved in sdata; if the string returned from the console is an empty string, 
no memory allocation takes place and a NULL pointer is set in sdata. When receiving an element of type 
string with a valid sdata pointer, the application is responsible for freeing the allocated memory pointed to 
by sdata after use. 
 
 
 

wtype wGetType(wtoken token) 
wGetType() returns the type associated to the token token; the returned value is one of the types listed in the 
wtype list described above. 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 105 WING remote protocols – V 3.0.6-27 
 
 
 

char* wGetName(wtoken token) 
wGetName() returns the string JSON descriptor corresponding to token token. The returned string is part of the 
constant definitions of wapi and cannot be altered by the calling application.  
Note that the string “$$unkown” (not part of the JSON tree leaves) is returned for tokens that are not found. 
 
 
 

whash wGetHash(wtoken token) 
wGetHash() returns the binary descriptor (an unsigned int) corresponding to token token. The returned data 
can be used to identify specific entries in binary maps returned by wapi with the wGetBinaryNode() call (see 
later in this document). The value 0 is returned for tokens that are not found. 
 
 
 

int wGetToken(wtoken token, wtype *type, wvalue *value) 
The wGetToken() function retrieves data from WING, based on token token.  
 
wGetToken() is a generic data retrieval call for wapi; Other retrieval functions described later in this document 
may be more tuned to your specific needs. 
Depending on user actions, several data can queue in the receiving buffer; The function will use the data 
provided by the first occurrence of token token in the queue.  
The data type returned by WING is used to set a more generic type in type, which can be one of int, float or 
string address on 32 bits data.  
The actual value corresponding to int and float data is returned in value; In the case of string data (char*), 
either a NULL pointer is returned for no character present, or value contains the pointer to a string of 
characters.  
Note that in the case a string is returned by wGetToken(), memory for storing the string will have been 
allocated by the function. It is the responsibility of the calling application to free the allocated memory when 
no longer needed to avoid application memory leaks. 
wGetToken() will return WSUCCESS if the token token is found in the receiving queue and valid data  is returned, 
WZERO if no valid data type is found or if a timeout occurs during receiving data.  
WMEMORY, WSENDERROR or WRECVERROR can be returned in specific error cases.  
 
 
Below is a small program example of using set() and get() calls, the receiving part using the wGetToken() 
function we first show the display obtained from running the program, followed by the program source code; 
 

 
#include <stdio.h> 
#include <string.h> 
// 
#include “wapi.h” 
#include “wext.h” 
// 



 
 
 
 

©Patrick-Gilles Maillot 106 WING remote protocols – V 3.0.6-27 
 
 
 

int main() { 
    int        i; 
    char          wingip[24] = ""; 
    wtype         type; 
    wvalue         value; 
    // 
    if ((i = wOpen(wingip)) != WSUCCESS) exit(1); 
    printf("WING found at IP: %s\n", wingip); 
    printf("Using version %i.%i\n", wVer()/256, wVer()&15); 
    // 
    wSetTokenString(CH_1_GATE_MDL, "RIDE");   //Auto Rider Dynamics 
    wSetTokenFloat(CH_1_GATE_1, -50.);        // thr 
    wSetTokenFloat(CH_1_GATE_2, 0.);         // tgt 
    wSetTokenInt(CH_1_GATE_3, 20);           // spd 
    wSetTokenFloat(CH_1_GATE_4, 8.);         // ratio 
    wSetTokenFloat(CH_1_GATE_5, 0.5);        // hold 
    wSetTokenFloat(CH_1_GATE_6, 6.0);        // range 
    // 
    wGetToken(CH_1_GATE_MDL, &type, &value); 
    if (value.sval) { 
        printf("type = %i, data = %s\n", type, value.sval); 
        free(value.sval); 
    } else { 
        printf("no data for ch 1 gate model!\n”); 
    } 
    wGetToken(CH_1_GATE_1, &type, &value); 
    printf("type = %i, data = %f\n", type, value.fval); 
    wGetToken(CH_1_GATE_2, &type, &value); 
    printf("type = %i, data = %f\n", type, value.fval); 
    wGetToken(CH_1_GATE_3, &type, &value); 
    printf("type = %i, data = %i\n", type, value.ival); 
    wGetToken(CH_1_GATE_4, &type, &value); 
    printf("type = %i, data = %f\n", type, value.fval); 
    wGetToken(CH_1_GATE_5, &type, &value); 
    printf("type = %i, data = %f\n", type, value.fval); 
    wGetToken(CH_1_GATE_6, &type, &value); 
    printf("type = %i, data = %f\n\n", type, value.fval); 
    fflush(stdout); 
    return(0); 
} 

 
 

int wGetTokenFloat(wtoken token, float* fval) 
The wGetTokenFloat() function interrogates WING token token to get its currently associated value.  
As it is the case for wGetToken(), wGetTokenFloat() will block until a token token is encountered in the 
receiving queue. The received token value has a given native type, and the function will do its best at 
converting the received data to float format as expected by the fval variable. 
For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as a float value in 
fval. Inquiring WING token CH_1_PEQ_ON will result in a value of 0.0 or 1.0, depending on the state of the 
token.  
On the other hand, inquiring WING token CH_1_NAME will most likely return a value of 0.0 and a status of 
WZERO; In some cases (i.e., you set the name to be string “123.7” for example) you may get a valid 
floating-point value returned. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting token value to fval, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE. 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 107 WING remote protocols – V 3.0.6-27 
 
 
 

int wGetTokenInt(wtoken token, int* ival) 
The wGetTokenInt()  function interrogates WING token token to get its currently associated value. As it is the 
case for wGetToken(), wGetTokenInt() will block until a token token is encountered in the receiving queue. 
The received token value has a given native type, and the function will do its best at converting the received 
data to integer format as expected by the ival variable. 
For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as an int value in 
ival. Inquiring WING token CH_1_PEQ_ON will result in a value of 0 or 1, depending on the state of the token.  
On the other hand, inquiring WING token CH_1_NAME will return a value of 0 and a status of WZERO; In some 
cases (i.e., you set the name to be string “12” for example) you may get a valid int value returned. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting token value to ival, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE. 
 
 

int wGetTokenString(wtoken token, char* str) 
The wGetTokenString()  function interrogates WING token token to get its currently associated value. As it is 
the case for wGetToken(), wGetTokenString() will block until a token token is encountered in the receiving 
queue. The received token value has a given native type, and the function will do its best at converting the 
received data to string/char* format as expected by the str variable. 
For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as a string in str. 
Inquiring WING token CH_1_PEQ_ON will result in a 1-character string of “0” or “1”, depending on the state of 
the token. Similarly, a token with a floating-point native format would result in a string containing the string 
representation of the floating-point value. 
As a last example, inquiring WING token CH_1_NAME will return the string currently used for naming channel 1. 
Please note that the str variable should provide enough space to collect the data returned by 
wGetTokenString(). 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting token value to str, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE. 
 
 
 

int wGetTokenDef(wtoken token, int *num, unsigned char* str) 
The wGetTokenDef()  function interrogates WING token token to get its currently associated definition in raw 
form. wGetTokenDef() will block for 200 milliseconds or until a token token is encountered in the receiving 
queue. The received token definition follows the description presented earlier in this document77. 
The returned data consists of the number of bytes num contained in an array of bytes str. Note that str is 
allocated by the wGetTokenDef() function; it is therefore the responsibility of the calling application to free the 
allocated memory when no longer needed. Parsing this data is left to the application, and follows the 
description for node definition response.  
The function returns WSUCCESS if the requested operation was successful; wGetTokenDef() will return WMEMORY 
if it cannot allocate memory for the data to be returned, or WRECV_ERROR if the data cannot be recovered; 
Would wGetTokenDef() return WRECV_ERROR when you expect data being available, it may be worth attempting 
a second call to the function as a timeout may have occurred with the first/previous call. 
 
 

 
77 See “Node Definition Response” in the “WING native / binary data interface” chapter 



 
 
 
 

©Patrick-Gilles Maillot 108 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
The Get() functions presented above are all “one shot read” functions so to speak; They request data from 
WING, and wait for the right token to appear in the receiving queue. They will return the buffer content, 
adapting it to the requested type of data when applicable. This is a simple way to gather information from the 
console, but comes with a caveat if someone is also manipulating (locally or remotely) the desk. Indeed, as 
other changes take place and assuming your communication channel is in an ‘open’ state (i.e., your last 
communication with WING is less than 10s old), the console will natively send you changes that are taking 
place, resulting of the local or remote changes operated onto the desk.  
So, when a “one shot read” request arrives and is served, it will sort through the received data for the 
expected token, and in doing this will discard the data received prior to finding the correct token. 
 
wapi therefore provides another set of Get() functions for applications requiring a finer time control over the 
data they exchange with WING. In this new set of functions, the Get() instance will, as for the non-timed 
versions, gather information from WING and filter the possibly multiple78 received tokens for the first one 
matching the specified token provided at call time, for a given amount of time only. Only when the specified 
token is received or time has expired (whichever comes first) will the function process the data it received, if 
available. 
 
 

int wGetTokenTimed(wtoken token, wtype *type, wvalue *value, int timeout) 
wGetTokenTimed() is equivalent to its blocking sibling function call wGetToken(), but will block only for up to 
timeout microseconds; If no data corresponding to token token is received during that amount of time, the 
function will return WZERO. If a token token is received withing the time allocated by timeout, the function will 
parse data and return it as in the case of wGetToken(). 
 
 
 

int wGetTokenFloatTimed(wtoken token, float *fval, int timeout) 
The wGetFloatTimed() function is similar to the wGetTokenFloat() function in the sense it aims at retrieving 
from WING data and adapt it to floating-point format before returning it to fval; 
But it will do so over a period timeout, expressed in µs (microseconds).  
As long as timeout is not reached, the function is inquiring WING for data; If after timeout has expired, no 
data appears available, a value of WZERO is returned.  
If on the contrary data is available from WING, the function will check if the data token is the correct one; it 
will treat the data as done in the wGetTokenFloat() function; i.e. the value retrieved from WING is converted 
to float format as expected by the fval variable. 
For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as a float value in 
fval. Inquiring WING token CH_1_PEQ_ON will result in a value of 0.0 or 1.0, depending on the state of the 
token.  
On the other hand, inquiring WING token CH_1_NAME will most likely return a value of 0.0 and a status of 
WZERO; In some cases (i.e., you set the name to be string “123.7” for example) you may get a valid 
floating-point value returned. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for adapting token value to fval, or WSEND_TCP_ERROR if an error took 
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE. 

 
78 Can literally be hundreds 



 
 
 
 

©Patrick-Gilles Maillot 109 WING remote protocols – V 3.0.6-27 
 
 
 

If data is available from WING and the data token is not the expected one, the function discards data and 
inquires WING for new data. The above takes place as long as timeout is not reached. 
 
 
 

int wGetTokenIntTimed(wtoken token, int *ival, int timeout) 
The wGetTokenIntTimed() function is similar to the wGetTokenInt() function in the sense it aims at retrieving 
from WING data and adapt it to floating-point format before returning it to ival; 
But it will do so over a period timeout, expressed in µs (microseconds).  
As long as timeout is not reached, the function is inquiring WING for data, if no data appears available, a value 
of WZERO is returned.  
If on the contrary data is available from WING, the function will check if the data token is the correct one; it 
will treat the data as done in the wGetTokenInt() function; i.e. the value retrieved from WING is adapted to 
float format as expected by the ival variable. 
For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as an int value in 
ival. Inquiring WING token CH_1_PEQ_ON will result in a value of 0 or 1, depending on the state of the token.  
On the other hand, inquiring WING token CH_1_NAME will return a value of 0 and a status of WZERO; In some 
cases (i.e., you set the name to be string “12” for example) you may get a valid int value returned. 
The function returns WSUCCESS if the requested operation was successful, other values can be returned, such 
as WZERO if no suitable format was found for converting the retrieved value to ival, or WSEND_TCP_ERROR if an 
error took place while communicating with WING. Attempting to get a value from a token of type NODE will 
return WNODE. 
If data is available from WING and the data token is not the expected one, the function discards data and 
inquires WING for new data. The above takes place as long as timeout is not reached. 

 
 

int wGetTokenStringTimed(wtoken token, char* str, int timeout) 
The wGetTokenStringTimed() function is similar to the wGetTokenString() function in the sense it aims at 
retrieving from WING data and adapt it to string format before returning it to str; 
But it will do so over a period timeout, expressed in µs (microseconds).  
The function is inquiring WING for data until a timeout timeout is reached, if no data appears available, a 
value of WZERO is returned.  
If on the contrary data is available from WING, the function will check if the data token is the correct one; 
wGetTokenStringTimed() will then treat the data as done in the wGetTokenString() function; The value 
retrieved from WING is adapted to string format as expected by the str variable. Similar restrictions and 
conversion rules apply. For example, inquiring WING token CH_1_PEQ_1F will return the current value of the 
token as a string in str. Inquiring WING token CH_1_PEQ_ON will result in a 1-character string of “0” or “1”, 
depending on the state of the token. Similarly, a token with a floating-point native format would result in a 
string containing the string representation of the floating-point value. As a last example, inquiring WING token 
CH_1_NAME will return the string currently used for naming channel 1. Attempting to get a value from a token 
of type NODE will return WNODE. 
If data is available from WING and the data token is not the expected one, the function discards data and 
inquires WING for new data. The above takes place as long as timeout is not reached. 
 
 
  



 
 
 
 

©Patrick-Gilles Maillot 110 WING remote protocols – V 3.0.6-27 
 
 
 

A Small Program Example 
Let’s program! Assume you need to programmatically change the name of channels and mute/unmute the 
respective channels from data contained in a file. Let’s consider the file also contains initial channel faders, 
and covers channels 1 to 4. The file can be a text file such as: 
 
Steve  0  -144.0 
Jimmy  1  -30.0 
Carla  1  -22.0 
Jannet 0  -100.0 
 
This is C source code; easy to understand and translate if needed to other programming languages. 
We show on the right of the page the resulting channel strips 1-4: 
 
#include <stdio.h> 
#include <string.h> 
// 
#include “wapi.h” 
#include “wext.h” 
// 
int main() { 
    wtoken ntoken[] = {CH_1_NAME, CH_2_NAME, CH_3_NAME, CH_4_NAME}; 
    wtoken mtoken[] = {CH_1_MUTE, CH_2_MUTE, CH_3_MUTE, CH_4_MUTE}; 
    wtoken ftoken[] = {CH_1_FDR, CH_2_FDR, CH_3_FDR, CH_4_FDR}; 
    char   wingip[24] = ““;    int    mute; 
    float  fader; 
    char   name[24]; 
    FILE*  fd; 
    // 
    // we don’t know the IP of our console… 
    if (wOpen(wingip)!= WSUCCESS) exit(1); 
    printf(“WING found at IP: %s\n”, wingip); 
    // open the file for reading 
    if ((fd = fopen(“file”, “r”)) != 0) { 
        for (int i = 0; i< 4; i++) { 
            // get data from the file 
            fscanf(fd, “%23s %i %f”, name, &mute, &fader); 
            printf(“%s %i %f\n”, name, mute, fader); 
            // set/send values to WING; 
            // we don’t care about the returned status 
            wSetTokenString(ntoken[i], name); 
            wSetTokenInt(mtoken[i], mute); 
            wSetTokenFloat(ftoken[i], fader); 
        } 
    } 
    fclose(fd); 
    wClose(); 
    exit(0); 
} 

 

 

 
  



 
 
 
 

©Patrick-Gilles Maillot 111 WING remote protocols – V 3.0.6-27 
 
 
 

Event-driven updates 
There are times and situations when WING will send data to your program. This has been explained above: As 
soon as you are connected to WING and have exchanged data with it, the connection will stay in an open 
state for 10s, unless you specifically establish and close the TCP connection around your work. While this will 
help, it will not prevent WING to send you data while the TCP link is active, and is certainly not an effective 
way to manage data as you will send more resources in opening/closing the connection than in time sending 
or receiving data. 
wapi provides additional API functions to manage event driven applications. These are managed around the 
notion of ‘main loop’ as often found in IOT devices running Arduino devices, in standard Linux or Windows 
applications where a main loop ensures the management of all events coming from devices connected to your 
computer (mouse, keyboard, etc.). WING data can be treated just as any other event. 
API calls are therefore available to keep a connection between your application and WING alive, as well as to 
get data from WING, effectively emptying the event queue of the communication with the console. This will 
be assured with the wKeepAlive() and the wGetVoidPTokenTimed() function calls presented below. 
 
 
 

int wKeepAlive 
wKeepAlive() maintains the connection between WING and the calling program so data issued by the console 
with no request initiated by the program can be received in a main loop, or over an extended period of time 
beyond 10s79.  
In fact, this function can be called as often as you like and will optionally performs a small exchange with the 
console, based on an internal timer. The elapsed time between two effective exchanges of data with the 
console depend on the value of wKeepAlive_TIMEOUT which is part of the wapi.h file. 
The wKeepAlive() function returns WSUCCESS if a valid exchange took place to renew a 10 seconds working 
communication,  or WZERO if no exchange was necessary. The function can also return the values of 
WSEND_ERROR or WRECV_ERROR if communication was not successful. 
 
 
 
 

int wGetParsedEvents(wTV *tv, int maxevents) 
The wGetParsedEvents() API call is a specific Get function. Unlike other Get functions previously presented in 
this document, it does not expect data from a specific token, nor a specified format in which the data from 
the console should be converted to. The function will check the WING receive event queue for data and will 
only return when data is received by removing the events available from the oldest queue record. If no valid 
data is found, the function eventually returns with a network error.  
When data is available in the event queue events are retrieved in a FIFO order, and the token, type and data 
associated to events are returned to the calling application using the tv structure array. The function returns 
the number of events parsed if data has been returned to the calling program, WZERO if no events were found. 
It can also return WMEMORY on memory allocation errors or WRECV_ERROR on TCP read errors. The parameter 
maxevents represents the maximum number of entries tv can accept; The function will allocate memory for its 
event read buffer to match that size. 
 
 

 
79 The actual value in the wapi library may vary (but less than 10s) to ensure stability in event driven communications 



 
 
 
 

©Patrick-Gilles Maillot 112 WING remote protocols – V 3.0.6-27 
 
 
 

 
  



 
 
 
 

©Patrick-Gilles Maillot 113 WING remote protocols – V 3.0.6-27 
 
 
 

int wGetParsedEventsTimed(wTV *tv, int maxevents, int timeout) 
The wGetParsedEventsTimed() API call is similar to the wGetParsedEvents() function, but will returned after a 
maximum time of timeout in µs. Like in the case of the wGetParsedEvents() function, wGetParsedEventsTimed() 
does not expect data from a specific token, nor a specified format in which the data from the console should 
be converted to. The function will check the WING receive event queue for data and will only return when 
data is received by removing the events available from the oldest queue record. If no data is found before a 
timeout of timeout µs, the function returns with a value WZERO.  
If data is available in the event queue, events are retrieved in a FIFO order, and the token, type and data 
associated to events are returned to the calling application using the tv structure array. The function returns 
the number of events parsed if data has been returned to the calling program, WZERO if no events were found. 
It can also return WMEMORY on memory allocation errors or WRECV_ERROR on TCP read errors. The parameter 
maxevents represents the maximum number of entries tv can accept; The function will allocate memory for its 
event read buffer to match that size. 
 
 
In a typical, simple example of use of the two API calls shown in the following paragraph, the main loop is 
replaced with a while(1){} statement. 
 
#include <stdio.h> 
#include <string.h> 
// 
#include “wapi.h” 
#include “wext.h” 
// 
int main() { 
    int   i, j; 
    char  wingip[24] = ""; 
    wTV   TV[100]; 
 
    if ((i = wOpen(wingip)) != WSUCCESS) return(-1); 
    printf("WING found at IP: %s\n", wingip); 
    printf("Using version %i.%i\n", wVer()/256, wVer()&15); 
 
    while (1) { 
        wKeepAlive(); 
        // 
        if ((i = wGetParsedEventsTimed(TV, 100, 1000)) > 0) { 
             for (j = 0; j < i; j++) { 
                printf("W-> %s type = %i, data = ", wGetName(TV[j].token), TV[j].type); 
                if (TV[j].type == I32) printf("%i\n", TV[j].d.idata); 
                if (TV[j].type == F32) printf("%.2f\n", TV[j].d.fdata); 
                if (TV[j].type == S32) { 
                    if (TV[j].d.sdata) { 
                       printf("%s\n", TV[j].d.sdata); 
                       free(TV[j].d.sdata); 
                    } 
                } 
                fflush(stdout); 
             } 
        } else { 
            if (i != WZERO) { 
                printf("Error = %i\n", i); fflush(stdout); 
            } 
        } 
    } 
    return 0; 
} 

 
An example of (partial) output of the code snippet above, after launching the program and manipulating ch.1, 
2 and 3 mutes and ch. 1 fader: 
 



 
 
 
 

©Patrick-Gilles Maillot 114 WING remote protocols – V 3.0.6-27 
 
 
 

 



 
 
 
 

©Patrick-Gilles Maillot 115 WING remote protocols – V 3.0.6-27 
 
 
 

Nodes 
In many applications as well as in browsing over the JSON data structure, one can easily envision it would be 
interesting for optimization purposes to get and set a group of attributes at once, rather than establishing 
communication requests for each single parameter. 
 
Nodes were introduced in the X32 family to enable this functionality, and have been widely used in several 
applications for controlling the desk; In the case of WING this may be even more interesting due to the very 
large number/volume of parameter data available as one unrolls each branch in the JSON tree opening a new 
level of nodes and parameters. Each branch of the JSON tree can be walked through by a program, resulting in 
a (sometimes very large) set of {token, value} sets and a way to represent the depth in the hierarchical tree 
the reported sets are issues from. 
 
We show below the node data extracted (using a wapi call) for a few nodes: 
 
 
wing_root: {$stat{}, cfg{}, $syscfg{}, io{}, ch{}, aux{}, bus{}, main{}, mtx{}, dca{}, fx{}, 
cards{}, play{}, rec{}, $ctl{}, $globals{}} 
 
node $stat, size: 212,  
.A.stat=-,dev=,.B.stat=-,dev=,.C.stat=-,dev=,.lock=1,ppm=0,solo=0,sip=0,rtcerr=0,time='15:41:28',d
ate=2025-02-13,usbstate=IDLE,usbvolname=KINGSTON,sc_stat=-,sc_devices=,sc_upcnt=32,sc_dncnt=32,sc_
uprout=,rmt_a=,rmt_b=,rmt_c=,~~~~ 
 
node $syscfg, size: 208, 
.consolename=HMS-01,logflags=toto,ipmode=DHCP,ip0=169,ip1=254,ip2=24,ip3=25,msk0=255,msk1=255,msk2
=0,msk3=0,gw0=192,gw1=168,gw2=0,gw3=254,tcplock=0,usbh_spd=HS,eth_cfg=SEPARATED,opt_mod=DANTE,~ 
 
As mentioned above, some nodes such as ch, are very large (more than 80k characters). 
 
The set of values in a node list can be variable depending on the options (effects for example) loaded in the 
console at the time of the call, but all tokens are fixed and only contain known data types; A node can be set 
and retrieved as a single line of text with pre-formatted data, making it easy to store and manage in 
applications. wapi offers two methods of saving node data sets from the console, the first one is returning 
data like what is obtained using OSC (text data); the other one is more suitable to direct use from a compiled 
program, with binary data saved in specific structures containing the token and its respective data. The first 
method typically takes 2 or 3 seconds to get all WING data as multiple strings of node data. The second 
method is probably more suitable for use with wapi and is also faster (1 to 2 seconds) as no formatting is 
involved in saving the data returned by the console. 
 
The following functions list API entries to use WING nodes as defined above. 
 
 
  



 
 
 
 

©Patrick-Gilles Maillot 116 WING remote protocols – V 3.0.6-27 
 
 
 

int wSetNode(char *str) 
The wSetNode() function parses the string contained in str according to the format used in OSC nodes; For 
example, a string such as /ch.1.fdr=8.5,mute=1,/bus.1.fdr=5.0,.2.fdr=0.5 will set fader of channel 1 to the 
8.5dB value and mute the channel. Bus 1 fader will be set to 5dB and bus 2 fader will be set to 0.5dB.  
Each parameter=value group is separated by a ‘,’ character, the ‘/’ character represents the root of the JSON 
tree, and ‘.’ characters are used to navigate up and down within the JSON tree. String type values containing 
space characters should be encapsulated within ‘”’ characters, such as in /ch.1.name=”space name” 
The function returns a status WSUCCESS if the string was processed with no errors; It will return WNODE if a token 
or value provided with the string str is not valid. The function can also report other errors if communication 
issues were detected. str must be \0 ended. Please see a code example using wSetNode() further in this 
document. 
 
 
 

int wSetNodeFtomTVArray(wTV *array, int nTV) 
The wSetNodeFromTVArray() function sends updates to WING  in a single network exchange from the nTV 
elements in wTV (see below) array array; This is a great way to improve network performance. Although the 
function is the symmetrical to wGetNodeToTVArray(), it can accept hierarchically organized elements or 
uncorrelated elements as long as they are not nodes and contain valid tokens-values sets. The function 
returns WSUCCESS or an error if one takes place during allocating, preparing, or sending the resulting network 
buffer to WING. 
 
 
 

int wSetBinaryNode (unsigned char *array, int len) 
The wSetBinaryNode() function will load from array the len bytes of binary data commands to be executed by 
the desk in a single call. The function returns the number of bytes sent to the console on success or an error if 
one takes place during sending the buffer to WING.  
The length value returned by the call can be greater than the value of len. This results from the function call 
possibly adding escape characters specific to Wing native/binary protocol. 
 
A typical use for this call is external scene management80 such as in the code snippet below. 

 
 
 
void WRestoreS() { 
    unsigned char node[256000]; 
    int i, j; 
    // 
    if ((fd = fopen(“Scene.scn”, "rb")) != NULL) { 
        fread(&i, sizeof(int), 1, fd); 
        fread(node, i * sizeof(unsigned char), 1, fd); 
        if ((j = wSetBinaryNode(node, i)) < i) { 
            printf("Error: %d only bytes sent vs. %d\n", j, i); 
        } else { 
            printf("Restored Scene\n"); 
        } 
        fclose(fd); 
    } else { 
        printf("Cannot open Scene.scn\n"); 
    } 
    Return; 
} 

 
80 As opposed to WING internal Show files and Scene entities (see dedicated chapter) 



 
 
 
 

©Patrick-Gilles Maillot 117 WING remote protocols – V 3.0.6-27 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 118 WING remote protocols – V 3.0.6-27 
 
 
 

int wGetNode(wtoken node, char *str) 
The wGetNode() function will return in str a string of values separated formatted as in the OSC node 
convention and corresponding to the node token node.  
str must be large enough to accept the characters returned by the call. The function returns a status WSUCCESS 
if the node was processed with no errors; It will return WTOKEN if the token provided is not a valid node and 
WNODE if an error occurs during parsing the data received from the console. The function can also report other 
errors if communication issues were detected. The line of text returned by the function end with a line-feed 
and a \0 byte. 
Note that it may not be possible to directly send node data as a string received with a wGetNode() using 
wSetNode(); Indeed, some nodes have variable/dynamically assigned parameters, such as in the case of 
equalizer models, and the parameter names reported by wGetNode() must be changed to a numerical list of 
parameters prior to being passed as a parameter string to wSetNode(); See “Dynamic parameters 
anonymization in wapi” further in this document. 
 
 
 

int wGetNodeToTVArray (wtoken node, wTV *array) 
The wGetNodeToTVArray() function will return in TV, an array of structures wTV (see below), all values 
respective of their corresponding token and part of the node token node.  
array must be large enough to accept the data returned by the call (see below for the number of elements for 
each level-1 node). The function the number of tokens in the array array if the node was processed with no 
errors; It will return WTOKEN if the token provided is not a valid node and WNODE if an error occurs during parsing 
the data received from the console. The function can also report other errors if communication issues were 
detected.  
 
 
Below is an indicative value of the number of wTV structures in the returned arrays for each level-1 node of the 
console at the time of this writing; The sum of the values following ‘size:’ give an idea of the number of 
parameters the console knows. 
 

node $stat, size: 23 
node cfg, size: 194 
node $syscfg, size: 25 
node io, size: 6054 
node ch, size: 12400 
node aux, size: 2008 
node bus, size: 2736 
node main, size: 440 
node mtx, size: 728 
node dca, size: 144 
node mgrp, size: 16 
node fx, size: 624 
node cards, size: 74 
node play, size: 18 
node rec, size: 7 
node $ctl, size: 5328 
node $globals, size: 11 

 
Below is a C code source example of use of WSetNode(); The program will set the faders of channels 1 to 4 to 
different positions, unmute channels 1 and 3, channel 2 mute is unchanged and channel 4 will be muted. DCA 
1 is muted and its fader is set to 1dB. 



 
 
 
 

©Patrick-Gilles Maillot 119 WING remote protocols – V 3.0.6-27 
 
 
 

 
/* 
 * wtest.c 
 * 
 *  Created on: Oct. 18, 2020 
 *      Author: Patrick-Gilles Maillot 
 */ 
// 
#include <stdio.h> 
#include <string.h> 
// 
#include "wapi.h" 
#include "wext.h" 
// 
int main() { 
    int    i; 
    char      wingip[24] = ""; 
    char      wtest1[64] = "/ch.1.fdr=8.5,mute=1,name=toto,.2.fdr=0,/dca.1.fdr=1.0,mute=0"; 
    char      wtest2[64] = "/ch.3.fdr=-20,mute=0,name=,.4.fdr=-60,mute=1"; 
    // 
    if ((i = wOpen(wingip)) != WSUCCESS) exit(1); 
    printf("WING found at IP: %s\n", wingip); 

     unsigned int ui = wVer(); 
     printf("Using wapi ver: %i.%i.%i-%i\n", ui >> 24, (ui & 0xff0000) >> 16,  
                                                   (ui & 0xff00) >> 8, ui & 0xff); 
     // 

    i = wSetNode(wtest1); 
    printf("result = %d, initial data: %s\n", i, wtest1); 
    i = wSetNode(wtest2); 
    printf("result = %d, initial data: %s\n", i, wtest2);  
    return(0); 
} 

 
 
A listing of the program when ran: 
 

 
 
 
Below the resulting state of the console, starting from an init state: 

 



 
 
 
 

©Patrick-Gilles Maillot 120 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
Requesting the full set of nodes from a freshly initialized console81 results in a file of 200000+ characters, and 
is therefore a lot of data to manage. Over WIFI, it takes about 2 seconds to execute a full dump as OSC-like 
node data and 1 to 2 seconds to retrieve a full dump as wTV structures.  
 
We show below a typical example of the OSC-like node string for ch.1 returned by wapi when using wGetNode(): 
 
node ch:  
.1.in.set.$mode=M,srcauto=0,altsrc=0,inv=0,trim=0.00,bal=0.00,$g=0.00,$vph=0,dly=0.00,.conn.grp=LC
L,in=1,altgrp=OFF,altin=1,..flt.lc=0,lcf=100.24,hc=0,hcf=10018.26,tf=0,mdl=TILT,tilt=0.00,.clink=0
,col=1,name="",icon=1,led=1,mute=0,fdr=144.00,pan=0.00,wid=100.00,$solo=0,$sololed=0,solosafe=0,mo
n=A,proc=GEDI,ptap=4,$presolo=0,peq.on=0,1g=0.00,1f=99.69,1q=2.00,2g=0.00,2f=999.25,2q=2.00,3g=0.0
0,3f=10016.53,3q=2.00,.gate.on=0,mdl=GATE,thr=40.00,range=40.00,att=10.00,hld=10.00,rel=199.40,acc
=0.00,ratio=1:3,.gatesc.type=OFF,f=1002.37,q=2.00,src=SELF,tap=IN,$solo=0,.eq.on=0,mdl=STD,mix=100
.00,$solo=0,$solobd=1,lg=0.00,lf=80.20,lq=2.00,leq=SHV,1g=0.00,1f=200.00,1q=2.00,2g=0.00,2f=601.39
,2q=2.00,3g=0.00,3f=1499.79,3q=2.00,4g=0.00,4f=3990.52,4q=2.00,hg=0.00,hf=11994.42,hq=2.00,heq=SHV
,.dyn.on=0,mdl=COMP,mix=100.00,gain=0.00,thr=10.00,ratio=3.00,knee=3,det=RMS,att=50.00,hld=20.00,r
el=152.57,env=LOG,auto=1,.dynxo.depth=6.00,type=OFF,f=1002.37,$solo=0,.dynsc.type=OFF,f=1002.37,q=
2.00,src=SELF,tap=IN,$solo=0,.preins.on=0,ins=NONE,$stat=,.main.1.on=1,lvl=0.00,.2.on=0,lvl=0.00,.
3.on=0,lvl=0.00,.4.on=0,lvl=0.00,..send.1.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wi
d=100.00,.2.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.3.on=0,lvl=144.00,po
n=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.4.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan
=0.00,wid=100.00,.5.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.6.on=0,lvl=1
44.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.7.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,pli
nk=0,pan=0.00,wid=100.00,.8.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.9.on
=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.10.on=0,lvl=144.00,pon=0,ind=0,mod
e=PRE,plink=0,pan=0.00,wid=100.00,.11.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=10
0.00,.12.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.13.on=0,lvl=144.00,pon=
0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.14.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=
0.00,wid=100.00,.15.on=0,lvl=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.16.on=0,lvl=
144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,..postins.on=0,mode=FX,ins=NONE,w=0.00,$st
at=,.tags="",$fdr=144.00,$mute=0,$muteovr=0, 
 
 

 
81 FW 1.10 



 
 
 
 

©Patrick-Gilles Maillot 121 WING remote protocols – V 3.0.6-27 
 
 
 

 

int wGetBinaryNode (wtoken node, unsigned char *array, int maxlen) 
The wGetBinaryNode() function will return in array the raw, binary data corresponding to the WING node 
selected with token node. The storage buffer array must be large enough to accept the data returned by the 
call, up to maxlen bytes. The function returns the number of bytes saved in array, or an error status if less or 
equal to 0.  
Note that token node can represent a node or a parameter. 
A typical use for this call is external scene management82 such as in the code snippet below. 
 
 

void WSaveS() { 
    unsigned char node[2048]; 

int i; 
    // 
    if ((fd = fopen(Scene.scn, "wb")) != NULL) { 
        // Get the node data for CH_1, composed of many 0xd7<Wing data> parts 
        if ((i = wGetBinaryNode(CH_1, node, 2048)) < WSUCCESS) { 
            fclose(fd); 
            printf("Error reading node %d\n", tarray[ta]); 
            return; 
        } 
        fwrite(&i, sizeof(int), 1, fd); 
        fwrite(node, i * sizeof(unsigned char), 1, fd); 
        printf("Saved scene\n"); 
        fclose(fd); 
    } else { 
        printf("Cannot create Scene.scn\n"); 
    } 
    return; 
} 
 
 
 

int wGetBinaryData (char *str, unsigned char *array, int maxlen) 
The wGetBinaryData() function will return in array the raw, binary data corresponding to the WING node or 
parameter represented by its text description str. The storage buffer array must be large enough to accept 
the data returned by the call, up to maxlen bytes.  
str is a string of characters enabling to select a single WING node or parameter, for example: 

“/ch” (a node),  
“/ch.1.eq” (a node), or  
“/ch.1.name” (a parameter).  

The function returns the number of bytes saved in array, or an error status if less or equal to 0.  
  

 
82 As opposed to WING internal Show files and Scene entities (see dedicated chapter) 



 
 
 
 

©Patrick-Gilles Maillot 122 WING remote protocols – V 3.0.6-27 
 
 
 

Meters 
 
WING offers many measurement points along the digital audio path; As a result, there are numerous meters. 
As briefly presented in a table earlier in this document, every Channels, Aux, Bus, Main and Matrix strip offers 
no less than 8 meters: input left & right, output left & right, gate key & gain, and dyn key & gain. This alone 
represents 608 meters that can be retrieved, and there are even more with V2 (version 2) meters, and many 
more meter data from other metering points. 
The network data path for getting meter values is separated from the main network communication to keep 
things simpler for the programmer and sound engineer. 
Meter data is transmitted to a UDP port chosen by the user. When selecting which meters to receive, the user 
associates an ID to the request, enabling simpler identification of the received data. As soon as a valid meter 
request is received, WING will send back the respective meter data for 5 seconds, every approximately every 
50ms. To continue or continuously receive a set of meter data, the user must renew the request for data by 
issuing a simple renew command containing the ID of the requested meter set. 

Meters API 
wapi offers a small set of function calls to help programmers manage meter data. it hides the networking 
complexity and proposes a simple way of selecting what meter to get back from the digital console. Meter 
data will be provided back to the application in the form of a buffer of values, decoding data being left to the 
application. 
 
 

int wMeterUDPPort (int wport) 
The wMeterUDPPort() API call enable users to select the UDP port WING will send meter data to. It also prepares 
the wapi internal network for receiving meter data and being able to return data to the user application. wport 
is a standard UDP port and must be available for receiving data. The function returns WSUCCESS if everything is 
set correctly or will return an error value if the request was not successful. 
 
 

int wSetMetersRequest(int reqID, unsigned char *wMid) 
wSetMetersRequest() must be called in order to start receiving meter data. The API associates a request ID 
reqID to a selection of meters to receive. The request ID helps renewing the request for data and sorting 
through potentially multiple data sets sent by the console. The wMid parameter holds the selection of meters 
that can be recovered from WING in an array of 29 bytes. Each bit (from left to right) in the array of 29 bytes 
represents a meter family that can be received from the console, and is shown in the table below: 
 

byte index bits selection 
0-4 1-40 Channel 1-40 
5 1-8 Aux 1-8 
6-7 1-16 Bus 1-16 
8 1-4 Main 1-4 
9 1-8 Matrix 1-8 
10 1-8 DCA 1-8 
11-12 1-16 FX proc 1-16 
13-14 1-16 Source input 1-16 
15-16 1-11 Output 1-11 
17 1 Monitor 
18 1 RTA 
19-23 1-40 Channel V2 1-40 
24 1-8 Aux V2 1-8 
25-26 1-16 Bus V2 1-16 



 
 
 
 

©Patrick-Gilles Maillot 123 WING remote protocols – V 3.0.6-27 
 
 
 

27 1-4 Main V2 1-4 
28 1-8 Matrix V2 1-8 

For example, a C source language array declaration as follows will request meters for channels 1 and 40: 
unsigned char mbits[29] = {0x80, 0, 0, 0, 0x01, 0}; // bytes indexes 5 to 28 are 0    

 
 

int wRenewMeters(int reqID) 
The wRenewMeters() API call is used to renew a previous request for meter data; This function should be 
called every 5 seconds maximum in order to avoid losing meter data if continuous receiving is expected. The 
reqID parameter must be previously defined with a call to wSetMetersRequest(). The function returns 
WSUCCESS if the request is accepted, or will return other error status values otherwise. 
 
 
 

int wGetMeters(unsigned char *buf, int maxlen, int timeout) 
wGetMeters() will check if meter data has been received or is available. The call can be blocking or 
un-blocking depending on the value of timeout. A timeout of 0 will block the application in reading mode 
until data is available. A non-zero value of timeout, expressed in micro-seconds will return after the provided 
value and return to the caller with a value of WZERO (0) if no data is available or will return sooner with the 
actual number of bytes read available in buf.  
The maxlen parameter indicates the maximum number of bytes buf can hold. It is the responsibility of the 
application to ensure buf is large enough to accept maxlen bytes. 
 
The data returned by the wGetMeters() function is coded as follows: 
<reqID><[meter data group][meter data group]  … > 
 
Each meter data group is composed of several big-endian 16bits integers typically representing meter 
values expressed in 1/256th of a dB, or otherwise returned data (for ex. Gate led returns 0 or 1).  
 
The table below provides the number and origin of each meter data for each of the possible meter groups: 
 

Group name Contents 
channel 
aux 
bus 
main 
matrix 

input left 
input right 
output left 
output right 
gate key 
gate gain 
dyn key 
dyn gain 

dca pre fader left 
pre fader right 
post fader left 
post fader right 

fx input left 
input right 
output left 
output right 
state meters (1…6) 

source source group levels (i.e. 
local ins: 8 meters) 

output output group levels (i.e. 
local outs: 8 meters) 

monitor solo bus left 
solo bus right 
mon 1 left 
mon 1 right 



 
 
 
 

©Patrick-Gilles Maillot 124 WING remote protocols – V 3.0.6-27 
 
 
 

mon 2 left 
mon 2 right 

rta rta slot meters (120) 
channel V2 
aux V2 
bus V2 
main V2 
matrix V2 

input left 
input right 
output left 
output right 
gate key 
gate gain 
gate led 
dyn key 
dyn gain 
dyn state 
automix gain 

 
 
Below is an example of buffers received after requesting meter data for channel 1 and using different sources, 
with Ch 1 fader set to +3dB.  
As received data uses signed 16bits ([-32768…+32767]) and is expressed in 1/256th of dB, the actual meter 
value can be calculated as <int16>/256.  
Note that fx return a different format for their meters, with value in dB = return value * 6.0 / 2048. 
 
 
 
                                      gate gate  dyn  dyn 
          <reqID>  inL  inR outL outR  key gain  key gain 
 
W→ 20 B: 00000002 9bb2 9bb2 8000 8000 9b7c 0000 8000 0000 (no input) 
                  -100 -100 -128 -128 -100    0 -128    0  
W→ 20 B: 00000002 f9fb f9fb fcfb fcfb f9fb 0000 ee01 0000 (OSC 1kHz, -6dB) 
                    -6   -6   -3   -3   -6    0  -17    0 
W→ 20 B: 00000002 d7fd d7fd dafd dafd d7fd 0000 aa02 0000 (OSC 1kHz, -40dB) 
                   -40  -40  -37  -37  -40    0  -85    0 
 
  



 
 
 
 

©Patrick-Gilles Maillot 125 WING remote protocols – V 3.0.6-27 
 
 
 

RTA test program 
We show here is a small C / Windows program example showing how to get and display RTA. The scaling of 
meter data is tweaked in order to provide better readability, but isn’t meant to be dB accurate. 
 
/* 
 * wrta.c 
 * 
 *  Created on: May 9, 2020 
 *      Author: Patrick-Gilles Maillot 
 * 
 * 
 * History 
 *  ver 0.0: initial release 
 *  ver 0.1: changed color scheme and used a pow() function to better match WING  
 *             results out of raw meter data;  
 *           updated to meters V2 
 */ 
#include <windows.h> 
#include <stdio.h> 
#include <sys/time.h> 
#include <math.h> 
#include "../wapi/wapi.h" 
#include "../wapi/wext.h" 
// 
// Windows Declarations 
WINBASEAPI HWND WINAPI GetConsoleWindow(VOID); 
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 
// 
HINSTANCE       hInstance = 0; 
HWND            hwndipaddr, hwndconx; 
HDC             hdc; 
PAINTSTRUCT     ps; 
MSG             wMsg; 
HFONT           hfont; 
HPEN            wnpen;                 // no line 
HBRUSH          gBrush, rBrush, yBrush, wBrush;    // Green, red, yellow, white 
int             keep_running = 1;      // mainloop control 
int             ready = 0;             // Ready flag after connect OK 
char            wingip[24] = "";       // Let wapi tell us our IP 
int             M_id = 3;              // Meters request ID 
int             M_port = 10026;        // Meters UDP port 
 
#define MAXLEN  254                    // enough for RTA (244 bytes) 
unsigned char   buf[MAXLEN];           // data buffer 
int             len; 
// 
time_t          before = 0;            // Timers 
time_t          now; 
// 
unsigned char    mbits[29] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
                             0, 0, 0, 0, 0, 0, 0, 0, 0x80, // RTA 
                             0, 0, 0, 0, 0, 0, 0, 0}; 
// 
// void wRTAMeters() 
// A basic RTA, positioned height is 128, width is 5 per freq. (120 Freqs) 
// we draw (systematically) rectangles from 0 to 128, varying the color depending on value and 
// pre-defined thresholds for yellow and red. We always optionally draw green, yellow, red, 
// and finally white 
void wRTAMeters(int basex, int basey, int value) { 
    int basexx = basex + 5; 
    int baseyy = basey + 128; 
    basex++; 
    // not trying to be accurate, but close to WING data behavior 
    // 
    if (value < 48) { 
        SelectObject(hdc, gBrush); 
        SelectObject(hdc, wnpen); 
        Rectangle(hdc, basex, baseyy, basexx, baseyy - value); 
        SelectObject(hdc, wBrush); 
        Rectangle(hdc, basex, baseyy - value, basexx, basey); 
    } else if (value < 96) { 



 
 
 
 

©Patrick-Gilles Maillot 126 WING remote protocols – V 3.0.6-27 
 
 
 

        SelectObject(hdc, gBrush); 
        SelectObject(hdc, wnpen); 
        Rectangle(hdc, basex, baseyy, basexx, baseyy - 48); 
        SelectObject(hdc, yBrush); 
        Rectangle(hdc, basex, baseyy - 48, basexx, baseyy - value); 
        SelectObject(hdc, wBrush); 
        Rectangle(hdc, basex, baseyy - value, basexx, basey); 
    } else { 
        SelectObject(hdc, gBrush); 
        SelectObject(hdc, wnpen); 
        Rectangle(hdc, basex, baseyy, basexx, baseyy - 48); 
        SelectObject(hdc, yBrush); 
        Rectangle(hdc, basex, baseyy - 48, basexx, baseyy - 96); 
        SelectObject(hdc, rBrush); 
        Rectangle(hdc, basex, baseyy - 96, basexx, baseyy - value); 
        SelectObject(hdc, wBrush); 
        Rectangle(hdc, basex, baseyy - value, basexx, basey); 
    } 
} 
// 
// Windows main function and main loop 
// 
int WINAPI wWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, PWSTR lpCmdLine, int nCmdFile) { 
// 
    union { 
        unsigned char    cc[2]; 
        short            ii; 
    } endian; 
    int                  ival = 0; 
    float                fval; 
    // 
    WNDCLASSW wc = {0}; 
    wc.lpszClassName = L"WING RTA"; 
    wc.hInstance = hInstance; 
    wc.hbrBackground = GetSysColorBrush(COLOR_3DFACE); 
    wc.lpfnWndProc = WndProc; 
    wc.hCursor = LoadCursor(0, IDC_ARROW); 
    // 
    RegisterClassW(&wc); 
    CreateWindowW(wc.lpszClassName,  
        L"wrta - WING RTA wapi demo          (c)2021   PG Maillot - ver 0.1", 
        WS_OVERLAPPED | WS_VISIBLE | WS_SYSMENU, 
        220, 220, 630, 220, 0, 0, hInstance, 0); 
    // 
    // Main loop 
    while (keep_running) { 
        if (PeekMessage(&wMsg, NULL, 0, 0, PM_REMOVE)) { 
            TranslateMessage(&wMsg); 
            DispatchMessage(&wMsg); 
        } 
        if (ready) { 
            now = time(NULL);                // maintain meters 
            if (now > before + 4) {          // by sending 
                wRenewMeters(M_id);          // request every less than 
                before = now;                // 5 seconds 
            } 
            // Read meters (if any data) with a timeout of 10ms 
            if ((len = wGetMeters(buf, MAXLEN, 10000)) > 0) { 
                for (int i = 0; i < 120; i++) { 
                    endian.cc[0] = buf[5 + i + i];    // channel in 1 
                    endian.cc[1] = buf[4 + i + i]; 
                    fval = ((float)(endian.ii + 32768)/32768.); 
                    ival = pow(fval, 10) * 128; 
                    wRTAMeters(10 + i * 5, 40, ival); 
                } 
            } 
        } 
    } 
    return (int) wMsg.wParam; 
} 
// 
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) { 
    // 



 
 
 
 

©Patrick-Gilles Maillot 127 WING remote protocols – V 3.0.6-27 
 
 
 

    char *str1[] = {" 18", "  0", " -6", "-12", "-18", "-26", "-40", "-oo"}; 
 
    switch (msg) { 
    case WM_CREATE: 
        hwndconx = CreateWindow("button", "Connect", WS_VISIBLE | WS_CHILD, 
                5, 15, 85, 20, hwnd, (HMENU)1, NULL, NULL); 
        hwndipaddr = CreateWindow("Edit", NULL, WS_CHILD | WS_VISIBLE | WS_BORDER, 
                95, 15, 120, 20, hwnd, (HMENU)0, NULL, NULL); 
        break; 
    case WM_PAINT: 
        hdc = BeginPaint(hwnd, &ps); 
        SelectObject(hdc, hfont); 
        SetBkMode(hdc, TRANSPARENT); 
        for (int i = 0; i < 8; i++) { 
            TextOut(hdc, 0, 40 + i*16+10, str1[i], strlen(str1[i])); 
            MoveToEx(hdc, 11, 40 + i*16+15, NULL); 
            LineTo(hdc, 609, 40 + i*16+15); 
        } 
        break; 
    case WM_COMMAND: 
        if (HIWORD(wParam) == BN_CLICKED) {    // user action 
            switch (LOWORD(wParam)) { 
            case 1: 
                if (ready) { 
                    keep_running = 0; 
                    PostQuitMessage(0); 
                } else { 
                    // Connect clicked 
                    if (wOpen(wingip) != WSUCCESS) exit(1); 
                    SetWindowText(hwndipaddr, wingip); 
                    // set udp  port to receive UDP data and request meters for channel 1 
                    if (wMeterUDPPort(M_port) != WSUCCESS) exit(1); 
                    if (wSetMetersRequest(M_id, mbits) != WSUCCESS) exit(1); // Meter req ID 3 
                    ready = 1; 
                } 
                break; 
            } 
        } 
        break; 
    case WM_DESTROY: 
        keep_running = 0; 
        PostQuitMessage(0); 
        break; 
    } 
    return DefWindowProcW(hwnd, msg, wParam, lParam); 
} 
// 
// main program 
int main(int argc, char **argv) { 
    HINSTANCE hPrevInstance = 0; 
    PWSTR pCmdLine = 0; 
    int nCmdFile = 0; 
    // Hide console window 
    ShowWindow(GetConsoleWindow(), SW_HIDE); 
    // Set colors 
    gBrush = CreateSolidBrush(RGB(0, 200, 20)); 
    yBrush = CreateSolidBrush(RGB(255, 200, 20)); 
    rBrush = CreateSolidBrush(RGB(255, 30, 0)); 
    wBrush = CreateSolidBrush(RGB(255, 255, 255)); 
    wnpen = CreatePen(PS_NULL, 0, RGB(0, 0, 0)); 
    hfont = CreateFont(8, 0, 0, 0, FW_MEDIUM, 0, 0, 0, 
            DEFAULT_CHARSET, OUT_OUTLINE_PRECIS, CLIP_DEFAULT_PRECIS, 
            ANTIALIASED_QUALITY, VARIABLE_PITCH, TEXT("Arial")); 
    // Launch program 
    wWinMain(hInstance, hPrevInstance, pCmdLine, nCmdFile); 
    wClose(); 
    return 0; 
} 
 

And the resulting displays: Sine wave signal 1kHz: 
 



 
 
 
 

©Patrick-Gilles Maillot 128 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
Pink noise mode:  
 

 
 

 
 
White noise mode: 
 

 
 

 
 



 
 
 
 

©Patrick-Gilles Maillot 129 WING remote protocols – V 3.0.6-27 
 
 
 

Channel strips layers 
WING consoles offer a full customization of their control surface or screen, enabling the standard/default 
settings of course but any strip can be configured to become a different one.  

The goal here is not to describe how to use the feature, but to warn the programmer on a specific parameter 
when using channel strip layers with wapi.  

The typical set of parameters for Section Left, layer 1 node 1 is the following: 

/$ctl/layer/L/1 
/$ctl/layer/L/1/ofs 
/$ctl/layer/L/1/name 
 
/$ctl/layer/L/1/1 
/$ctl/layer/L/1/1/type 
/$ctl/layer/L/1/1/i 
/$ctl/layer/L/1/1/dst 
/$ctl/layer/L/1/1/val 

 

The type can take different values of assigned channel strip type: CH, BUS, DCA, SEN, FX, MIDI CC. For all but 
the type MIDI CC, the set of attributes is receiving a fixed name. In the case of MIDI CC, the attribute val is 
anonymized as 1. Therefore, all wapi tokens will fit to their counterpart’s name, except for val, as shown 
below: 

/$ctl/layer/L/1 $CTL_LAYER_L_1 

/$ctl/layer/L/1/ofs $CTL_LAYER_L_1_OFS 

/$ctl/layer/L/1/name $CTL_LAYER_L_1_NAME 

  

/$ctl/layer/L/1/1 $CTL_LAYER_L_1_1 

/$ctl/layer/L/1/1/type $CTL_LAYER_L_1_1_TYPE 

/$ctl/layer/L/1/1/i $CTL_LAYER_L_1_1_I 

/$ctl/layer/L/1/1/dst $CTL_LAYER_L_1_1_DST 

/$ctl/layer/L/1/1/val $CTL_LAYER_L_1_1_1 

 
 
 
 
 
 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 130 WING remote protocols – V 3.0.6-27 
 
 
 

Effects and Plugins 
WING comes with an impressive number of effects, plugins and emulations that can be used on any channel 
without costing any FX slots. In every channel, Gate, EQ Compressor can take different processing models you 
can organize and change on the fly. The following pages below present the different effects and their 
parameters. For a detailed description of effects and plugins, please refer to the “Processing and Effects 
Plug-in Guide”83 on Behringer’s website. 

Plugins 
Plugins entries are directly included with channels, busses, etc. and can either default to WING standard 
algorithms or adapt to alternative plugins to color your sound or fit your taste when it comes to mixing. 
Plugins are showing under the main JSON structure, only when instantiated. WING Channel audio engines 
enable 4 sorts of plugins: Filter, Gate, EQ and Dynamics. Bus, Main and Matrix audio engines support EQ and 
Dynamics plugins. 
 
The choice of plugin is represented by the name (or model) of the plugin, as set under the respective “mdl” 
token; After a console reset, the default channel Filter, Gate, EQ and Dynamics plugins will be “TILT”, “GATE”, 
“STD”, and “COMP”, respectively, and these can be changed to one of the multiple plugins available within the 
console (respecting the category they apply to of course). 
 
The choice of plugin is represented by the name (or model) of the plugin, as set under the respective “mdl” 
token; authorized values are: 
 
Filters: 

TILT EQ, MAXER, AP 90, AP 180 
 
Gates: 

GATE/EXPANDER, DUCKER, EVEN 88 GATE, SOUL 9000 GATE, DRAW MORE 241, BDX902 DEESSER, WAVE 
DESIGNER, DYNAMIC EQ, SOUL WARMTH PRE, 76 LIMITER AMP, LA LEVELER, AUTO RIDER, SOURCE 
EXTRACTOR, SOURCE EXTRACTOR/LA LEVELER combo 

 
Equalizers: 

WING EQ, SOUL ANALOGUE, EVEN 88 FORMANT, EVEN 84, FORTISSIMO 110, PULSAR, MACH EQ4 
 
Compressors: 

WING COMPRESSOR, WING EXPANDER, BDX 160 COMP, BDX 560 EASY, DRAW MORE COMP, EVEN COMP/LIM, 
SOUL 9000, SOUL BUS COMP, RED3 COMPRESSOR, 76 LIMITER AMP, LA LEVELER, FAIR KID, ETERNAL 
BLISS, NO-STRESSOR, WAVE DESIGNER, AUTO RIDER, PIA2250 RACK, LTA100 LEVELER, SOURCE 
EXTRACTOR/LA LEVELER combo 

 
For a wapi program to gain access to plugin parameters, independently from the plugin being installed/loaded 
at a given slot, the plugin parameter names are being ‘anonymized’ to names 1…n, rather than the names that 
are listed with each single plugin. The actual parameter names for each separate plugin are listed in the plugin 
description tables later in this document and are preceded with their apparition number in the plugin 
parameter list; For example, to access the “range” value of plugin “GATE” used in channel 03, you would set 
the token value to CH_3_GATE_2. 
 

 
83 See: https://mediadl.musictribe.com/media/PLM/data/docs/P0BV2/EFFECTS%20GUIDE_M_BE_0603-AEN_WING.pdf 
 



 
 
 
 

©Patrick-Gilles Maillot 131 WING remote protocols – V 3.0.6-27 
 
 
 

In the small program shown below, we replace the default Gate and Dynamics plugins for Channel 1 and set 
their respective parameters values to arbitrary values. For this example, we use the settings of the AUTO RIDER 
DYNAMICS gate and Dynamics plugins; Note that the settings are different for Gate and Compression, despite 
the plugin carrying the same name. 

 
#include <stdio.h> 
#include <string.h> 
// 
#include “wapi.h” 
#include “wext.h” 
// 
int main () { 
 
    char  wingip[24] = ““; 
 
    // we don’t know the IP of our console… 
    if (wOpen(wingip) != WSUCCESS) exit(1); 
    printf(“WING found at IP: %s\n”, wingip); 
 
    wSetTokenString(CH_1_GATE_MDL, “RIDE”); //Auto Rider Dynamics 
    wSetTokenFloat(CH_1_GATE_1, -30.);      // thr 
    wSetTokenFloat(CH_1_GATE_2, 0.);        // tgt 
    wSetTokenInt(CH_1_GATE_3, 20);          // spd 
    wSetTokenFloat(CH_1_GATE_4, 8.);        // ratio 
    wSetTokenFloat(CH_1_GATE_5, 0.5);       // hold 
    wSetTokenFloat(CH_1_GATE_6, 6.0);       // range 
 
    wSetTokenString(CH_1_DYN_MDL, “RIDE”);  //Auto Rider Dynamics 
    wSetTokenFloat(CH_1_DYN_1, 50.);        // mix 
    wSetTokenFloat(CH_1_DYN_2, 0.);         // gain 
    wSetTokenFloat(CH_1_DYN_3, -30.);       // thr 
    wSetTokenFloat(CH_1_DYN_4, 0.);         // tgt 
    wSetTokenInt(CH_1_DYN_5, 20);           // spd 
    wSetTokenFloat(CH_1_DYN_6, 4.);         // ratio 
    wSetTokenFloat(CH_1_DYN_7, 0.5);        // hold 
    wSetTokenFloat(CH_1_DYN_8, 3.0);        // range 
 
    wClose(); 
    return 0; 
} 

 

  



 
 
 
 

©Patrick-Gilles Maillot 132 WING remote protocols – V 3.0.6-27 
 
 
 

Effects 
Effects nodes are part of the main JSON structure, under the fx.n names, with n: [1…16] representing the 16 
effects slots available for simultaneous use in the WIN audio processing. These 16 slots are divided in two sets 
of slots: 1-8 accepting premium, standard or channel effects, and slots 9-16 accepting standard and channel 
effects, respectively.  
 
As in the case of plugins, the choice of effect is represented by the name (or model) of the effect, as set under 
the respective “mdl” token; authorized values are:  
 
Premium 

NONE, EXTERNAL, HALL REVERB, ROOM REVERB, CHAMBER REVERB, PLATE REVERB, CONCERT REVERB, 
AMBIENCE, VSS3 REVERB, VINTAGE ROOM, VINTAGE REVERB, VINTAGE PLATE, BLUE PLATE, GATED 
REVERB, REVERSE REVERB, DELAY/REVERB, SHIMMER REVERB, SPRING REVERB, DIMENSION CRS, STEREO 
CHORUS, STEREO FLANGER, STEREO DELAY, ULTRATAP DELAY, TAPE DELAY, OILCAN DELAYB, BBD DELAY, 
STEREO PITCH, DUAL PITCH 

 
Standard 

NONE, EXTERNAL, GRAPHIC EQ, PIA 560 GEQ, SPEAKER MANAGER, TRIPLE DYNAMIC EQ, C5-COMBINATOR, 
PRECISION LIMITER, 2-BAND DEESSER, ULTRA ENHANCER, EXCITER, PSYCHO BASS, SUB OCTAVER, SUB 
MONSTER, VELVET IMAGER, DOUBLE VOCAL, PICH FIX, ROTARY SPEAKER, PHASER, TREMOLO/PANNER, 
TAPE MACHINE, MOOD FILTER, BODYREZ, RACK AMP, UK ROCK AMP, ANGEL AMP, JAZZ CLEAN AMP, 
DELUXE AMP 

 
Channel 

NONE, EXTERNAL, SOUL ANALOGUE, EVEN 88 FORMANT, EVEN 84, FORTISSIMO 110, PULSAR, 
MACH EQ4, EVEN CHANNEL, SOUL CHANNEL, VINTAGE CHANNEL, BUS CHANNEL, MASTERING 

 
 
Effects can be used as dedicated inserts at defined locations within the audio path. 
If an effect is part of a channel insert, assigning the effect to a different channel will remove the effect from its 
previous channel assignment. In order to create a more traditional effect bus, WING requires to dedicate one 
of the channels to the operation; Channels that want to use the effect bus can the send their audio (or a part 
of it) to the channel that carries the effect, creating an effect mix bus that will apply the same effect to several 
sources mixed into the effect channel and provide the resulting effect as a traditional effect return that can be 
routed to a bus. 
 
As for the case of plugins, Effect types/engines are represented by their respective model’s name under the 
“mdl” OSC tag, enabling the selection (loading) of a specific in one of the 16 available effect slots. 
 
The JSON tree dedicated to effects has the following structure: 
“fx”: { 
 “1”: { 
  “mdl”: “NONE”, 
  “fxmix”: 100 
 } 

“2”…”16”: {} 
} 

 
In fact, there are a few more, read-only84 elements in the actual WING structure of a non-affected effect slot, 
resulting in the following JSON structure: 
“fx”: { 
 “1”: { 
  “mdl”: “NONE”, 

 
84 Read-only JSON elements start with a ‘$’ character 



 
 
 
 

©Patrick-Gilles Maillot 133 WING remote protocols – V 3.0.6-27 
 
 
 

  “fxmix”: 100, 
  “$esrc”: 0, external source: [0…400] 
  “$emode”: M, external mode: Mono, Stereo, Mid/Side 
  “$a_chn”: 0, assign channel: [0…76] 
  “$a_pos”: 0 assign position: 0, 1] 
 } 

“2”…”16”: {} 
} 

 
Once an effect is assigned to a slot, the JSON structure for the respective slot is extended to include the 
parameters for the assigned effect. For example, installing reverb effect “ROOM” in effect slot 5 will result in the 
following update to the JSON of effect 5: 
“fx”: { 
… 
 “5”: { 
  “mdl”: “ROOM”,  
  “fxmix”: 100, 
  “$esrc”: 0,  [0…400] 
  “$emode”: M,  [M, ST, M/S] 
  “$a_chn”: 0,  [0, 1] 
  “$a_pos”: 0,  [0, 1] 
  “pdel”:  pre-delay 
  “size”:  room size 
  “dcy”:  decay 
  “mult”:  bass multiplier 
  “damp”:  damping 
  “lc”:  low cut 
  “hc”:  high cut 
  “shp”:  shape 
  “sprd”:  spread 
  “diff”:  diffusion 
  “spin”:  spin 
  “ecl”:  echo left 
  “ecr”:  echo right 
  “efl”:  feed left 
  “efr”:  feed right 
 } 
… 
} 

 
Each available effect is a sort of program including a set of dedicated parameters. When choosing a specific 
effect, the effect program is instantiated in one of the available slots and its parameters are mapped to the 
main Jason parameters lists for that effect slot, thus enabling for example up to 16 different copies85 of the 
same effect to be active on every effect slot, with differentiated parameters for each slot. 
 
The tables in “Appendix: Effects and Plugins’ Parameters list, provide all effects’ names and parameters, and 
the parameter types associated with each known effect. 
 

Dynamic parameters anonymization in wapi 
For a wapi program to gain access to fx parameters (or other dynamic parameters found in eq, flt, dyn, gate, 
midi, etc.), independently from the effect being installed/loaded at a given slot, parameter names are being 
‘anonymized’ to names 1…40, rather than the names that are listed with each single effect. These names listed 
in the tables below are preceded with their apparition number in the effect parameter list; For example, to 
access frequency band 125Hz of a Graphics EQ effect loaded at effect slot 12, you would set the token value to 
FX_12_9. 

 
85 For standard effects, 8 for premium effects 



 
 
 
 

©Patrick-Gilles Maillot 134 WING remote protocols – V 3.0.6-27 
 
 
 

To set/instantiate an effect in one of the 16 WING FX slots, just set the effect model’s name; The effect engine 
will be loaded to the effect slot, discarding a previous one if there was one already. The newly installed effect 
parameters will become available for tweaking the effect to your settings.  
 
Model names can be found behind the tag: “mdl” in the tables in the “Effects and Plugins’ Parameters list” 
appendix, further down in this document.  



 
 
 
 

©Patrick-Gilles Maillot 135 WING remote protocols – V 3.0.6-27 
 
 
 

In the code example below is shown the instantiation of a graphic equalizer at effect slot 1, and the 
manipulation of its full set of parameters; In no way an interesting EQ setting, but a simple program example 
on how to install an effect and set parameters. 
 
#include <stdio.h> 
#include <string.h> 
// 
#include “wapi.h” 
#include “wext.h” 
// 
int main() { 
    char  wingip[24] = ““; 
    char *ty[] = {“std”, “tru”}; 
    // 
    // we don’t know the IP of our console… 
    if (wOpen(wingip)!= WSUCCESS) exit(1); 
    printf(“WING found at IP: %s\n”, wingip); 
    // 
    int j = 0; 
    float f = -15.; 
    wSetTokenString(FX_1_MDL, “GEQ”); 
    while(1) { 
        for (int I = FX_1_2; I <= FX_1_32; i++) 
            wSetTokenFloat(I, f); // bands 30Hz to 20kHz 
        Sleep(1);                    // slow down! 
        F += 0.25; 
        if (f > 15.) { 
            f = -15; 
            j ^= 1; 
            wSetTokenString(FX_1_1, ty[j]);  // type 
        } 
    } 
    wClose(); 
    return 0; 
} 

  



 
 
 
 

©Patrick-Gilles Maillot 136 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

WING MIDI 

  



 
 
 
 

©Patrick-Gilles Maillot 137 WING remote protocols – V 3.0.6-27 
 
 
 

WING MIDI (Remote-Control) 
In addition to OSC and native modes, WING offers MIDI options and commands to remotely control the desk 
capabilities. Some obvious use will be for DAW control (see next Appendix: MCU [DAW BUTTONS] commands 
list), but more options for MIDI remote control are available: 
 

 MIDI REMOTE CONTROL mode can be used over DIN or USB WING MIDI control port on the Standard 
WING, or WING MIDI DAW 2 on WING Rack or Compact. 

 DAW CONTROL mode can be used over DIN (limited to Control+Single MCU) or USB (Full surface) using 
WING MIDI DAW 1…3 ports depending on the console type (Compact/Standard) and which DAW section 
MIDI data is coming from/going to. 

 
 
 

MIDI port names 
Wing Standard comes with 4 separate MIDI ports: (WING) MIDI control, and (WING) MIDI DAW 1…3 
Wing Compact and Rack come with 2 separate MIDI ports: (WING) MIDI DAW 1…2 
In the case of Rack and Compact models, MIDI REMOTE CONTROL is supported using port (WING) MIDI DAW 2. 
The names mentioned above are for when in a Windows environment. If using MacOS, port names are (WING) 
Port 1..2 on Compact and Rack 
 
When multiple devices are connected to a same computer, MIDI port names will be differentiated using a 
prefix, such as WING or 2-WING before them, so for example “MIDI DAW 1” from a Compact and a Rack will list as 
WING MIDI DAW 1 and 2-WING MIDI DAW 1 when using Windows. MIDI port names are prefixed with WING, 
WING-Compact, or WING-Rack when using MacOS. 
 
Important note on USB & MIDI: Changing the clock rate or number of USB Audio channels on WING causes 
USB to disconnect for a few seconds (including MIDI). On certain operating systems, this may also reset 
already active MIDI connections. This could happen when loading snapshots with different clock rate or USB 
Audio configuration. 
 
 
 

MIDI REMOTE CONTROL86. 
MIDI commands are divided by channels, most of them have been published in a Music Group Document 
shown below. Additional commands via MIDI CH7, CH8 and CH9 are available for Scene recall and Show 
control. 
 
CC to Channel Mapping (for FADER, MUTE, PAN). FADER on MIDI Ch 1, MUTE on MIDI Ch 2, PAN on MIDI Ch 3: 

CC12..31 → Channel 1..20 
CC44..6 → Channel 21..40 
CC70..77 → Aux 1..8 
CC78..93 → Bus 1..16 
CC94/95 → Main 1..2 
CC102/103 → Main 3..4 
CC104..111 → Matrix 1..8 

 

 
86 MIDI DAW mode is something different and is presented in a separate appendix 
 



 
 
 
 

©Patrick-Gilles Maillot 138 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
 
DCA/Mute Groups. DCA Fader on MIDI Ch 4, DCA Mute and Mute Group MUTE on MIDI Ch 5: 

CC12..27 → DCA 1..16 
CC28..31 → Mute Group 1..4 
CC44..47 → Mute Group 5..8 

 
FX Parameter Control (FX1 on MIDI Ch 9 .. FX8 on MIDI Ch 16): 

CC12 → Insert ON/OFF 
CC13 → FX Mix 
CC14 → FX Model 
CC15..31 → FX Parameter 1..17 
CC44..58 → FX Parameter 18..32 

 
FX Parameter Control (FX9 on MIDI Ch 9 .. FX16 on MIDI Ch 16): 

CC70 → Insert ON/OFF 
CC71 → FX Mix 
CC72 → FX Model 
CC73..95 → FX Parameter 1..23 

   CC102..111→ FX Parameter 24..33 

 
Custom Controls Remote (RX only, user layers 1..16) on MIDI Ch 6: 

CC12..15 → Layer 1 Rotaries 
CC16..19 → Layer 2 Rotaries 
CC20..23 → Layer 3 Rotaries 
CC24.27 → Layer 4 Rotaries 
CC28..31 → Layer 5 Rotaries 
CC44..47 → Layer 6 Rotaries 
CC48..51 → Layer 7 Rotaries 
CC52..55 → Layer 8 Rotaries 
CC56..59 → Layer 9 Rotaries 
CC60..63 → Layer 10 Rotaries 
CC70..73 → Layer11 Rotaries 
CC74..77 → Layer 12 Rotaries 
CC78..81→ Layer13 Rotaries 
CC82..85 → Layer14 Rotaries 
CC86..89 → Layer15 Rotaries 
CC90..93 → Layer16 Rotaries 

Note0..7→ Layer 1 Buttons (upper row, lower row) 
Note8..15→ Layer 2 Buttons (upper row, lower row) 
Note16..25→ Layer 3 Buttons (upper row, lower row) 
Note24..31→ Layer 4 Buttons (upper row, lower row) 
Note32..39→ Layer 5 Buttons (upper row, lower row) 
Note40..47→ Layer 6 Buttons (upper row, lower row) 
Note48..55→ Layer 7 Buttons (upper row, lower row) 
Note56..63→ Layer 8 Buttons (upper row, lower row) 
Note64..71→ Layer 9 Buttons (upper row, lower row) 
Note72..79→ Layer 10 Buttons (upper row, lower row) 
Note80..87→ Layer 11 Buttons (upper row, lower row) 
Note88..95→ Layer 12 Buttons (upper row, lower row) 
Note96..103→ Layer 13 Buttons (upper row, lower row) 
Note104..111→ Layer 14 Buttons (upper row, lower row) 
Note112..119→ Layer 15 Buttons (upper row, lower row) 
Note120..127→ Layer 16 Buttons (upper row, lower row) 

 
 
MIDI Scene Change (on MIDI Ch 7)87: 

CH7 CC0 (bank MSB), CH7 PC 1..128 → Scene 
number 1..128, number 129..256 on bank MSB 
1, etc. 

B60000..B60008, C600..C67F 

 
MIDI Show Control (on MIDI Ch 8 & Ch 9): 

CH8 CC0 (bank MSB), CH8 PC 1..128 → Scene 
Tag #1..#128 on bank MSB 0, #129..#256 on 
bank MSB 1, etc. 
 
CH9 PC 1→ Scene GO 
CH9 PC 2→ Scene PREV 
CH9 PC 3→ Scene NEXT 
CH9 PC 4→ Scene GO PREV 
CH9 PC 5→ Scene GO NEXT 

B70000..B7007F, C700..C77F 
 
 
 
C800 
C801 
C802 
C803 
C804 

 
 

 
87 See appendix on Shows and Scenes further in this document for details on why it can be better to use scene tags rather than scene 
numbers when recalling show items using MIDI 



 
 
 
 

©Patrick-Gilles Maillot 139 WING remote protocols – V 3.0.6-27 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 140 WING remote protocols – V 3.0.6-27 
 
 
 

WING MIDI SYSEX 
WING also supports MIDI SYSEX messages, part of the MIDI protocol implementation in the console. SYSEX is a 
key component of MIDI implementation for advanced, digital desks as many commands are dedicated to 
controlling the desk as a surface control, rather than sending MIDI instrument notes. Standard 3 bytes MIDI 
messages are generally not long enough to support the full set of capabilities these new desks offer. This is 
made possible through the use and support of SYSEX functionality. 
 
MIDI SYSEX messages are “system exclusive” data that can be passed using the MIDI HW and standard 
protocol to the console, using a specific formatting convention and system dedicated messages, sent over 
MIDI. 
 
Your WING should be set to accept SYSEX data over USB or DIN. This setting is part of the in the MIDI REMOTE 
CONTROL tab in the SETUP→REMOTE screen. 
 

SYSEX Messages format 
The formatting used in SYSEX data is similar to the one used for Node Data: each parameter group is 
separated by a ‘,’ character, the ‘/’ character represents the root of the JSON parameter tree, and ‘.’ 
characters are used to navigate up and down within the JSON parameter tree, as shown below: 

 
/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1 
 

will set channel 1 fader to -1dB, will unmute the channel, and set channel 2 fader to 0dB and mute the 
channel. 
 
SYSEX communications can report error messages (see below) that can be: 

NODE NOT FOUND 
VALUE ERROR 
BUFFER OVERFLOW 
NODE IS NOT PAR 
INCOMPLETE DATA 
STACK EMPTY 

 
 

SYSEX Messages, Explained 
WING MIDI SYSEX messages are built as follows: 
 

F0 00 20 32 57 <cmd> <data[*]> F7 
 
<data[*]> is an arbitrary number of bytes representing the data to be sent to the console, and can be an 
empty string of bytes; The way data is interpreted by the console is controlled using <cmd>, a single byte as 
listed below: 
 

00: ident 



 
 
 
 

©Patrick-Gilles Maillot 141 WING remote protocols – V 3.0.6-27 
 
 
 

Will return the signature string of the console, such as returned with OSC command /?88 sent 
to port 2223, or native identification datagram WING?89 Sent to port 2222. Upon executing the 
command, the console will return a MIDI byte 01. 

02: execute <data[*]> 
Will execute the requested command contained in or represented by <data[*]>. <data[*]> 
should contain a WING command respecting the format rules described earlier in this 
chapter. Upon executing the command, the console may return status 07 (Error) followed 
with an error message if an error occurred. 
 

03: dump <data[*]>  
Will return the current values found for <data[*]>. <data[*]> should contain a WING node or 
command respecting the format rules described earlier in this chapter. Upon executing the 
command, the console will return MIDI byte 04 (OK) or 07 (Error) followed with an error 
message. 

 
05: describe <data[*]>  

Will return the description of the node found at or represented by <data[*]>. <data[*]> 
should contain a WING node respecting the format rules described earlier in this chapter. 
Upon executing the command, the console will return a MIDI byte 06 (OK) or 07 followed with 
an error message. 

 

Examples 
We give below a few examples of MIDI SYSEX commands sent to WING, with their interpretation, their 
resulting effect on WING, and the returned data, if any. 
 

cmd = 00 example: 
Sending F0 00 20 32 57 00 f7, 
or cmd 00 will generate a SYSEX being returned by WING: 

F0 00 20 32 57 01 57 49 4E 47 2C 31 39 32 2E 31 36 38 
2E 31 2E 37 31 2C 50 47 4D 2C 6E 67 63 2D 66 75 6C 6C 
2C 4E 4F 5F 53 45 52 49 41 4C 2C 31 2E 30 38 2E 31 2D 
30 2D 67 33 33 65 36 39 66 38 38 3A 72 65 6C 65 61 73 
65 F7 

 
Containing the WING signature (your system will contain something slightly different): 
WING,192.168.1.71,PGM,ngc-full,NO_SERIAL,1.08.1-0-g33e69f88:release 

 

cmd = 02 examples: 
Sending F0 00 20 32 57 02 2F 63 68 2E 31 2E 66 64 72 3D 2D 31 2C 6D 75 74 65 3D 30 2C 2E 32 
2E 66 64 72 3D 30 2C 6D 75 74 65 3D 31 F7,  
or cmd 02 followed by /ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1 will set channel 1 fader to -1, channel 2 
fader to 0 and will unmute channel 1 and mute channel 2. 
 

 
88 Refer to chapter on OSC protocol 
89 Refer to chapter “Remote communications with WING” 
 



 
 
 
 

©Patrick-Gilles Maillot 142 WING remote protocols – V 3.0.6-27 
 
 
 

Sending F0 00 20 32 57 02 2F 63 68 2E 31 2E 66 64 3D 2D 31 2C 6D 75 74 65 3D 30 2C 2E 32 2E 
66 64 72 3D 30 2C 6D 75 74 65 3D 31 F7,  
or cmd 02 followed by /ch.1.fd=-1,mute=0,.2.fdr=0,mute=1 will return an error; note we omitted the 
“r” of “fdr” above for channel 1. WING will reply with the following SYSEX message: F0 00 20 32 57 
07 4E 4F 44 45 20 4E 4F 54 20 46 4F 55 4E 44 F7, or error status 07, followed by NODE NOT FOUND. 
 

cmd = 03 examples: 
Sending F0 00 20 32 57 03 2f 61 75 78 F7,  
or cmd 03 followed by /aux, will be replied by WING with a near 28000 bytes SYSEX message 
corresponding to the following in ASCII (partial listing containing aux1 and aux8, aux2 to aux7 
included but not listed): 
 
1.in.set.srcauto=0,altsrc=0,inv=0,trim=0.0,bal=0.0,.conn.grp=USB,in=1,altgrp=OFF,altin=1,..
clink=0,col=8,name=USB,icon=605,led=1,mute=0,fdr=oo,pan=0,wid=100,solosafe=0,mon=A,eq.on=0,
mix=100,lg=0.0,lf=80.2,lq=2.00,leq=SHV,1g=0.0,1f=399.1,1q=2.00,2g=0.0,2f=2k50,2q=2.00,hg=0.
0,hf=11k99,hq=2.00,heq=SHV,.preins.on=0,ins=NONE,.main.1.on=1,lvl=0.0,.2.on=0,lvl=0.0,.3.on
=0,lvl=0.0,.4.on=0,lvl=0.0,..send.1.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,
.2.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.3.on=0,lvl=oo,pon=0,ind=0,mode=P
RE,plink=0,pan0,wid=100,.4.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.5.on=0,l
vl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.6.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=
0,pan=0,wid=100,.7.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=00,.8.on=0,lvl=oo,pon
=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.9.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,w
id=100,.10.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.11.on=0,lvl=oo,pon=0,ind
=0,mode=PRE,plink=0,pan=0,wid=100,.12.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wd=100
,.13.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.14.on=0,lvl=oo,pon=0,ind=0,mod
e=PRE,plink=0,pan=0,wid=100,.15.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.16.
on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid100,..tags=,.2.in.set.srcauto=0,[…Aux cha
nnels 2 to 7 listed…],..tags=,.8.in.set.srcauto=0,altsrc=0,inv=0,trim=0.0,bal=0.0,.conn.grp
=OFF,in=1,altgrp=OFF,altin=1,..clink=0,col=1,name=,icon=0,led=1,mute=0,fdr=oo,pan=0,wid=100
,solosafe=0,mon=A,eq.on=0,mix=100,lg=0.0,lf=80.2,lq=2.00,leq=SHV,1g=0.0,1f=399.1,1q=2.00,2g
=0.0,2f=2k50,2q=2.00,hg=0.0,hf=11k99,hq=2.00,heq=SHV,.preins.on=0,ins=NONE,.main.1.on=1,lvl
=0.0,.2.on=0,lvl=0.0,.3.on=0,lvl=0.0,.4.on=0,lvl=0.0,..send.1.on=0,lvl=oo,pon=0,ind=0,mode=
PRE,plink=0,pan=0,wid=100,.2.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.3.on=0
,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.4.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plin
k=0,pan=0,wid=100,.5.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.6.on=0,lvl=oo,
pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.7.on=0,lvl=oo,pon=0,ind0,mode=PRE,plink=0,pan=0
,wid=100,.8.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.9.on=0,lvl=oo,pon=0,ind
=0,mode=PRE,plink=0,pan=0,wid=100,.10.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=10
0,.11.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.12.on=0,lvl=oo,pon=0,ind=0,mo
de=PRE,plink=0,pan=0,wid=100,.13.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.14
.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,.15.on=0,lvl=oo,pon=0,ind=0,mode=PR
E,plink=0,pan=0,wid=100,.16.on=0,lvl=oo,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100,..tags=,
. 

 
Sending F0 00 20 32 57 03 2F 63 68 2E 31 2E 66 64 72 F7,  
or cmd 03 followed by /ch.1.fdr, will be replied by WING with a SYSEX message containing the 
current value of channel 1 fader: F0 00 20 32 57 04 2D 31 2E 30 F7, or status 04 (no error) and 
value -1.0. 

 

cmd = 05 examples: 
Sending again SYSEX F0 00 20 32 57 05 2f 61 75 78 00 00 00 00 F7,  
Or cmd 05 followed by /aux~~~~ will be replied by WING with the following SYSEX message (note the 
status 06 (no error): 
 

F0 00 20 32 57 06 20 20 31 20 20 20 20 20 20 20 20 20 



 
 
 
 

©Patrick-Gilles Maillot 143 WING remote protocols – V 3.0.6-27 
 
 
 

20 20 20 20 20 28 6E 6F 64 65 29 0A 20 20 32 20 20 20 
20 20 20 20 20 20 20 20 20 20 20 28 6E 6F 64 65 29 0A 
20 20 33 20 20 20 20 20 20 20 20 20 20 20 20 20 20 28 
6E 6F 64 65 29 0A 20 20 34 20 20 20 20 20 20 20 20 20 
20 20 20 20 20 28 6E 6F 64 65 29 0A 20 20 35 20 20 20 
20 20 20 20 20 20 20 20 20 20 20 28 6E 6F 64 65 29 0A 
20 20 36 20 20 20 20 20 20 20 20 20 20 20 20 20 20 28 
6E 6F 64 65 29 0A 20 20 37 20 20 20 20 20 20 20 20 20 
20 20 20 20 20 28 6E 6F 64 65 29 0A 20 20 38 20 20 20 
20 20 20 20 20 20 20 20 20 20 20 28 6E 6F 64 65 29 0A 
F7 

 
Or in ASCII: 

  1              (node) 
  2              (node) 
  3              (node) 
  4              (node) 
  5              (node) 
  6              (node) 
  7              (node) 
  8              (node) 

 
 
Sending again F0 00 20 32 57 05 2F 63 68 2E 31 2E 66 64 72 F7,  
or cmd 05 followed by /ch.1.fdr, will be replied by WING with a SYSEX message containing the 
description of channel 1 fader: F0 00 20 32 57 06 66 61 64 65 72 20 5B 2D 6F 6F 20 2E 2E 20 31 
30 2E 30 20 64 42 5D 2C 20 31 30 32 34 20 73 74 65 70 73 0A F7, or status 06 (no error), 
followed by description fader [-oo .. 10.0 dB], 1024 steps. 

 
  



 
 
 
 

©Patrick-Gilles Maillot 144 WING remote protocols – V 3.0.6-27 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendices  



 
 
 
 

©Patrick-Gilles Maillot 145 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: Buttons (user/gpio, user/user, user/daw, user/)90 
WING includes a rather large set of buttons separated in different logical blocks: user/gpio, user/user, and 
user/daw and user. They are all managed under the $ctl subtree of commands. As in the case of effects 
where the effect model sets the type and number of OSC patterns available for supporting the functionality 
currently in effect, the associated JSON structure varies and adapts to the necessary sets of parameters. 

user/gpio/1..4 
This subsection covers the 4 possible GPIOs supported by WING; the actual set 
of usable OSC patterns available at a given time depends on the mode 
parameter value of the /$ctl/user/gpio/1..4/bu/ OSC pattern represented 
below as <OSC b_pattern>.  

user/user/1..4 
This subsection covers the 8 user buttons supported by WING91; the actual set 
of usable OSC patterns available at a given time depends on the mode 
parameter value of the /$ctl/user/user/1..4/bu/ and the 
/$ctl/user/user/1..4/bd/ OSC patterns for the 4 buttons of the upper and 
lower row of the button section, and represented below as <OSC b_pattern>.  

user/daw1..4/1..4 
This subsection covers the 4 possible sets of 8 DAW buttons supported by 
WING; the actual set of usable OSC patterns available at a given time depends 
on the mode parameter value of the /$ctl/user/daw1..daw4/1..4/bu/ and the 
/$ctl/user/daw1..daw4/1..4/bd/ OSC patterns for the 4 buttons of the upper 
and lower row of the button section, and represented below as <OSC 
b_pattern>.  

 
90 Describing here the buttons and CC section for the standard WING, Compact and Rack version differ in the amount of CC 
buttons/knobs available. 
91 Standard model only 



 
 
 
 

©Patrick-Gilles Maillot 146 WING remote protocols – V 3.0.6-27 
 
 
 

user/1..16/1..4 
This subsection covers the 16 possible sets of 8 user buttons and 4 user 
encoders supported by WING92; the actual set of usable OSC patterns available 
at a given time depends on the mode parameter value of the 
/$ctl/user/1..16/1..4/bu/, /$ctl/user/1..16/1..4/bd/, and 
/$ctl/user/1..16/1..4/enc/ OSC patterns for the 4 buttons of the upper and 
lower row of the button section, and the 4 encoders represented below as 
<OSC b_pattern> and <OSC e_pattern>, respectively.  
  

 
92 Standard and Rack models only 



 
 
 
 

©Patrick-Gilles Maillot 147 WING remote protocols – V 3.0.6-27 
 
 
 

The tables below list the different options for OSC patterns <OSC b_pattern>: 
 
mode Command Type Range / Text Description 
OFF none    OFF 
     
MUTE <OSC b_pattern>/ch I 1..76  Channel number 
     
INS1 <OSC b_pattern>/ch I 1..76  Channel number 
     
INS2 <OSC b_pattern>/ch I 1..76  Channel number 
     
MGRP <OSC b_pattern>/mgrp S MGRP.1, MGRP.2,..,MGRP.8  Mute group number 
     
DCAMUTE <OSC b_pattern>/dca S DCA.1, DCA.2,..,DCA.16  DCA fader number mute 
     
SOF <OSC b_pattern>/ch I 1..76  Channel number 
     
SPILL <OSC b_pattern>/area S L, C, R Console area (left, center, right) 
 <OSC b_pattern>/tgt S DCA1,.., DCA16, FX1,.., FX16, 

BUS1,.., BU16, MAIN1,.., 
MAIN4, MTX1,..,MTX8, AUTOX, 
AUTOY 

Targeted group93 

     
FXPAR <OSC b_pattern>/fx S FX1,..,FX16  FX processor number 

<OSC b_pattern>/par I 1..41  FX processor parameter number94 
     
DAWBTN <OSC b_pattern>/btn S T1,..,T20, N1,..,N9, A1,..,A16, 

F1,..,F8, V1,..,V15, AU1,..,AU12, 
SY1,..,SY10, OT1,..,OT12, 
E1,..,E10, SP1,.., SP6 

 MCU button95 

     
DAWENC <OSC b_pattern>/enc S M1P,..,M8P, E1P,..,E16P, 

M1,..,M8, E1,..,E16, JOG 
 DAW Rotary96 

     
CHPAGE <OSC b_pattern>/ch I 1..76  Channel number 

<OSC b_pattern>/pg S HOME, INPUT, FILT, GATE, 
DYN, EQ, INS1, INS2, MAIN, 
SEND, SND.EQ 

 Page name 

     
PAGE <OSC b_pattern>/pg S FX, MTRS, CHINS, SRC, OUTS, 

SETUP, LIB, CUSTCTL, MON, 
2TRK, WLIVE, MIXV, FDRV, 
SENDV, MGRP, LAYER 

Page name 

     
FDRPAGE <OSC b_pattern>/area S L, C, R, CMPCT, RCK, EXT, VRT  Area 

<OSC b_pattern>/bank I 1..21  Bank 
     
VIEWPAGE <OSC b_pattern>/area S L, C, R, CMPCT, RCK, EXT, VRT  Area 

 
93 Maps to /$ctl/layer/xxx/spidx parameters values 1..62 
94 1..40 are for FX parameters, 41 is for FX Mix 
95 See MCU [DAW BUTTONS] commands list in Appendixes 
96 See MCU [DAW V-POTS] commands list in Appendixes 



 
 
 
 

©Patrick-Gilles Maillot 148 WING remote protocols – V 3.0.6-27 
 
 
 

<OSC b_pattern>/bank I 1..21  Bank 
     
OTHER <OSC b_pattern>/other 

 
 
 
 
 
 
 
 
 
 
<OSC b_pattern>/CCBK 

S 
 
 
 
 
 
 
 
 
 
 

S 

TBA, TBB, ALTSRC, DAWSW, 
MONA, MONB, MONAB, 
MONDIM, MONMONO, 
MONSWAP, MONMUTE, 
FDROFF, FDR-10DB, FDR0DB, 
AUTOX, AUTOY, CHPREV, 
CHNEXT, CHSOLO, BUSSOLO, 
MAINSOLO, MTXSOLO, CHMTR, 
BUSMTR, MAINMTR, MTXMTR, 
DCAMTR, CCBANK 
 
1..16, -1, +1 

 Other functions 
 
 
 
 
 
 
 
  
 
 
When other == CCBANK 

     
GPIO <OSC b_pattern>/GPIO S A, B, C, D, A-P, B-P, C-P, D-P, 

2S, 5S, 10S, 15S, 20S, 25S, 30S 
 GPIO Toggle, Push, or Power-on 
delay97 

     
FSTART <OSC b_pattern>/ch I 1..76  Channel number 
     
MIDICCT <OSC b_pattern>/ch I 1..16  MIDI channel (toggle) 
 <OSC b_pattern>/cc I 0..127  MIDI control change number 
 <OSC b_pattern>/val I 0..127  MIDI control value 
     
MIDICCP <OSC b_pattern>/ch I 1..16  MIDI channel (push) 
 <OSC b_pattern>/cc I 0..127  MIDI control change number 
 <OSC b_bpattern>/val I 0..127  MIDI control value 
     
MIDINT <OSC b_pattern>/ch I 1..16  MIDI channel (toggle) 
 <OSC b_bpattern>/note I 0..127  MIDI note 
 <OSC bb_pattern>/val I 0..127  MIDI note value 
     
MIDINP <OSC b_pattern>/ch I 1..16  MIDI channel (push) 
 <OSC b_pattern>/note I 0..127  MIDI note 
 <OSC b_pattern>/val I 0..127  MIDI note value 
     
MIDIPGM <OSC b_pattern>/ch I 1..16  MIDI channel 
 <OSC b_pattern>/note I 1..128  MIDI program value 
     
USBPR <OSC b_pattern>/usbpr S PSTOP, PLAY, PPAUSE, PNEXT, 

PPREV, RSTOP, RECORD, 
RPAUSE, RNEW 

 USB Play Rec 

     
SDRECA <OSC b_pattern>/sdrec S STOP, PLAY, REC, PAUSE, 

PLAYSTOP, PLAYPAUSE, ADD, 
PREV, NEXT, PLAYMARKER, 
GOMARKER, SELSESSION, 
PREV_S, NEXT_S 

 SD A recorder 

     
SESSIONA <OSC b_pattern>/session S S1..S20  SD A Session 

 
97 Toggle (A..D) and Push (A-P..D-P) apply to GPIO and USER CC; Delays {2S…30S) apply only to GPIO state setup time after a console 
power cycle. 



 
 
 
 

©Patrick-Gilles Maillot 149 WING remote protocols – V 3.0.6-27 
 
 
 

     
MARKERA <OSC b_pattern>/marker S M1..M20  SD A Marker 
     
SDRECB <OSC b_pattern>/sdrec S STOP, PLAY, REC, PAUSE, 

PLAYSTOP, PLAYPAUSE, ADD, 
PREV, NEXT, PLAYMARKER, 
GOMARKER, SELSESSION, 
PREV_S, NEXT_S 

 SD B recorder 

     
SESSIONB <OSC b_pattern>/session S S1..S20  SD B Session 
     
MARKERB <OSC b_pattern>/marker S M1..M20  SD B Marker 
 
 
 
 
 
The table below lists the different options for the OSC encoder pattern <OSC e_pattern>: 
 
mode Command TypeRange / Text Description 
OFF none    OFF 
     
FDR <OSC e_pattern>/ch I 1..76  Channel number 
     
PAN <OSC e_pattern>/ch I 1..76  Channel number 
     
DCA <OSC e_pattern>/dca S DCA.1, DCA.2,..,DCA.16  DCA fader number 
     
SSND <OSC e_pattern>/send S BUS1,..,BUS16, 

MAIN1,..,MAIN4, 
MTX1,..,MTX8 

 Send to Bus, Main or Matrix 
number 

     
FSND <OSC e_pattern>/ch 

<OSC e_pattern>/send 
I 
S 

1..48 
BUS1,..,BUS16, 
MAIN1,..,MAIN4, 
MTX1,..,MTX8 

 Channel number  
 Send to Bus, Main or Matrix 
number 

     
FX <OSC e_pattern>/fx S FX1,..,FX16  FX processor number 

<OSC e_pattern>/par I 1..41  FX processor parameter number98 
     
DAWMCU <OSC e_pattern>/mcuenc S M1,..,M8, E1,..,E16, JOG  DAW Rotary99 
     
MON <OSC e_pattern>/mon 

 
S A, B  Monitor selection100 

 A: PHONES level 
 B: SPEAKERS / MONITOR level 

     

 
98 1..40 are for FX parameters, 41 is for FX Mix 
99 See MCU [DAW REMOTE MCU] commands list in Appendixes 
100 Note these are only ‘readable’ when touching the encoder, the actual setting is only possible with the potentiometer in the 
Monitoring/Talkback section of the console 



 
 
 
 

©Patrick-Gilles Maillot 150 WING remote protocols – V 3.0.6-27 
 
 
 

OTHER <OSC e_pattern>/other 
 

S BRILAMP, BRIGLOW, 
BRIPATCH 

 Lamp and other lighting controls 

     
MIDICC <OSC e_pattern>/ch I 1..16  MIDI channel 
 <OSC e_pattern>/cc I 0..127  MIDI control change number 
 <OSC e_pattern>/val I 0..127  MIDI control change value 
     
SD A <OSC e_pattern>/sdarec S POS, MARKER, SESSION  SD-A Recorder 
     
SD B <OSC e_pattern>/sdbrec S POS, MARKER, SESSION  SD-B Recorder 

 

  



 
 
 
 

©Patrick-Gilles Maillot 151 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: Effects and Plugins’ Parameters list 
In the (long) tables below, we list all known/exposed effects and plugins available with the WING digital 
console, along with their name, type, and min/max/step/list values; We therefore present Standard Effects, 
Premium effects, Filter Plugins, Gate Plugins, EQ Plugins, and Compressor Plugins.  
All active effects and plugins modify the JSON tree and their respective OSC patterns.  
 
On any channel, an insert will create a processing delay of 32 samples (i.e. around 0.66ms). This is because 
audio is routed to a different DSP for FX processing. It is important to take this into account when mixing, as 
phasing effects may result from the imposed delay. 
 
With FW 2.1, Behringer published a document on effect: the WING Effects Guide, with a description of effects 
and plugins that can be found on WING. This document can be found and downloaded at: 
https://mediadl.musictribe.com/media/PLM/data/docs/P0BV2/EFFECTS%20GUIDE_M_BE_0603-AEN_WING.p
df 
 
In addition to the Behringer document above, the tables below show all parameters associated to effects and 
plugins, including their name, type, and value range following the OSC pattern /fx/1..16/ 
 

Effects 

Standard effects 
 None 

 0 “mdl”:   NONE 

  

 

External 
 0 “mdl”:   EXT 
 1 “egrp”:  str [OFF, LCL, AUX, A, B, C, SC,  
                 USB, CRD, MOD, PLAY, AES] ext grp 
 2 “ein”:   int [1…64] ext in 
 3 “emode”: str [M, ST, M/S] ext mode 
 4 “lat”:   int [0…200] latency 
 5 “trim”:  linf [-18, 18, 361] dB, trim 

  

 

Graphic EQ 
 0 “mdl”:  GEQ 
 1 “type”: str [STD, TRU] geq type 
 2 “20”:   linf [-15, 15, 121] dB 
 3 “25”:   linf [-15, 15, 121] dB 
 4 “31”:   linf [-15, 15, 121] dB 
 5 “40”:   linf [-15, 15, 121] dB 
 6 “50”:   linf [-15, 15, 121] dB 
 7 “63”:   linf [-15, 15, 121] dB 
 8 “80”:   linf [-15, 15, 121] dB 
 9 “100”:  linf [-15, 15, 121] dB 
10 “125”:  linf [-15, 15, 121] dB 
11 “160”:  linf [-15, 15, 121] dB 
12 “200”:  linf [-15, 15, 121] dB 
13 “250”:  linf [-15, 15, 121] dB 
14 “315”:  linf [-15, 15, 121] dB 
15 “400”:  linf [-15, 15, 121] dB 
16 “500”:  linf [-15, 15, 121] dB 
17 “630”:  linf [-15, 15, 121] dB 
18 “800”:  linf [-15, 15, 121] dB 
19 “1k”:   linf [-15, 15, 121] dB 



 
 
 
 

©Patrick-Gilles Maillot 152 WING remote protocols – V 3.0.6-27 
 
 
 

20 “1k25”: linf [-15, 15, 121] dB 
21 “1k6”:  linf [-15, 15, 121] dB 
22 “2k”:   linf [-15, 15, 121] dB 
23 “2k5”:  linf [-15, 15, 121] dB 
24 “3k15”: linf [-15, 15, 121] dB 
25 “4k”:   linf [-15, 15, 121] dB 
26 “5k”:   linf [-15, 15, 121] dB 
27 “6k3”:  linf [-15, 15, 121] dB 
28 “8k”:   linf [-15, 15, 121] dB 
29 “10k”:  linf [-15, 15, 121] dB 
30 “12k5”: linf [-15, 15, 121] dB 
31 “16k”:  linf [-15, 15, 121] dB 
32 “20k”:  linf [-15, 15, 121] dB 
33 “TRIM”: linf [-15, 15, 121] dB 

  

 

PIA 560 GEQ 
 0 “mdl”:  PIA 
 1 “mix”:  linf [0, 125, 126] %, mix 
 2 “gain”: linf [-12, 12, 241] dB 
 3 “31”:   linf [-12, 12, 241] dB 
 4 “63”:   linf [-12, 12, 241] dB 
 5 “125”:  linf [-12, 12, 241] dB 
 6 “250”:  linf [-12, 12, 241] dB 
 7 “500”:  linf [-12, 12, 241] dB 
 8 “1k”:   linf [-12, 12, 241] dB 
 9 “2k”:   linf [-12, 12, 241] dB 
10 “4k”:   linf [-12, 12, 241] dB 
11 “8k”:   linf [-12, 12, 241] dB 
12 “16k”:  linf [-12, 12, 241] dB 

  

 

Triple Dynamic EQ 
 0 “mdl”:      DEQ3     
 1 “1-thr”:    linf [-60, 0, 121] dB, threshold 1 
 2 “1-ratio”:  str [1.20, 1.30, 1.50, 2.00, 3.00, 
                    5.00, 10.00] ms, ratio 1 
 3 “1-att”:    linf [0.00, 200.00, 201] ms, att 1 
 4 “1-rel”:    logf [20.00, 4000.00, 130] ms, rel 1 
 5 “1-filt”:   str [OFF, BP, LP6, LP12, HP6, HP12] 
 6 “1-g”:      linf [-15.00, 15.00, 301] dB, gain 1 
 7 “1-f”:      logf [20, 20000, 961] Hz, freq 1 
 8 “1-q”:      logf [0.44, 10.00, 181] qual 1 
 9 “1-mode”:   str [low, high] mode 1 
10 “2-thr”:    linf [-60, 0, 121] dB, threshold 2 
11 “2-ratio”:  str [1.20, 1.30, 1.50, 2.00, 3.00, 
                    5.00, 10.00] ms, ratio 2 
12 “2-att”:    linf [0.00, 200.00, 201] ms, att 2 
13 “2-rel”:    logf [20.00, 4000.00, 130] ms, rel 2 
14 “2-filt”:   str [OFF, BP, LP6, LP12, HP6, HP12] 
15 “2-g”:      linf [-15.00, 15.00, 301] dB, gain 2 
16 “2-f”:      logf [20, 20000, 961] Hz, freq 2 
17 “2-q”:      logf [0.44, 10.00, 181] qual 2 
18 “2-mode”:   str [low, high] mode 2 
19 “3-thr”:    linf [-60, 0, 121] dB, threshold 3 
20 “3-ratio”:  str [1.20, 1.30, 1.50, 2.00, 3.00, 
                    5.00, 10.00] ms, ratio 3 
21 “3-att”:    linf [0.00, 200.00, 201] ms, att 3 
22 “3-rel”:    logf [20.00, 4000.00, 130] ms, rel 3 
23 “3-filt”:   str [OFF, BP, LP6, LP12, HP6, HP12] 
24 “3-g”:      linf [-15.00, 15.00, 301] dB, gain 3 
25 “3-f”:      logf [20, 20000, 961] Hz, freq 3 
26 “3-q”:      logf [0.44, 10.00, 181] qual 3 
27 “3-mode”:   str [low, high] mode 3 

  



 
 
 
 

©Patrick-Gilles Maillot 153 WING remote protocols – V 3.0.6-27 
 
 
 

 

Combinator 
 0 “mdl”:      C5-CMB 
 1 “thr”:      linf [-40, 0, 401] dB, threshold 
 2 “gain”:     linf [-10, 10, 201] dB, gain 
 3 “ratio”:    str [1.1, 1.2, 1.3, 1.5, 1.7,  
                    2.0, 2.5, 3.0, 3.5, 4.0,  
                    5.0, 7.0, 10.0, 100.0] ms, ratio 
 4 “slope”:    str [24, 48] dB/Oct, slope 
 5 “bandse l”: int [1..5] selected band 
 6 “att”:      linf [0, 20, 21] attack 
 7 “rel”:      logf [20, 3000, 201] ms, release 
 8 “arel”:     int [0, 1] auto release 
 9 “sbc”:      linf [1, 10, 10] sbc speed 
10 “sbcon”:    int [0, 1] sbc on 
11 “thr_1”:    linf [-10, 10, 201] dB, 1-THR 
12 “thr_2”:    linf [-10, 10, 201] dB, 2-THR 
13 “thr_3”:    linf [-10, 10, 201] dB, 3-THR 
14 “thr_4”:    linf [-10, 10, 201] dB, 4-THR 
15 “thr_5”:    linf [-10, 10, 201] dB, 5-THR 
16 “gain_1”:   linf [-10, 10, 201] dB, 1-GAIN 
17 “gain_2”:   linf [-10, 10, 201] dB, 2-GAIN 
18 “gain_3”:   linf [-10, 10, 201] dB, 3-GAIN 
19 “gain_4”:   linf [-10, 10, 201] dB, 4-GAIN 
20 “gain_5”:   linf [-10, 10, 201] dB, 5-GAIN 
21 “byp_1”:    int [0, 1], 1-BYP 
22 “byp_2”:    int [0, 1], 2-BYP 
23 “byp_3”:    int [0, 1], 3-BYP 
24 “byp_4”:    int [0, 1], 4-BYP 
25 “byp_5”:    int [0, 1], 5-BYP 
26 “width_1”:  linf [-50, 50, 101], 1-XOVER 
27 “width_2”:  linf [-50, 50, 101], 2-XOVER 
28 “width_3”:  linf [-50, 50, 101], 3-XOVER 
29 “width_4”:  linf [-50, 50, 101], 4-XOVER 
30 “width_5”:  linf [-50, 50, 101], 5-XOVER 
31 “mix”:      linf [0, 100, 101], mix 
32 “$bdsolo”:  int [0, 1] band solo 

  

 

Precision Limiter 
 0 “mdl”:      LIMITER 
 1 “gin”:      linf [0, 18, 73] dB, in gain 
 2 “gout”:     linf [-18, 0, 73] dB out gain 
 3 “sqz”:      int [0…100] squeeze 
 4 “knee”:     int [0…10] knee 
 5 “again”:    int [0, 1] auto gain 
 6 “att”:      linf [.05, 1, 95] ms, attack 
 7 “rel”:      logf [20, 2000, 101] ms, release 

  

 

Speaker Manager 
 0 “mdl”:     SPKMAN 
 1 “hpf”:     logf [20.00, 20000.00, 961] Hz, high 
 2 “hptype”:  str [FLAT, BW6, BW12, BS12, LR12,  
                   BW18, BW24, BS24, LR24, BW48,  
                   LR48] type 
 3 “lpf”:     logf [20.00, 20000.00, 961] Hz, low 
 4 “lptype”:  str [FLAT, BW6, BW12, BS12, LR12,  
                   BW18, BW24, BS24, LR24, BW48,  
                   LR48] type 
 5 “tiltf”:   logf [100.00, 10000.00, 121] Hz, tilt 
 6 “tiltg”:   linf [-6.00, 6.00, 121] dB, tilt gain 
 7 “phase”:   linf [0.00, 180.00, 37] phase 
 8 “invert ”: int [0, 1] invert 
 9 “dist”:    linf [0.00, 5.00, 501] mtrs, distance 
10 “pos”:     linf [-5.00, 5.00, 1001] mtrs, pos. 
11 “dyneq”:   int [0, 1] deq 
12 “dynthr”:  linf [-60.00, 0.00, 121] dB, threshold 
13 “deqratio”: str [1.20, 1.30, 1.50, 2.00, 3.00,  
                    5.00, 10.00] ratio 
14 “deqatt”:  linf [0.00, 200.00, 201] ms, attack 



 
 
 
 

©Patrick-Gilles Maillot 154 WING remote protocols – V 3.0.6-27 
 
 
 

15 “deqrel”:  logf [20.00, 4000.00, 130] ms, release 
16 “deqfilt”: str [OFF, BP, LP6, LP12, HP6, HP12] 
17 “deqg”:    linf [-15.00, 15.00, 301] dB, gain 
18 “deqf”:    logf [20.00, 20000.00, 961] Hz, freq 
19 “deqq”:    logf [0.44, 10.00, 181] qual 
20 “deqmode”: str [low, high] mode 
21 “lim”:     int [0, 1] limiter 
22 “limthr”:  linf [-24.00, 0.00, 241] dB, threshold 
23 “limrms”:  int [0, 1] rms 
24 “limrel”:  logf [50.00, 2000.00, 121] ms, release 

  

 

2-Band DeEsser 
 0 “mdl”:  DE-S2 
 1 “lo”:   linf [0, 50, 51] low 
 2 “hi”:   linf [0, 50, 51] high 
 3 “los”:  linf [0, 50, 51] low (s) 
 4 “his”:  linf [0, 50, 51] high (s) 
 5 “gdr”:  str [FEMALE, MALE] gender 
 6 “mode”: str [STEREO, MID/SIDE] mode 

  

 

Ultra Enhancer 
 0 “mdl”:   ENHANCE 
 1 “stlv”:  linf [-100, 100, 201] %, st lvl 
 2 “lmf”:   linf [-100, 100, 201] %, lmf spread 
 3 “lmvl”:  linf [-100, 100, 201] %, mono lvl 
 4 “st”:    linf [-100, 100, 201] %, st pan 
 5 “m”:     linf [-100, 100, 201] %, mono pan 
 6 “bass”:  linf [0, 100, 101] %, bass gain 
 7 “mid”:   linf [0, 100, 101] %, mid gain 
 8 “high”:  linf [0, 100, 101] %, high gain 
 9 “g”:     linf [-112, 12, 241] dB, gain 
10 “solo”:  int [0, 1] solo 
11 “bassf”: linf [1, 50, 50] bass freq 
12 “midq”:  linf [1, 50, 50] mid Q 
13 “highf”: linf [1, 50, 50] high freq 

  

 

Exciter 
 0 “mdl”:   EXCITER 
 1 “tune”:  logf [1000, 10000, 51] Hz, tune 
 2 “peak”:  linf [0, 100, 101] %, peak 
 3 “zfill”: linf [0, 100, 101] %, zfill 
 4 “timbre”:linf [-50, 50, 101] timbre 
 5 “harm”:  linf [0, 100, 101] %, harm 
 6 “mix”:   linf [0, 100, 101] %, mix 
 7 “dry”:   int [0, 1] dry 

  

 

Psycho Bass 
 0 “mdl”:  P-BASS 
 1 “int”:  linf [-24, 6, 61] dB, intensity 
 2 “bass”: linf [-60, 0, 121] dB, bass gain 
 3 “xf”:   logf [32, 200. 51] Hz, X/O freq 
 4 “solo”:  int [0, 1] solo 

  
  

 

Sub Octaver 
 0 “mdl”:   SUB 
 1 “rng”:   str [LOW, MID, HIGH] range 
 2 “oct1”:  linf [0, 100, 101] %, octave 1 
 3 “oct2”:  linf [0, 100, 101] %, octave 2 
  

  



 
 
 
 

©Patrick-Gilles Maillot 155 WING remote protocols – V 3.0.6-27 
 
 
 

 

Sub Monster 
 0 “mdl”:   SUB-M 
 1 “mix”:   [0, 100, 101] %mix 
 2 “freq”:  linf [45, 67.5, 226] Hz, freq 
 3 “bd1”:   linf [0, 100, 101] %, band 1 
 4 “bd2”:   linf [0, 100, 101] %, band 2 
 5 “bd3”:   linf [0, 100, 101] %, band 3 
 6 “bd4”:   linf [0, 100, 101] %, band 4 
 7 “bd5”:   linf [0, 100, 101] %, band 5 

  

 

Velvet Imager 
 0 “mdl”:   V_IMG     
 1 “wid”:   linf> [-1.00, 1.00, 201] width 
 2 “st”:    linf [0.00, 100.00, 101] %, stereo 
 3 “gain”:  linf [-6.00, 6.00, 49] dB, gain 
 4 “mode”:  str [K, VELVET] mode 
 5 “deep”:  int [0,1] deep 

  

 

Double Vocal 
 0 “mdl”:  DOUBLE 
 1 “mode”: str [TIGHT, LOOSE, GROUP,  
                DETUNE, THICK] mode 
 2 “mix”:  linf [0, 100, 101] %, mix 
 3 “sprd”: linf [0, 100, 101] %, spread 
 

  

 

Pitch Fix 
 0 “mdl”:  PCORR 
 1 “spd”:  linf [1, 100, 100] speed 
 2 “amnt”: linf [0, 50, 51] amount 
 3 “a4”:   linf [410, 470, 601] A4 pitch 
 4 “_c”:   int [0, 1] 
 5 “_db”:  int [0, 1] 
 6 “_d”:   int [0, 1] 
 7 “_eb”:  int [0, 1] 
 8 “_e”:   int [0, 1] 
 9 “_f”:   int [0, 1] 
10 “_gb”:  int [0, 1] 
11 “_g”:   int [0, 1] 
12 “_ab”:  int [0, 1] 
13 “_a”:   int [0, 1] 
14 “_bb”:  int [0, 1] 
15 “_b”:   int [0, 1] 

  

 

Rotary Speaker 
 0 “mdl”:  ROTARY 
 1 “sw”:   str [STOP, SLOW, FAST] 
 2 “lo”:   logf [.1, 3.999, 51] Hz, lo speed 
 3 “hi”:   logf [4, 10, 51] Hz, hi speed 
 4 “bal”:  linf [-100, 100, 201] balance 
 5 “mix”:  linf [0, 100, 101] %, mix 
 6 “dist”: linf [0, 100, 101] distance 
 7 “dac”:  linf [0, 100, 101] %, drum accel 
 8 “hac”:  linf [0, 100, 101] %, horn accel 

  

 

Phaser 
 0 “mdl”:    PHASER 
 1 “spd”:    logf [.05, 5, 201] Hz, speed 
 2 “phase”:  int [0…180] phase 
 3 “wave”:   int [-50…50] wave 
 4 “range”:  int [2…98] %, range 
 5 “depth”:  int [0…100] %, depth 
 6 “emod”:   int [-100, 100] % env mod 
 7 “att”:    logf [10, 1000, 201] ms, attack 
 8 “hld”:    logf [10, 2000, 201] ms, hold 



 
 
 
 

©Patrick-Gilles Maillot 156 WING remote protocols – V 3.0.6-27 
 
 
 

 9 “rel”:    logf [10, 1000, 201] ms, release 
10 “mix”:    int [0…100] %, mix 
11 “stg”:    int [2…12] stages 
12 “reso”:   int [0…80] %, reso 

  

 

Tremolo Panner 
 0 “mdl”:    PANNER 
 1 “att”:    logf [10, 1000, 201] ms, attack 
 2 “hld”:    logf [10, 2000, 201] ms, hold 
 3 “rel”:    logf [10, 1000, 201] ms, release 
 4 “espd”:   int [0…100] %, env>depth 
 5 “edep”:   int [0…100] %, env>depth 
 6 “spd”:    logf [.05, 5, 201] Hz, speed 
 7 “phase”:  int [0…180] phase 
 8 “wave”:   int [-50…50] wave 
 9 “depth”:  int [0…100] %, depth 

  

 

Tape Machine 
 0 “mdl”:    TAPE 
 1 “drv”:    linf [-12, 12, 97] dB, drive 
 2 “spd”:    logf [7.5, 30, 65] 
 3 “low”:    int [0, 1] low bump 
 4 “hi”:     int [0, 1] high shelv 
 5 “out”:    linf [-12, 12, 97] dB, out gains s 

  

 

Mood Filter 
 0 “mdl”:   MOOD 
 1 “fbase”: logf [20, 15000, 101] Hz, base 
 2 “filt”:  str [LP, HP, BP, NOTCH] type 
 3 “slope”: str [12, 24] slope 
 4 “reso”:  linf [0, 10, 101] reso 
 5 “drv”:   linf [0, 10, 101] drive 
 6 “env”:   linf [-100, 100, 201] %, env 
 7 “att”:   logf [10, 250, 101] ms, attack 
 8 “hld”:   logf [1, 500, 101] ms, hold 
 0 “rel”:   logf [1, 500, 101] ms, release 
 1 “mix”:   linf [0, 10, 101] %, mix 
 2 “lfo”:   linf [linf [0, 10, 101] %, lfo 
 6 “spd”:   logf [.05, 20, 301] Hz, speed 
 7 “phase”: int [0…180] phase 
 8 “wave”:  str [TRI, SIN, SAW+, SAW-,  
                 RMP, SQU, RND] lfo wave 

  

 

Bodyrez 
 0 “mdl”:   BODY 
 1 “body”:  linf [0, 100, 101] body 

  

 

Rack Amp 
 0 “mdl”:   RACKAMP 
 1 “pre”:   linf [0, 10, 101] preamp 
 2 “buzz”:  linf [0, 10, 101] buzz 
 3 “punch”: linf [0, 10, 101] punch 
 4 “crunch”:linf [0, 10, 101] crunch 
 5 “drive   linf [0, 10, 101] drive 
 6 “out”:   linf [0, 10, 101] out gain 
 7 “leq”:   linf [0, 10, 101] low eq 
 8 “heq”    linf [0, 10, 101] high eq 
 9 “cab”:   int [0, 1] cab sim 

  



 
 
 
 

©Patrick-Gilles Maillot 157 WING remote protocols – V 3.0.6-27 
 
 
 

 

UK Rock Amp 
 0 “mdl”:   UKROCK 
 1 “gain”:  linf [0, 10, 101] gains 
 2 “bass”:  linf [0, 10, 101] bass 
 3 “mid”:   linf [0, 10, 101] middle 
 4 “treb”:  linf [0, 10, 101] treble 
 5 “pres    linf [0, 10, 101] presence 
 6 “mstr”:  linf [0, 10, 101] master 
 7 “out”:   linf [0, 10, 101] out gain 
 8 “sag”    linf [0, 10, 101] sag 
 9 “cab”:   int [0, 1] cab sim 

  

 

Angel Amp 
 0 “mdl”:   ANGEL 
 1 “gain”:  linf [0, 10, 101] gains 
 2 “bass”:  linf [0, 10, 101] bass 
 3 “mid”:   linf [0, 10, 101] middle 
 4 “treb”:  linf [0, 10, 101] treble 
 5 “pres    linf [0, 10, 101] presence 
 6 “mstr”:  linf [0, 10, 101] master 
 7 “out”:   linf [0, 10, 101] out gain 
 8 “sag”    linf [0, 10, 101] sag 
 9 “cab”:   int [0, 1] cab sim 
10 “midb”:  int [0, 1] mid boost 
11 “bri”:   int [0, 1] bright 
12 “bt”:    int [0, 1] bottom 

  

 

Jazz Clean Amp 
 0 “mdl”:   JAZZC 
 1 “vol”:   linf [0, 10, 101] volume 
 2 “bass”:  linf [0, 10, 101] bass 
 3 “mid”:   linf [0, 10, 101] middle 
 4 “treb”:  linf [0, 10, 101] treble 
 5 “out”:   linf [0, 10, 101] out gain 
 6 “bri”:   int [0, 1] bright 
 7 “cab”:   int [0, 1] cab sim 

  

 

Deluxe Amp 
 0 “mdl”:   DELUXE 
 1 “vol”:   linf [1, 10, 91] volume 
 2 “bass”:  linf [1, 10, 91] bass 
 4 “treb”:  linf [1, 10, 91] treble 
 5 “out”:   linf [1, 10, 91] out gain 
 6 “sag”:   linf [1, 10, 91] sag 
 7 “cab”:   int [0, 1] cab sim 

  

 

Soul Analogue 
 0 “mdl”:   SOUL 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “lf”:    linf [0, 10, 101] lo freq 
 3 “lg”:    linf [-5, 5, 101] lo gain 
 4 “lmf”:   linf [0, 10, 101] lm freq 
 5 “lmf3”:  int [0, 1] lm /3 
 6 “lmq”:   linf [0, 10, 101] lm q 
 7 “lmg”:   linf [-5, 5, 101] lm gain 
 8 “hmf”:   linf [0, 10, 101] hm freq 
 9 “hmf3”:  int [0, 1] hm x3 
10 “hmq”:   linf [0, 10, 101] hm q 
11 “hmg”:   linf [-5, 5, 101] hm gain 
12 “hf”:    linf [0, 10, 101] hf freq 
13 “hg”:    linf [-5, 5, 101] hf gain 

  



 
 
 
 

©Patrick-Gilles Maillot 158 WING remote protocols – V 3.0.6-27 
 
 
 

 

Even 88 Formant 
 0 “mdl”:   E88 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “lf”:    linf [0, 10, 101] lf freq 
 3 “lg”:    linf [-5, 5, 101] lf gain 
 4 “lq”:    str [LOW, HIGH] lf q 
 5 “lt”:    str [BELL, SHELV] lf type 
 6 “lmf”:   linf [0, 10, 101] lm freq 
 7 “lmg”:   linf [-5, 5, 101] lm gain 
 8 “lmq”:   linf [0, 10, 101] lm q 
 9 “hmf”:   linf [0, 10, 101] hm freq 
10 “hmg”:   linf [-5, 5, 101] hm gain 
11 “hmq”:   linf [0, 10, 101] hm q 
12 “hf”:    linf [0, 10, 101] hm freq 
13 “hg”:    linf [-5, 5, 101] hf gain 
14 “hq”:    str [LOW, HIG] hf q 
15 “ht”:    str [BELL, SHELV] hf type 

  

 

Even 84 
 0 “mdl”:   E84 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “g”:     linf [-20, 20, 81] dB, gain 
 3 “lf”:    str [OFF, 35, 60, 110, 220] lf freq 
 4 “lg”:    linf [-5, 5, 101] lf gain 
 5 “mf”:    str [OFF, 350, 700, 1k6, 3k2,  
                 4k8, 7k2] mid freq 
 6 “mg”:    linf [-5, 5, 101] mid gain 
 7 “mq”:    str [LOW, HIGH] mid q 
 8 “hf”:    str [10k, 12k, 16k, OFF] hf freq 
 9 “hg”:    linf [-5, 5, 101] hf gain 

  

 

Fortissimo110 
 0 “mdl”:   F110 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “peq”:   int [0, 1] peq on 
 3 “lmf”:   linf [0, 10, 101] lm freq 
 4 “lmg”:   linf [-5, 5, 101] lm gain 
 5 “lmq”:   linf [0, 10, 101] lm q 
 6 “lmf3”:  int [0, 1] lm /3 
 7 “hmf”:   linf [0, 10, 101] hm freq 
 8 “hmg”:   linf [-5, 5, 101] hm gain 
 9 “hmq”:   linf [0, 10, 101] hm q 
10 “hmf3”:  int [0, 1] hm x3 
11 “shv”:   inf [0, 1] shv on  
12 “lf”:    str [33, 56, 95, 160,  
                 270, 460] lf freq 
13 “lg”:    linf [-5, 5, 101] lf gain 
14 “hf”:    str [3k3, 4k7, 6k8, 10k,  
                 15k, 18k] hf freq 
15 “hg”:    linf [-5, 5, 101] hf q 
16 “g”:     linf [-18, 18, 73] gain 

  

 

Pulsar 
 0 “mdl”:   PULSAR 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “eq1”:   int [0, 1] eq1 on 
 3 “1lb”:   linf [0, 10, 101] lf boost 
 4 “1latt”: linf [0, 10, 101] lf att 
 5 “1lf”:   str [20, 30, 60, 100] Hz, lf freq 
 6 “1hw”:   linf [0, 10, 101] hf wid 
 7 “1hb”:   linf [0, 10, 101] hf boost 
 8 “1hf”:   str [3k, 4k, 5k, 8k, 10k,  
                 12k, 16k] Hz, hf freq 
 9 “1hatt”: linf [0, 10, 101] hf att 
10 “1hattf”:str [5k, 10k, 20k] hf att 
11 “eq5”:   inf [0, 1] eq5 on  
12 “5lb”:   linf [0, 10, 101] lm boost 



 
 
 
 

©Patrick-Gilles Maillot 159 WING remote protocols – V 3.0.6-27 
 
 
 

13 “5lf”:   str [200, 300, 500, 700,  
                 1k] Hz, lf freq 
14 “5md”:   linf [0, 10, 101] mid dip 
15 “5mf”:   str [200, 300, 500, 700, 1k, 1k5,  
                 2k, 3k, 4k, 5k, 7k] Hz, mid freq 
16 “5hb”:   linf [0, 10, 101] HM boost 
17 “5hf”:   str [1k5, 2k, 3k, 4k,  
                 5k] Hz, hf freq 

  

 

Mach EQ4 
 0 “mdl”:   MACH4 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “sub”:   linf [-5, 5, 101] sub 
 3 “40”:    linf [-5, 5, 101] 40 
 4 “160”:   linf [-5, 5, 101] 160 
 5 “650”:   linf [-5, 5, 101] 650 
 6 “2k5”:   linf [-5, 5, 101] 2k5 
 7 “air”:   linf [0, 10, 101] air 
 8 “airm”:  str [OFF, 2k5, 5k, 10k,  
                 20k, 40k] air mode 
 9 “again”: int [0, 1] auto 

  
  

 
 
  



 
 
 
 

©Patrick-Gilles Maillot 160 WING remote protocols – V 3.0.6-27 
 
 
 

Premium effects 
 None 

 0 “mdl”:   NONE 

  

 

External 
 0 “mdl”:   EXT 
 1 “egrp”:  str [OFF, LCL, AUX, A, B, C, SC,  
                 USB, CRD, MOD, PLAY, AES] ext grp 
 2 “ein”:   int [1…64] ext in 
 3 “emode”: str [M, ST, M/S] ext mode 
 4 “lat”:   int [0…200] latency 
 5 “trim”:  linf [-18, 18, 361] dB, trim 

  

 

Hall Reverb 
 0 “mdl”:  HALL 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “size”: int [0…100] hall size 
 3 “dcy”:  logf [.2, 5, 101] s, decay 
 4 “mult”: logf [.5, , 101] bass multiplier 
 5 “damp”: logf [1k, 20k, 51] Hz, damping 
 6 “lc”:   logf [20, 400, 51] Hz, low cut 
 7 “hc”:   logf [200, 20k, 51] Hz, high cut 
 8 “shp”:  linf [0, 50, 51] shape 
 9 “sprd”: int [0…50] spread 
10 “diff”: int [1…30] diffusion 
11 “mspd”: int [0…100] mod speed 

  

 

Room Reverb 
 0 “mdl”:  R-OOM 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “size”: linf [4, 76, 145] m, room size 
 3 “dcy”:  logf [.3, 25, 101] s, decay 
 4 “mult”: logf [.25, 4, 101] bass multiplier 
 5 “damp”: logf [1k, 20k, 51] Hz, damping 
 6 “lc”:   logf [20, 400, 51] Hz, low cut 
 7 “hc”:   logf [200, 20k, 51] Hz, high cut 
 8 “shp”:  linf [0, 250, 51] shape 
 9 “sprd”: int [0…50] spread 
10 “diff”: int [0…100] diffusion 
11 “spin”: int [0…100] spin 
12 “ecl”:  linf [0, 1200, 1201] ms, echo left 
13 “ecr”:  linf [0, 1200, 1201] ms, echo right 
14 “efl”:  linf [-100, 100, 201] %, feed left 
15 “efr”:  linf [-100, 100, 201] %, feed right 

  

 

Chamber Reverb 
 0 “mdl”:  CHAMBER 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “size”: linf [4, 76, 145] m, room size 
 3 “dcy”:  logf [.3, 25, 101] s, decay 
 4 “mult”: logf [.25, 4, 101] bass multiplier 
 5 “damp”: logf [1k, 20k, 51] Hz, damping 
 6 “lc”:   logf [20, 400, 51] Hz, low cut 
 7 “hc”:   logf [200, 20k, 51] Hz, high cut 
 8 “shp”:  linf [0, 250, 51] shape 
 9 “sprd”: int [0…50] spread 
10 “diff”: int [0…100] diffusion 
11 “spin”: int [0…100] spin 
12 “ecl”:  linf [0, 300, 301] ms, echo left 
13 “ecr”:  linf [0, 300, 301] ms, echo right 
14 “ell”:  fader lvl dB, echo left 
15 “elr”:  fader lvl dB, echo right 

  



 
 
 
 

©Patrick-Gilles Maillot 161 WING remote protocols – V 3.0.6-27 
 
 
 

 

Plate Reverb 
 0 “mdl”:  PLATE 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “size”: linf [4, 76, 145] m, room size 
 3 “dcy”:  logf [.3, 25, 101] s, decay 
 4 “mult”: logf [.25, 4, 101] bass multiplier 
 5 “damp”: logf [1k, 20k, 51] Hz, damping 
 6 “lc”:   logf [20, 400, 51] Hz, low cut 
 7 “hc”:   logf [200, 20k, 51] Hz, high cut 
 8 “att”:  linf [0, 100, 101] attack 
 9 “sprd”: int [0…50] spread 
10 “diff”: int [0…100] diffusion 
11 “spin”: int [0…100] spin 
12 “ecl”:  linf [0, 1200, 1201] ms, echo left 
13 “ecr”:  linf [0, 1200, 1201] ms, echo right 
14 “efl”:  linf [-100, 100, 201] %, feed left 
15 “efr”:  linf [-100, 100, 201] %, feed right 

  

 

Concert Reverb 
 0 “mdl”:  CONCERT 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “size”: linf [20, 76, 113] m, room size 
 3 “dcy”:  logf [.3, 29, 51] s, decay 
 4 “mult”: logf [.25, 4, 101] bass multiplier 
 5 “damp”: logf [1k, 20k, 51] Hz, damping 
 6 “lc”:   logf [20, 400, 51] Hz, low cut 
 7 “hc”:   logf [200, 20k, 51] Hz, high cut 
 8 “shp”:  linf [0, 50, 51] shape 
 9 “sprd”: int [0…50] spread 
10 “diff”: int [1…16] diffusion 
11 “depth”:int [0, 100] depth 
12 “rfl”:  linf [0, 1200, 1201] ms, refl. left 
13 “rfr”:  linf [0, 1200, 1201] ms, refl. right 
14 “rfll”: fader lvl dB, reflection left 
15 “rflr”: fader lvl dB, reflection right 
16 “spin”: int [0…100] spin 
17 “crs”:  int [1…100] chorus 

  

 

Ambiance 
 0 “mdl”:  AMBI 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “size”: linf [2, 100, 99] m, room size 
 3 “dcy”:  logf [.2, 7.3, 101] s, decay 
 4 “tail”: int [0…100] tail gain 
 5 “damp”: logf [1k, 20k, 51] Hz, damping 
 6 “diff”: int [1…30] diffusion 
 7 “mod”:  int [1…100] modulation speed 
 8 “lc”:   logf [20, 400, 51] Hz, low cut 
 9 “hc”:   logf [200, 20k, 51] Hz, high cut 

  

 

VSS3 Reverb 
 0 “mdl”:    VSS3 
 1 “preset”: str [Build, Small Booth, Home Room, 
                  Dialog Alley, Small Wood Room,  
                  A Small Room, Intimate Studio,  
                  Small Room, Tight & Natural, Room  
                  Conversation, Furnished Room 2,  
                  Studio 20x20 ft, Drew Room, Piano  
                  Close, Clear Guitar Room, Wide  
                  Ambient Chamber, Small Dense Hall,  
                  Slap Hall, Acoustic Gtr Ambience,  
                  Clear Room, Livingroom, Band  
                  Rehearsal Room, The Studio, In The  
                  Room, Studio 40x40 ft, Hit Room,  
                  Ambient Hall, Stage and Hall,  
                  Acoustic Guitar Space, Medium  
                  Vocal Hall, Bright Theatre , Big  



 
 
 
 

©Patrick-Gilles Maillot 162 WING remote protocols – V 3.0.6-27 
 
 
 

                  Empty Club, Venue Warm 1, Concert  
                  1, Bright Guitar Hall, Concert  
                  Arena, Concert Piano, Piano Hall  
                  1st Row, Empty Arena, Ballad Vocal  
                  Hall, Grand Vocal Hall, Large Warm  
                  Hall, Back There, WoodHall,  
                  Church, Sound Col, 5000 Hall,  
                  Cathedral, Large Church, Medium  
                  Church, Warm Cathedral, Cologne  
                  Cathedral, Drum Plate Stuff, Drum  
                  Wood Plate, Piano Plate, Stairway  
                  Plate, Slapback Plate, Ambient  
                  Plate, Silky Gold Plate, Gold  
                  Plate, EMT 141, Leader Of The  
                  Band, VocalDry, Vocal Room,  
                  VocalWet, Slapback Vox 1, Vocal  
                  Hall 1, Vocal Chamber, Bright Male  
                  Vox, Vocal Bright, Vocal Deep,  
                  Vocal Female, Vocal Deep Male,  
                  Large Vocal Hall, Kick & Bass  
                  Ambience, Drum Room, Small Perc  
                  Room, Drum Room Xpander, Bright  
                  Shoe Gaze Snare, Snare Room  
                  Bright, Tom-Tom Reverb, Bossa Nova  
                  Perc Room, Hard Drum Space, Puk  
                  Drum Ambience, Overhead Mics,  
                  Dance Snare, Drum Perc Soft 1,  
                  Perc Straight Tail, Store Room,  
                  Studio Small, The Alley, Near The  
                  Wall, WoodFlr, Large Office,  
                  Conference Room, Dance Studio,  
                  Forest 2, StoneWall, Venue 1,  
                  Small Stairway, Forest 1, Airport  
                  PA, Small Tower Hall, On The  
                  Street, Dark Tunnel, Empty  
                  Nightclub, Parking Garage, Parking  
                  Distant, Long Swimmingpool] preset 
 2 “load”:   int [0, 1] load 
 3 “erpdly”: linf [0, 100, 101] ms, er pdly 
 4 “ertype”: str [ROYAL, THEATRE, CHURCH, GAS,  
                  CONCERT, ROYAL2, V1-NEAR,  
                  V2-HARD, V3-SPREAD, V4-BUILD,  
                  V5-RANDOM, SLAP, CAR, PHONEBTH,  
                  BATHROOM, CONFRM9, CONFRM30,  
                  GARAGE, SWIMSTDM, AIRPORT,  
                  STREET, ALLEY, PIAZA,  
                  FOREST], er type 
 5 “ersize”: str [SML, MED, LRG] er size 
 6 “erpos”:  str [NEAR, DIST] er position 
 7 “erbal”:  linf [-100, 100, 201], er balance 
 8 “erlc”:   logf [20, 400, 51] Hz, er low cut 
 9 “ercol”:  linf [-40, 40, 81] er color 
10 “erlvl”:  fader lvl dB, er level 
11 “rvtype”: str [SMOOTH, NATURAL, ALIVE, FAST,  
                  X-WIDE, ALIVE2] rev type 
12 “rvwide”: str [NARROW, NORMAL, WIDE, X-WIDE] rev  
                  wide 
13 “rvpdly”: linf [0, 200, 201] ms, rev pdly 
14 “dcy”:    linf [.1, 20, 280] s, decay 
15 “diff”:   linf [-50, 50, 101] diffuse 
16 “rvbal”:  linf [-100, 100, 201] balance 
17 “rvlvl”:  fader lvl dB, reverb level 
18 “ldcy”:   linf [.1, 2.5, 25] low decay 
19 “lmdcy”:  linf [.1, 2.5, 25] lowmid decay 
20 “hmdcy”:  linf [.1, 2.5, 25] mid decay 
21 “hdcy”:   linf [.1, 2.5, 25] high decay 
22 “hsoft”:  linf [-50, 50, 101] high soft 
23 “lxo”:    logf [20, 500, 113] Hz, low xover 
24 “mxo”:    logf [200, 2000, 81] Hz, mid xover 
25 “hxo”:    logf [500, 20000, 105] Hz, high xover 



 
 
 
 

©Patrick-Gilles Maillot 163 WING remote protocols – V 3.0.6-27 
 
 
 

26 “lshv”:   logf [20, 200, 81] Hz, low shelf 
27 “lsdmp”:  linf [0, -18, 37] dB, low damp 
28 “hcut”:   logf [20, 20000, 241] Hz, high cut 
29 “mtype”:  str [A, B, C, D, E, F] modulation type 
30 “mrate”:  linf [-100, 100, 201] modulation rate 
31 “mwid”:   linf [0, 200, 201] modulation width 
32 “view”:   int [0, 1] view 

  

 

Vintage Room 
 0 “mdl”:   V-ROOM 
 1 “pdel”:  int [0…200] ms, pre-delay 
 2 “size”:  int [0…50] size 
 3 “dcy”:   logf [.1, 20, 101] s, decay 
 4 “dens”:  linf [1, 30, 30] density 
 5 “erlvl”: linf [0, 100, 101] %, Early level 
 6 “lmult”: logf [.1, 10, 101] low multiplier 
 7 “hmult”: logf [.1, 10, 101] high multiplier 
 8 “lc”:    logf [20, 400, 51] Hz, low cut 
 9 “hc”:    logf [200, 20k, 51] Hz, high cut 
10 “frz”:   int [0, 1] freeze 
11 “erl”:   linf [0, 200, 201] ms, er delay left 
12 “err”:   linf [0, 200, 201] ms, er delay right 
13 “add”:   int [0, 1] add 
14 “lvl”:   int [-6, 6, 101] dB, level 

  

 

Vintage Reverb,  
 0 “mdl”:   V-REV 
 1 “pdel”:  int [0…120] ms, pre-delay 
 2 “dcy”:   linf [.4, 4.5, 83] s, decay 
 3 “lmult”: logf [.5, 2, 51] low multiplier 
 4 “hmult”: logf [.25, .67, 51] high multiplier 
 5 “mod”:   int [0…100] modulation speed 
 6 “lc”:    logf [20, 400, 51] Hz, low cut 
 7 “hc”:    logf [5000, 20k, 31] Hz, high cut 
 8 “out”:   str [FRONT, REAR] output 
 9 “trans”: int [0…1] transformer 

  

 

Vintage Plate 
 0 “mdl”:   V-PLATE 
 1 “pdel”:  int [0…250] ms, pre-delay 
 2 “dcy”:   linf [1, 6, 101] s, decay 
 3 “lc”:    logf [20, 400, 51] Hz, low cut 
 4 “col”:   linf [-20, 20, 42] color 

  

 

Blue Plate 
 0 “mdl”:   BPLATE 
 1 “pdel”:  int [0…200] ms, pre delay 
 2 “size”:  int [0…100] ms, size 
 3 “dcy”:   logf [0.2, 5, 101] s, decay 
 4 “mult”:  logf [0.5, 2, 51] bass multiplier 
 5 “damp”:  logf [1000, 20000, 51] Hz, damping 
 6 “lc”:    logf [20, 400, 51] Hz, low cut 
 7 “hc”:    logf [200, 20000, 51] Hz, high cut 
 8 “xover”: logf [20, 500, 51] Hz, xover 
 9 “mdep”:  linf [1, 50, 50] modulation depth 
10 “msdp”:  int [0…100] modulation speed 
11 “diff”:  int [1…30] diffusion 

  

 

Gated Reverb 
 0 “mdl”:  GATED 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “att”:  int [4…30] attack 
 3 “dcy”:  logf [.14, 1, 101] s, decay 
 4 “dens”: int [0…100] density 
 5 “diff”: int [0…100] diffusion 



 
 
 
 

©Patrick-Gilles Maillot 164 WING remote protocols – V 3.0.6-27 
 
 
 

 6 “sprd”: int [0…50] spread 
 7 “lc”:   logf [20, 400, 51] Hz, low cut 
 8 “hfs”:  logf [200, 20k, 51] Hz, high freq 
 9 “hsg”:  linf [-30, 0, 61] dB, high gain 

  

 

Reverse Reverb 
 0 “mdl”:  REVERSE 
 1 “pdel”: int [0…200] ms, pre-delay 
 2 “rise”: int [4…50] rise 
 3 “dcy”:  logf [.14, 1, 101] s, decay 
 4 “diff”: int [0…30] diffusion 
 5 “sprd”: int [0…100] spread 
 6 “lc”:   logf [20, 400, 51] Hz, low cut 
 7 “hfs”:  logf [200, 20k, 51] Hz, high freq 
 8 “hsg”:  linf [-30, 0, 61] dB, high gain 

  

 

Delay/Reverb 
 0 “mdl”:   DEL/REV 
 1 “time”:  linf [0, 3000, 3000] ms, time 
 2 “feed”:  linf [0, 100, 101] %, feed 
 3 “fhc”:   logf [200, 2000, 51] Hz, feed HC 
 4 “dly”:   linf [0, 100, 101] %, delay 
 5 “d2r”:   linf [0, 100, 101] %, delay→rev 
 6 “pdel”:  int [0…200] ms, pre delay 
 7 “size”:  int [2…100] size 
 8 “dcy”:   logf [.1, 5, 51] s, decay 
 9 “damp”:  logf [1000, 20k, 51] Hz, damp 
10 “rlc”:   logf [20, 400, 51] Hz, rev LC 
11 “i2r”:   linf [0, 100, 101] %, in→rev 

  

 

Shimmer Reverb 
 0 “mdl”:   SHIMMER 
 1 “pdel”:  int [0…250] ms, pre delay 
 2 “size”:  int [2…50] size 
 3 “dcy”:   logf [1, 20, 101] s, decay 
 4 “lc”:    logf [25, 250, 51] Hz, low cut 
 5 “hc”:    logf [500, 7000, 51] Hz, high cut 
 6 “damp”:  linf [0, 100, 101] %, damp 
 7 “shim”:  linf [0, 100, 101] %, shimmer 
 8 “shine”: linf [0, 100, 101] %, shine 

  

 

Spring Reverb 
 0 “mdl”:   SPRING 
 1 “dcy”:   logf [1.5, 6, 101] s, decay 
 2 “dens”:  linf [1, 30, 30] density 
 3 “low”:   linf [1, 50, 50] bass 
 4 “high”:  linf [1, 50, 50] treble 

  

 

Dimension CRS 
 0 “mdl”:   DIMCRS 
 1 “sw1”:   int [0, 1] sw1 
 2 “sw2”:   int [0, 1] sw2 
 3 “sw3”:   int [0, 1] sw3 
 4 “sw4”:   int [0, 1] sw4 
 5 “in”:    str [MONO, STEREO] input 
 6 “drysw”: int [0, 1] dry 

  

 

Stereo Chorus 
 0 “mdl”:   CHORUS 
 1 “lc”:    logf [20, 400, 51] Hz, LC 
 2 “hc”:    logf [200, 20000, 51] Hz, HC 
 3 “wave”:  linf [0, 100, 101] waveform 
 4 “phase”: linf [0, 100, 101] phase 
 5 “mix”:   linf [0, 100, 101] %, mix 



 
 
 
 

©Patrick-Gilles Maillot 165 WING remote protocols – V 3.0.6-27 
 
 
 

 6 “dlyl”:  linf [5, 50, 226] ms, delay l 
 7 “dlyr”:  linf [5, 50, 226] ms, delay r 
 8 “depl”:  linf [0, 100, 101] %, depth l 
 9 “depr”:  linf [0, 100, 101] %, depth r 
10 “sprd”:  linf [0, 100, 101] %, spread 
11 “spd”:   logf [.05, 5, 201] Hz, speed 

  

 

Stereo Flanger 
 0 “mdl”:   CHORUS 
 1 “lc”:    logf [20, 400, 51] Hz, LC 
 2 “hc”:    logf [200, 20000, 51] Hz, HC 
 3 “flc”:   logf [20, 400, 51] Hz, feed LC 
 4 “fhc”:   logf [200, 20000, 51] Hz, feed HC 
 5 “mix”:   linf [0, 100, 101] %, mix 
 6 “dlyl”:  linf [5, 20, 196] ms, delay l 
 7 “dlyr”:  linf [5, 20, 196] ms, delay r 
 8 “depl”:  linf [0, 100, 101] %, depth l 
 9 “depr”:  linf [0, 100, 101] %, depth r 
10 “phase”:  linf [0, 180, 181] phase 
11 “spd”:   logf [.05, 5, 201] Hz, speed 
12 “feed”:  linf [-90, 90, 181] %, feed 

  

 

Stereo Delay 
 0 “mdl”:   ST-DL 
 1 “time”:  linf [1, 3000, 3000] ms, time 
 2 “mode”:  str [ST, X, M] mode  
 3 “fact”:  str [1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/8,  
                 5/4, 4/3, 3/2, 2] factor 
 4 “pat”:   str [1/2:1, 2/3:1, 3/4:1, 7/8:1,  
                 1:1, 1:9/8, 1:5/4, 1:4/3,  
                 1:3/2] pattern 
 5 “offset”:int [-50…50] ms, offset 
 6 “feed”:  linf [0, 100, 101] %, feed 
 7 “flc”:   logf [20, 400, 51] Hz, feed L cut 
 8 “fhc”:   logf [200, 20000, 51] Hz, feed H cut 
 9 “lc”:    logf [20, 400, 51] Hz, low cut 
10 “hc”:    logf [200, 20000, 51] Hz, high cut 

  

 

UltraTap Delay 
 0 “mdl”:   TAP-DL 
 1 “time”:  linf [1, 2000, 2000] ms, time 
 2 “rep”:   int [1..16] repeat  
 3 “slp”:   linf [-6, 6, 121] dB, slope 
 4 “fact”:  str [1/3, 1/2, 2/3, 3/4, 1, 5/4,  
                 4/3, 3/2, 2] factor 
 5 “pdel”:  linf [0, 500, 501] ms, pre delay 
 6 “mode”:  str [MOVE, JUMP, FOCUS, SPREAD] mode 
 7 “wid”:   linf [-100, 100, 201] %, width 
 8 “diff”:  linf [0, 100, 101] diffusion 
 9 “lc”:    logf [20, 400, 51] Hz, low cut 
10 “hc”:    logf [200, 20000, 51] Hz, high cut 

  

 

Tape Delay 
 0 “mdl”:   TAPE-DL 
 1 “time”:  linf [60, 650, 591] ms, time 
 2 “sust”:  linf [0, 100, 101] %, sustain 
 3 “drv”:   linf [0, 100, 101] %, drive 
 4 “wf”:    linf [0, 100, 101] %, flutter 
  

  



 
 
 
 

©Patrick-Gilles Maillot 166 WING remote protocols – V 3.0.6-27 
 
 
 

 

OilCan Delay 
 0 “mdl”:   OILCAN 
 1 “time”:  linf [0, 10, 1001] time 
 2 “sust”:  linf [0, 10, 101] %, sustain 
 3 “wb”:    linf [0, 10, 101] %, wobble 
 4 “tone”:  linf [0, 10, 101] %, tone 

  

 

BBD Delay 
 0 “mdl”:   BBD-DL 
 1 “dly”:   linf [0, 100, 1001] time 
 2 “feed”:  linf [0, 100, 101] %, feed 

  

 

Stereo Pitch 
 0 “mdl”:   PITCH 
 1 “semi”:  int [-12…12] semitones 
 2 “cent”:  int [-50…50] cent  
 3 “dly”:   linf [0, 500, 501] ms, delay 
 4 “lc”:    logf [20, 400, 51] Hz, low cut 
 5 “hc”:    logf [200, 20000, 51] Hz, high cut 
 6 “mix”:   linf [0, 100, 101] %, mix 

 
  

 

Dual Pitch 
 0 “mdl”:   D-PITCH 
 1 “semi1”: int [-12…12] semitones 1 
 2 “cent1”: int [-50…50] cent 1  
 3 “dly1”:  linf [0, 500, 501] ms, delay 1 
 4 “pan1”:  linf [-100, 100, 201] %, pan 1 
 5 “lvl1”:  fader lvl 1 dB 
 6 “semi2”: int [-12…12] semitones 2 
 7 “cent2”: int [-50…50] cent 2 
 8 “dly2”:  linf [0, 500, 501] ms, delay 2 
 9 “pan2”:  linf [-100, 100, 201] %, pan 2 
10 “lvl2”:  fader lvl 2 dB 
11 “lc”:    logf [20, 400, 51] Hz, low cut 
12 “hc”:    logf [200, 20000, 51] Hz, high cut 

 
  



 
 
 
 

©Patrick-Gilles Maillot 167 WING remote protocols – V 3.0.6-27 
 
 
 

Channel effects 
 None 

 0 “mdl”:   NONE 

  

 

External 
 0 “mdl”:   EXT 
 1 “egrp”:  str [OFF, LCL, AUX, A, B, C, SC,  
                 USB, CRD, MOD, PLAY, AES] ext grp 
 2 “ein”:   int [1…64] ext in 
 3 “emode”: str [M, ST, M/S] ext mode 
 4 “lat”:   int [0…200] latency 
 5 “trim”:  linf [-18, 18, 361] dB, trim 

  

 

Soul Analog EQ 
 0 “mdl”:   SOUL 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “lf”:    linf [0, 10, 101] lo freq 
 3 “lg”:    linf [-5, 5, 101] lo gain 
 4 “lmf”:   linf [0, 10, 101] lm freq 
 5 “lmf3”:  int [0, 1] lm /3 
 6 “lmq”:   linf [0, 10, 101] lm q 
 7 “lmg”:   linf [-5, 5, 101] lm gain 
 8 “hmf”:   linf [0, 10, 101] hm freq 
 9 “hmf3”:  int [0, 1] hm x3 
10 “hmq”:   linf [0, 10, 101] hm q 
11 “hmg”:   linf [-5, 5, 101] hm gain 
12 “hf”:    linf [0, 10, 101] hf freq 
13 “hg”:    linf [-5, 5, 101] hf gain 

  

 

Even 88-Formant EQ 
 0 “mdl”:   E88 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “lf”:    linf [0, 10, 101] lf freq 
 3 “lg”:    linf [-5, 5, 101] lf gain 
 4 “lq”:    str [LOW, HIGH] lf q 
 5 “lt”:    str [BELL, SHELV] lf type 
 6 “lmf”:   linf [0, 10, 101] lm freq 
 7 “lmg”:   linf [-5, 5, 101] lm gain 
 8 “lmq”:   linf [0, 10, 101] lm q 
 9 “hmf”:   linf [0, 10, 101] hm freq 
10 “hmg”:   linf [-5, 5, 101] hm gain 
11 “hmq”:   linf [0, 10, 101] hm q 
12 “hf”:    linf [0, 10, 101] hm freq 
13 “hg”:    linf [-5, 5, 101] hf gain 
14 “hq”:    str [LOW, HIG] hf q 
15 “ht”:    str [BELL, SHELV] hf type 

  

 

Even 84 EQ 
 0 “mdl”:   E84 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “g”:     linf [-20, 20, 81] dB, gain 
 3 “lf”:    str [OFF, 35, 60, 110, 220] lf freq 
 4 “lg”:    linf [-5, 5, 101] lf gain 
 5 “mf”:    str [OFF, 350, 700, 1k6, 3k2,  
                 4k8, 7k2] mid freq 
 6 “mg”:    linf [-5, 5, 101] mid gain 
 7 “mq”:    str [LOW, HIGH] mid q 
 8 “hf”:    str [10k, 12k, 16k, OFF] hf freq 
 9 “hg”:    linf [-5, 5, 101] hf gain 

  
  



 
 
 
 

©Patrick-Gilles Maillot 168 WING remote protocols – V 3.0.6-27 
 
 
 

 

Focusrite ISA 110 EQ 
 0 “mdl”:   F110 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “peq”:   int [0, 1] peq on 
 3 “lmf”:   linf [0, 10, 101] lm freq 
 4 “lmg”:   linf [-5, 5, 101] lm gain 
 5 “lmq”:   linf [0, 10, 101] lm q 
 6 “lmf3”:  int [0, 1] lm /3 
 7 “hmf”:   linf [0, 10, 101] hm freq 
 8 “hmg”:   linf [-5, 5, 101] hm gain 
 9 “hmq”:   linf [0, 10, 101] hm q 
10 “hmf3”:  int [0, 1] hm x3 
11 “shv”:   inf [0, 1] shv on  
12 “lf”:    str [33, 56, 95, 160,  
                270, 460] lf freq 
13 “lg”:    linf [-5, 5, 101] lf gain 
14 “hf”:    str [3k3, 4k7, 6k8, 10k,  
                 15k, 18k] hf freq 
15 “hg”:    linf [-5, 5, 101] hf q 
16 “g”:     linf [-18, 18, 73] gain 

  

 

Pulsar P1a/M5 EQ 
 0 “mdl”:   PULSAR 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “eq1”:   int [0, 1] eq1 on 
 3 “1lb”:   linf [0, 10, 101] lf boost 
 4 “1latt”: linf [0, 10, 101] lf att 
 5 “1lf”:   str [20, 30, 60, 100] Hz, lf freq 
 6 “1hw”:   linf [0, 10, 101] hf wid 
 7 “1hb”:   linf [0, 10, 101] hf boost 
 8 “1hf”:   str [3k, 4k, , 5k, 8k, 10k,  
                 12k, 16k] Hz, hf freq 
 9 “1hatt”: linf [0, 10, 101] hf att 
10 “1hattf”:str [5k, 10k, 20k] hf att 
11 “eq5”:   int [0, 1] eq5 on  
12 “5lb”:   linf [0, 10, 101] lm boost 
13 “5lf”:   str [200, 300, 500, 700,  
                 1k] Hz, lf freq 
14 “5md”:   linf [0, 10, 101] mid dip 
15 “5mf”:   str [200, 300, 500, 700, 1k, 1k5, 
                2k, 3k, 4k, 5k, 7k] Hz, mid freq 
16 “5hb”:   linf [0, 10, 101] HM boost 
17 “5hf”:   str [1k5, 2k, 3k, 4k,  
                 5k] Hz, hf freq 

  

 

Mach EQ4 
 0 “mdl”:   MACH4 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “sub”:   linf [-5, 5, 101] sub 
 3 “40”:    linf [-5, 5, 101] 40 
 4 “160”:   linf [-5, 5, 101] 160 
 5 “650”:   linf [-5, 5, 101] 650 
 6 “2k5”:   linf [-5, 5, 101] 2k5 
 7 “air”:   linf [0, 10, 101] air 
 8 “airm”:  str [OFF, 2k5, 5k, 10k,  
                 20k, 40k] air mode 
 9 “again”: int [0, 1] auto 

  

 

Even Channel 
Even 88 Gate, Even 88 Formant EQ, Even 
Compressor/Limiter 
 0 “mdl”:     *EVEN* 
 1 “g_thr”:   Linf [-40.0, 0.0, 81] dB 
 2 “g_hyst”:  Linf [0.0, 25.0, 51] dB 
 3 “g_range”: Linf [0, 60, 61] dB 
 4 “g_rel”:   Logf [100, 3000, 130] ms 
 5 “g_fast”:  int [0, 1] 



 
 
 
 

©Patrick-Gilles Maillot 169 WING remote protocols – V 3.0.6-27 
 
 
 

 6 “g_m40”:   int [0, 1] 
 7 “g_on”:    int [0, 1] 
 8 “eq_on”:   int [0, 1] 
 9 “lf”:      Linf [0.0, 10.0, 101] 
10 “lg”:      Linf [-5.0, 5.0, 101] 
11 “lq”:      Str [LOW, HIGH] 
12 “lt”:      Str [BELL, SHELV] 
13 “lmf”:     Linf [0.0, 10.0, 101] 
14 “lmg”:     Linf [-5.0, 5.0, 101] 
15 “lmq”:     Linf [0.0, 10.0, 101] 
16 “hmf”:     Linf [0.0, 10.0, 101] 
17 “hmg”:     Linf [-5.0, 5.0, 101] 
18 “hmq”:     Linf [0.0, 10.0, 101] 
19 “hf”:      Linf [0.0, 10.0, 101] 
20 “hg”:      Linf [-5.0, 5.0, 101] 
21 “hq”:      Str [LOW, HIGH] 
22 “ht”:      Str [BELL, SHELV] 
23 “mix”:     Linf [0, 125 %, 126] 
24 “d_lon”:   int [0, 1] 
25 “d_lthr”:  Linf [-12.0, 0.0, 25] dB 
26 “d_lrec”:  Str [50, 100, 200, 800, A1, A2] 
27 “d_lfast”: int [0, 1] 
28 “d_con”:   int [0, 1] 
29 “d_cthr”:  Linf [-35.0, -5.0 dB, 61] 
30 “d_ratio”: Str [1.5, 2.0, 3.0, 4.0, 6.0] 
31 “d_crec”:  Str [100, 400, 800, 1500, A1, A2] 
32 “d_cfast”: int [0, 1] 
33 “d_gain”:  Linf [-6, 12 dB, 7] 

  

 

Soul Channel 
Soul 9000 Gate/Expander, Soul AnaLogue EQ, Soul 9000 
Channel Compressor 
 0 “mdl”:     *SOUL* 
 1 “g_thr”:   Linf [-40.0, 0.0, 81] dB 
 2 “g_range”: Linf [0, 40, 41] dB 
 3 “g_hld”:   Logf [10, 4000, 130] ms 
 4 “g_rel”:   Logf [100, 4000, 130] ms 
 5 “g_fast”:  int [0, 1] 
 6 “g_mode”:  Str [GATE, EXP] 
 7 “g_on”:    int [0, 1] 
 8 “eq_on”:   int [0, 1] 
 9 “lf”:      Linf [0.0, 10.0, 101] 
10 “lg”:      Linf [-5.0, 5.0, 101] 
11 “lmf”:     Linf [0.0, 10.0, 101] 
12 “lmf3”:    int [0, 1] 
13 “lmq”:     Linf [0.0, 10.0, 101] 
14 “lmg”:     Linf [-5.0, 5.0, 101] 
15 “hmf”:     Linf [0.0, 10.0, 101] 
16 “hmf3”:    int [0, 1] 
17 “hmq”:     Linf [0.0, 10.0, 101] 
18 “hmg”:     Linf [-5.0, 5.0, 101] 
19 “hf”:      Linf [0.0, 10.0, 101] 
20 “hg”:      Linf [-5.0, 5.0, 101] 
21 “mix”:     Linf [0, 125 %, 126] 
22 “d_on”:    int [0, 1] 
23 “d_thr”:   Linf [-30.0, 18.0, 97] dB 
24 “d_ratio”: Str [1.3, 1.4, 1.6, 1.8, 2.0,  
                   2.5, 2.8, 3.3, 4.0, 5.0,  
                   6.0, 7.0, 9.0, 12, 20,  
                   50, 100] 
25 “d_fast”:  int [0, 1] 
26 “d_rel”:   Logf [100, 4000, 65] ms 
27 “d_peak”:  int [0, 1] 

  



 
 
 
 

©Patrick-Gilles Maillot 170 WING remote protocols – V 3.0.6-27 
 
 
 

 

Vintage Channel 
76 Limiting Amplifier, Pulsar EQ P1A/m5, Model 2A 
Leveling Amplifier 
 0 “mdl”:     *VINTAGE* 
 1 “d_in”:     Linf [-48.0, 0.0, 97] dB 
 2 “d_out”:    Linf [-48.0, 0.0, 97] dB 
 3 “d_att”:    Linf [1.0, 7.0, 61] 
 4 “d_rel”:    Linf [1.0, 7.0, 61] 
 5 “d_ratio”:  Str [4, 8, 12, 20, ALL] 
 6 “d_on”:     int [0, 1] 
 7 “eq1”:      int [0, 1] 
 8 “1lb”:      Linf [0.0, 10.0, 101] 
 9 “1latt”:    Linf [0.0, 10.0, 101] 
10 “1lf”:      Str [20, 30, 60, 100] 
11 “1hw”:      Linf [0.0, 10.0, 101] 
12 “1hb”:      Linf [0.0, 10.0, 101] 
13 “1hf”:      Str [3k, 4k, 5k, 8k, 10k, 12k, 16k] 
14 “1hatt”:    Linf [0.0, 10.0, 101] 
15 “1hattf”:   Str [5k, 10k, 20k] 
16 “eq5”:      int [0, 1] 
17 “5lb”:      Linf [0.0, 10.0, 101] 
18 “5lf”:      Str [200, 300, 500, 700, 1k] 
19 “5md”:      Linf [0.0, 10.0, 101] 
20 “5mf”:      Str [200, 300, 500, 700, 1k, 1k5, 
                    2k, 3k, 4k, 5k, 7k] 
21 “5hb”:      Linf [0.0, 10.0, 101] 
22 “5hf”:      Str [1k5, 2k, 3k, 4k, 5k] 
23 “l_ingain”: Linf [0, 100, 101] 
24 “l_peak”:   Linf [0, 100, 101] 
25 “l_mode”:   Str [COMP, LIM] 
26 “l_on”:     int [0, 1] 

  

 

Bus Channel 
Soul Warmth, Even 84 EQ, Soul G Bus Compressor 
 0 “mdl”:     *BUS* 
 1 “w_drv”:    Linf [10, 125, 116] % 
 2 “w_hrm”:    Linf [-100, 100, 201] 
 3 “w_col”:    Linf [-1.00, +1.00, 41] 
 4 “w_trim”:   Linf [-18.0, +6.0, 49] dB 
 5 “w_mix”:    Linf [0, 100, 101] % 
 6 “w_on”:     int [0, 1] 
 7 “eq_on”:    int [0, 1] 
 9 “g”:        Linf [-20.0, 20.0, 81] dB 
10 “lf”:       Str [OFF, 35, 60, 110, 220] 
11 “lg”:       Linf [-5.0, 5.0, 101] 
12 “mf”:       Str [OFF, 350, 700, 1k6, 3k2,  
                    4k8, 7k2] 
13 “mg”:       Linf [-5.0, 5.0, 101] 
14 “mq”:       Str [LOW, HIGH] 
15 “hf”:       Str [10k, 12k, 16k, OFF] 
16 “hg”:       Linf [-5.0, 5.0, 101] 
17 “mix”:      Linf [0, 125 %, 126] 
18 “d_thr”:    Linf [-40.0, 0.0, 81] dB 
19 “d_ratio”:  Str [1.5, 2.0, 3.0, 4.0, 5.0, 10] 
20 “d_att”:    Str [0.1, 0.3, 1.0, 3.0, 10.0, 30.0] 
21 “d_rel”:    Str [0.1, 0.2, 0.4, 0.8, 1.6, AUTO] 
22 “d_gain”:   Linf [-6.0, 12.0, 37] dB 
23 “d_on”:     int [0, 1] 

  

 

Mastering 
Tape, Mach EQ4 EQ, Stereo Enhancer, Precision 
Limiter 
 0 “mdl”:     *MASTER* 
 1 “t_drv”:   Linf [-5.0, 25.0, 61] dB 
 2 “t_spd”:   Logf [7.5, 30.0, 65] 
 3 “t_low”:   int [0, 1] 
 4 “t_hi“:    int [0, 1] 
 5 “t_on”:    int [0, 1] 



 
 
 
 

©Patrick-Gilles Maillot 171 WING remote protocols – V 3.0.6-27 
 
 
 

 6 “sub”:     Linf [-5.0, 5.0, 201] 
 7 “40”:      Linf [-5.0, 5.0, 201] 
 8 “160”:     Linf [-5.0, 5.0, 201] 
 9 “650”:     Linf [-5.0, 5.0, 201] 
10 “2k5”:     Linf [-5.0, 5.0, 201] 
11 “air”:     Linf [0.0, 10.0, 201] 
12 ”airm”:    Str [OFF, 2k5, 5k, 10k, 20k, 40k] 
13 “eq_on”:   int [0, 1] 
14 “e_stlvl”: Linf [-100, +100, 201] % 
15 “e_lmf”:   Linf [-100, +100, 201] % 
16 “e_mlvl”:  Linf [-100, +100, 201] % 
17 “e_st”:    Linf [-100, 100, 201] % 
18 “e_m”:     Linf [-100, 100, 201] % 
19 “e_bass”:  Linf [0, 100, 101] % 
20 “e_mid”:   Linf [0, 100, 101] % 
21 “e_high”:  Linf [0, 100, 101] % 
22 “e_bassf”: Linf [1, 50, 50] 
23 “e_midq”:  Linf [1, 50, 50] 
24 “e_highf”: Linf [1, 50, 50] 
25 “e_on”:    int [0, 1] 
26 “l_gin”:   Linf [0.00, 18.00, 73] dB 
27 “l_gout”:  Linf [-18.00, 0.00, 73] dB 
28 “l_sqz”:   int [0, 100] 
29 “l_knee”:  int [0, 10] 
30 “l_again”: int [0, 1] 
31 “l_att”:   Linf [0.05, 1.00, 96] ms 
32 “l_rel”:   Logf [20, 2000, 101] ms 
33 “l_on”:    int [0, 1] 

 
 
  



 
 
 
 

©Patrick-Gilles Maillot 172 WING remote protocols – V 3.0.6-27 
 
 
 

Plugins 

Filter plugins 

 

Tilt Filter 
 0 “mdl”:   TILT 
 1 “tilt”:  linf [-6, 6, 49] tilt 
  
 

 

  

 

Maxer Filter 
 0 “mdl”:   MAX 
 1 “low”:   linf [0, 100, 101] %, low cont 
 2 “proc”:  linf [0, 100, 101] %, high proc 

  

  

 

AP90 Filter (all pass) 
 0 “mdl”:   AP1 
 1 “freq”:  logf [100, 10000, 100] Hz, freq 
 

  

 

AP180 Filter (all pass) 
 0 “mdl”:   AP2 
 1 “f”:  logf [100, 10000, 100] Hz, freq 
 2 “q”:  logf [.442, 10, 181] q 
 

 

 
  



 
 
 
 

©Patrick-Gilles Maillot 173 WING remote protocols – V 3.0.6-27 
 
 
 

Gate plugins 

 

Standard Gate/Expander 
 0 “mdl”:   GATE 
 1 “thr”:   linf [-80, 0, 161] dB, thr 
 2 “range”: linf [3, 60, 115] dB, range  
 3 “att”:   linf [0, 120, 121] ms, attack 
 4 “hold”:  linf [1, 200, 200] ms, hold 
 5 “rel”:   logf [4, 4000, 130] ms, release 
 6 “acc”:   linf [0, 100, 21] %, accent 
 7 “ratio”: str [1:1.5, 1:2, 1:3, 1:4,  
                 gate] ratio 

  

 

Standard Ducker 
 0 “mdl”:   DUCK 
 1 “thr”:   linf [-80, 0, 161] dB, thr 
 2 “range”: linf [3, 60, 115] dB, range  
 3 “att”:   linf [0, 120, 121] ms, attack 
 4 “hold”:  linf [1, 200, 200] ms, hold 
 5 “rel”:   linf [20, 4000, 130] ms, release 
 

  

 

SSL 9000 Gate/Expander 
 0 “mdl”:    9000G 
 1 “thr”:    linf [-40, 0 81] dB, input 
 2 “range”:  linf [-0, 40, 41] dB 
 3 “hld”:    logf [10, 4000, 130] ms, hold 
 4 “rel”:    logf [100, 4000, 130] ms, release 
 5 “fast”:   int [0, 1] fast 
 6 “mode”:   str [GATE, EXP] mode  

  

 

Even 88-Gate 
 0 “mdl”:   E88 
 1 “thr”:   linf [-40, 0, 81] dB, thr 
 2 “hyst”:  linf [0, 25, 51] dB, hyst 
 3 “range”: linf [0, 60, 61] dB, range 
 4 “rel”:   logf [100, 3000, 130] ms, release 
 5 “fast”:  int [0, 1] fast 
 6 “m40”:   int [0, 1] thr 

  

 

DrawMore Expander Gate 241 
 0 “mdl”:   DUCK 
 1 “thr”:   linf [-80, 0, 161] dB, thr 
 2 “slow”:  int [0, 1] slow  

 

  

 

DBX 902 De-Esser 
 0 “mdl”:   DS902 
 1 “f”:     logf [800, 8000, 130] Hz, freq 
 2 “range”: linf [3, 12, 25] dB, range  
 3 “mode”:  str [FULL, HF] mode  

  



 
 
 
 

©Patrick-Gilles Maillot 174 WING remote protocols – V 3.0.6-27 
 
 
 

 

76 Limiting Amp 
 0 “mdl”:   76LA 
 1 “in”:    linf [-48, 0, 97] dB, input 
 2 “out”:   linf [-48, 0, 97] dB 
 3 “att”:   linf [1, 7, 61] attack 
 4 “rel”:   linf [1, 7, 61] release 
 5 “ratio”: str [4, 8, 12, 20, ALL] ratio 

  

 

Leveling Amplifier 2A 
 0 “mdl”:   LA 
 1 “ingain”:linf [0, 100, 101] gain 
 2 “peak”:  linf [0, 100, 101] peak  
 3 “mode”:  str [comp, lim] mode  

  

 

Source Extractor 
 0 “mdl”:   PSE 
 1 “thr”:   linf [-36, 12, 97] dB, threshold 
 2 “depth”: linf [0, 20, 41] dB, depth  
 3 “fast”:  int [0, 1] fast  
 4 “peak”:  int [0, 1] peak 

  

 

PSE/LA Combo 
 0 “mdl”:   CMB 
 1 “thr”:   linf [-36, 12, 97] dB, threshold 
 2 “depth”: linf [0, 20, 41] dB, depth  
 3 “fast”:  int [0, 1] fast  
 4 “peak”:  int [0, 1] peak 
 5 “ingain”:linf [0, 100, 101] gain 
 6 “peak”:  linf [0, 100, 101] peak  
 7 “mode”:  str [comp, lim] mode 

   

 

Wave Designer 
 0 “mdl”:   WAVE 
 1 “att”:   linf [-15, 15, 61] dB, attack 
 2 “sust”:  linf [-24, 24, 97] dB, sustain  
 3 “g”:     linf [-18, 9, 55] dB, gain 

  

 

Auto Rider Dynamics 
 0 “mdl”:   RIDE 
 1 “thr”:   linf [-54, 18, 73] dB, thr 
 2 “tgt”:   linf [-48, 0, 97] dB, target 
 3 “spd”:   int [1…50] speed 
 4 “ratio”: flt [2.0, 4.0, 8.0,  
                 20.0, 100.0] ratio  
 5 “hld”:   logf [.1, 10, 65] s, hold 
 6 “range”: linf [1, 15, 29] dB, range 

  

 

Soul Warmth Preamp 
 0 “mdl”:   WARM 
 1 “drv”:   linf [10, 100, 91] %, drive 
 2 “hrm”:   linf [-100, 100, 201] harm 
 3 “col”:   linf [-1, 1, 41] color 
 3 “trim”:  linf [-18, 6, 49] dB, trim 
 4 “mix”:   linf [0, 100, 101] dB, mix 

  



 
 
 
 

©Patrick-Gilles Maillot 175 WING remote protocols – V 3.0.6-27 
 
 
 

 

Dynamic EQ 
 0 “mdl”:   DEQ 
 1 “thr”:   linf [-60, 0, 121] dB, thr 
 2 “ratio”: flt [1.2, 1.3, 1.5, 2.0,  
                 3.0, 5.0, 10.0] ratio 
 3 “att”:   linf [0, 200, 201] ms, attack 
 4 “rel”:   logf [20, 4000, 130] ms, release 
 5 “filt”:  str [OFF, BP, LP6, LP12,  
                 HP6, HP12] filter 
 6 “g”:     linf [-15, 15, 301] dB, gain 
 7 “f”:     logf [20, 20000, 961] Hz, freq 
 8 “q”:     logf [.442, 10, 181] q 
 9 “mode”:  str [low, high] mode 

  



 
 
 
 

©Patrick-Gilles Maillot 176 WING remote protocols – V 3.0.6-27 
 
 
 

EQ plugins 

 

Standard EQ 
Channel: 
 0 “mdl”:  STD 
 1 “lg”:   linf [-15, 15, 301] dB, gain l 
 2 “lf”:   logf [20, 2000, 641] Hz, freq l 
 3 “lq”:   logf [0.442, 10, 181] q l 
 4 “leq”:  str [SHV, PEQ] eq l 
 5 “1g”:   linf [-15, 15, 301] dB, gain 1 
 6 “1f”:   logf [20, 20000, 961] Hz, freq 1 
 7 “1q”:   logf [0.442, 10, 181] q 1 
 8 “2g”:   linf [-15, 15, 301] dB, gain 2 
 9 “2f”:   logf [20, 20000, 961] Hz, freq 2 
10 “2q”:   logf [0.442, 10, 181] q 2 
11 “3g”:   linf [-15, 15, 301] dB, gain 3 
12 “3f”:   logf [20, 20000, 961] Hz, freq 3 
13 “3q”:   logf [0.442, 10, 181] q 3 
14 “4g”:   linf [-15, 15, 301] dB, gain 4 
15 “4f”:   logf [20, 20000, 961] Hz, freq 4 
16 “4q”:   logf [0.442, 10, 181] q 4 
17 “hg”:   linf [-15, 15, 301] dB, gain h 
18 “hf”:   logf [50, 20000, 833] Hz, freq h 
19 “hq”:   logf [0.442, 10, 181] q h 
20 “heq”:  str [SHV, PEQ] eq h 
 

Bus, mtx, main: 
 0 “mdl”:  STD 
 1 “lg”:   linf [-15, 15, 301] dB, gain l 
 2 “lf”:   logf [20, 2000, 641] Hz, freq l 
 3 “lq”:   logf [0.442, 10, 181] q l 
 4 “leq”:  str [SHV, PEQ, CUT] eq l 
 5 “1g”:   linf [-15, 15, 301] dB, gain 1 
 6 “1f”:   logf [20, 20000, 961] Hz, freq 1 
 7 “1q”:   logf [0.442, 10, 181] q 1 
 8 “2g”:   linf [-15, 15, 301] dB, gain 2 
 9 “2f”:   logf [20, 20000, 961] Hz, freq 2 
10 “2q”:   logf [0.442, 10, 181] q 2 
11 “3g”:   linf [-15, 15, 301] dB, gain 3 
12 “3f”:   logf [20, 20000, 961] Hz, freq 3 
13 “3q”:   logf [0.442, 10, 181] q 3 
14 “4g”:   linf [-15, 15, 301] dB, gain 4 
15 “4f”:   logf [20, 20000, 961] Hz, freq 4 
16 “4q”:   logf [0.442, 10, 181] q 4 
17 “5g”:   linf [-15, 15, 301] dB, gain 5 
18 “5f”:   logf [20, 20000, 961] Hz, freq 5 
19 “5q”:   logf [0.442, 10, 181] q 5 
20 “6g”:   linf [-15, 15, 301] dB, gain 6 
21 “6f”:   logf [20, 20000, 961] Hz, freq 6 
22 “7q”:   logf [0.442, 10, 181] q 6 
23 “hg”:   linf [-15, 15, 301] dB, gain h 
24 “hf”:   logf [50, 20000, 833] Hz, freq h 
25 “hq”:   logf [0.442, 10, 181] q h 
26 “heq”:  str [SHV, PEQ, CUT] eq h 
27 “tilt”: linf [-6, 6, 49] dB, tilt 

  

 

Soul Analog EQ 
 0 “mdl”:   SOUL 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “lf”:    linf [0, 10, 101] lo freq 
 3 “lg”:    linf [-5, 5, 101] lo gain 
 4 “lmf”:   linf [0, 10, 101] lm freq 
 5 “lmf3”:  int [0, 1] lm /3 
 6 “lmq”:   linf [0, 10, 101] lm q 
 7 “lmg”:   linf [-5, 5, 101] lm gain 
 8 “hmf”:   linf [0, 10, 101] hm freq 
 9 “hmf3”:  int [0, 1] hm x3 
10 “hmq”:   linf [0, 10, 101] hm q 



 
 
 
 

©Patrick-Gilles Maillot 177 WING remote protocols – V 3.0.6-27 
 
 
 

11 “hmg”:   linf [-5, 5, 101] hm gain 
12 “hf”:    linf [0, 10, 101] hf freq 
13 “hg”:    linf [-5, 5, 101] hf gain 

  

 

Even 88-Formant EQ 
 0 “mdl”:   E88 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “lf”:    linf [0, 10, 101] lf freq 
 3 “lg”:    linf [-5, 5, 101] lf gain 
 4 “lq”:    str [LOW, HIGH] lf q 
 5 “lt”:    str [BELL, SHELV] lf type 
 6 “lmf”:   linf [0, 10, 101] lm freq 
 7 “lmg”:   linf [-5, 5, 101] lm gain 
 8 “lmq”:   linf [0, 10, 101] lm q 
 9 “hmf”:   linf [0, 10, 101] hm freq 
10 “hmg”:   linf [-5, 5, 101] hm gain 
11 “hmq”:   linf [0, 10, 101] hm q 
12 “hf”:    linf [0, 10, 101] hm freq 
13 “hg”:    linf [-5, 5, 101] hf gain 
14 “hq”:    str [LOW, HIG] hf q 
15 “ht”:    str [BELL, SHELV] hf type 

  

 

Even 84 EQ 
 0 “mdl”:   E84 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “g”:     linf [-20, 20, 81] dB, gain 
 3 “lf”:    str [OFF, 35, 60, 110, 220] lf freq 
 4 “lg”:    linf [-5, 5, 101] lf gain 
 5 “mf”:    str [OFF, 350, 700, 1k6, 3k2,  
                 4k8, 7k2] mid freq 
 6 “mg”:    linf [-5, 5, 101] mid gain 
 7 “mq”:    str [LOW, HIGH] mid q 
 8 “hf”:    str [10k, 12k, 16k, OFF] hf freq 
 9 “hg”:    linf [-5, 5, 101] hf gain 

  
  

 

Focusrite ISA 110 EQ 
 0 “mdl”:   F110 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “peq”:   int [0, 1] peq on 
 3 “lmf”:   linf [0, 10, 101] lm freq 
 4 “lmg”:   linf [-5, 5, 101] lm gain 
 5 “lmq”:   linf [0, 10, 101] lm q 
 6 “lmf3”:  int [0, 1] lm /3 
 7 “hmf”:   linf [0, 10, 101] hm freq 
 8 “hmg”:   linf [-5, 5, 101] hm gain 
 9 “hmq”:   linf [0, 10, 101] hm q 
10 “hmf3”:  int [0, 1] hm x3 
11 “shv”:   inf [0, 1] shv on  
12 “lf”:    str [33, 56, 95, 160,  
                270, 460] lf freq 
13 “lg”:    linf [-5, 5, 101] lf gain 
14 “hf”:    str [3k3, 4k7, 6k8, 10k,  
                 15k, 18k] hf freq 
15 “hg”:    linf [-5, 5, 101] hf q 
16 “g”:     linf [-18, 18, 73] gain 

  

 

Pulsar P1a/M5 EQ 
 0 “mdl”:   PULSAR 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “eq1”:   int [0, 1] eq1 on 
 3 “1lb”:   linf [0, 10, 101] lf boost 
 4 “1latt”: linf [0, 10, 101] lf att 
 5 “1lf”:   str [20, 30, 60, 100] Hz, lf freq 
 6 “1hw”:   linf [0, 10, 101] hf wid 
 7 “1hb”:   linf [0, 10, 101] hf boost 



 
 
 
 

©Patrick-Gilles Maillot 178 WING remote protocols – V 3.0.6-27 
 
 
 

 8 “1hf”:   str [3k, 4k, , 5k, 8k, 10k,  
                 12k, 16k] Hz, hf freq 
 9 “1hatt”: linf [0, 10, 101] hf att 
10 “1hattf”:str [5k, 10k, 20k] hf att 
11 “eq5”:   int [0, 1] eq5 on  
12 “5lb”:   linf [0, 10, 101] lm boost 
13 “5lf”:   str [200, 300, 500, 700,  
                 1k] Hz, lf freq 
14 “5md”:   linf [0, 10, 101] mid dip 
15 “5mf”:   str [200, 300, 500, 700, 1k, 1k5, 
                2k, 3k, 4k, 5k, 7k] Hz, mid freq 
16 “5hb”:   linf [0, 10, 101] HM boost 
17 “5hf”:   str [1k5, 2k, 3k, 4k,  
                 5k] Hz, hf freq 

  

 

Mach EQ4 
 0 “mdl”:   MACH4 
 1 “mix”:   linf [0, 125, 126] %, mix 
 2 “sub”:   linf [-5, 5, 101] sub 
 3 “40”:    linf [-5, 5, 101] 40 
 4 “160”:   linf [-5, 5, 101] 160 
 5 “650”:   linf [-5, 5, 101] 650 
 6 “2k5”:   linf [-5, 5, 101] 2k5 
 7 “air”:   linf [0, 10, 101] air 
 8 “airm”:  str [OFF, 2k5, 5k, 10k,  
                 20k, 40k] air mode 
 9 “again”: int [0, 1] auto 

  



 
 
 
 

©Patrick-Gilles Maillot 179 WING remote protocols – V 3.0.6-27 
 
 
 

Compressor plugins 

 

Standard compressor 
 0 “mdl”:   COMP 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-60, 0, 121] dB, thr 
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,  
                 2.5, 3.0, 3.5, 4.0, 5.0, 6.0,  
                 8.0, 10., 20., 50., 100.] ratio 
 5 “knee”:  int [0…5] knee 
 6 “det”:   str [PEAK, RMS] detector 
 7 “att”:   linf [0, 120, 121] ms, attack 
 8 “hld”:   linf [1, 200, 200] ms, hold 
 9 “rel”:   logf [4, 4000, 130] ms release 
10 “env”:   str [LIN, LOG] envelope 
11 “auto”:  int [0, 1] auto 

  

 

Standard expander 
 0 “mdl”:   EXP 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-60, 0, 121] dB, thr 
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,  
                 2.5, 3.0, 3.5, 4.0, 5.0, 6.0,  
                 8.0, 10., 20., 50., 100.] ratio 
 5 “knee”:  int [0…5] knee 
 6 “det”:   str [PEAK, RMS] detector 
 7 “att”:   linf [0, 120, 121] ms, attack 
 8 “hld”:   linf [1, 200, 200] ms, hold 
 9 “rel”:   logf [4, 4000, 130] ms release 
10 “env”:   str [LIN, LOG] envelope 
11 “auto”:  int [0, 1] auto 

  

 

BDX 160 Compressor/Limiter 
 0 “mdl”:   B160 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   logf [.01, 5, 65] thr 
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,  
                 2.5, 3.0, 3.5, 4.0, 5.0, 6.0,  
                 8.0, 10., 20., 50.] ratio 

  

 

BDX 560 Easy Compressor 
 0 “mdl”:   B560 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-40, 20, 121] dB, thr 
 4 “ratio”: flt [1.1, 1.2, 1.5, 2.0, 3.0, 4.0,  
                 5.0, 7.0, 10., 50., 999.,  
                 -5.0, -3.0, -2.0, -1.0] ratio 
 5 “auto”:  int [0, 1] auto 

  

 

Draw More Compressor 
 0 “mdl”:   D241 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [0, -60, 121] dB, thr 
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5,  
                 1.7, 2.0, 3.0, 3.5,  
                 4.0, 5.0, 6.0, 8.0,  
                 10.0, 20.0, 50.0,  
                 100.0] ratio 
 5 “att”:   linf [.5, 100, 65] ms, attack 
 6 “rel”:   logf [50, 5000, 130] ms release 
 7 “lim”:   linf [-20, 0, 41] dB, lim thr 



 
 
 
 

©Patrick-Gilles Maillot 180 WING remote protocols – V 3.0.6-27 
 
 
 

 8 “lrel”:  logf [50, 5000, 130] ms, lim rel 
 9 “auto”:  int [0, 1] auto 

  

 

Red Compressor 
 0 “mdl”:   RED3 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-48, 0, 97] dB, thr 
 4 “ratio”: flt [1.1, 1.2, 1.3, 1.5, 2.0,  
                 2.5, 3.0, 3.5, 4.0, 5.0,  
                 6.0, 8.0, 10.] ratio 
 5 “att”:   linf [1, 50, 65] ms, attack 
 7 “rel”:   logf [100, 4000, 65] ms release 
 8 “auto”:  int [0, 1] auto 

  

 

Soul 9000 Channel Compressor 
 0 “mdl”:   9000C 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-48, 0, 97] dB, thr 
 4 “ratio”: flt [1.3, 1.43, 1.57, 1.8, 2.0,  
                 2.8, 3.3, 4.0, 5.0 , 6.0,  
                 7.0, 9.0, 12.0, 20.0, 50.0,  
                 100.0] ratio 
 5 “fast”:  int [0, 1] fast att 
 6 “rel”:   logf [100, 4000, 65] ms release 
 7 “peak”:  int [0, 1] peak  

  

 

Soul G Buss Compressor 
 0 “mdl”:   SBUS 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-48, 0, 81] dB, thr 
 4 “ratio”: flt [1.5, 2.0, 3.0, 4.0, 5.0,  
                 10.0] ratio 
 5 “att”:   flt [0.1, 0.3, 1.0, 3.0, 10.0,  
                 30.0] ratio 
 6 “rel”:   str [0.1, 0.2, 0.4, 0.8, 1.6,  
                 AUTO] release 

  

 

Even Compressor/Limiter 
 0 “mdl”:   ECL33 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “lon”:   int [0, 1] lim on 
 4 “lthr”:  linf [-12, 0, 25] dB, lim thr 
 5 “lrec”:  str [50, 100, 200, 800,  
                 A1, A2] lim rec 
 6 “lfast”: int [0, 1] lim fast 
 7 “con”:   int [0, 1] comp on 
 8 “cthr”:  linf [-35, -5, 61] dB, comp thr 
 9 “ratio”: str [1.5, 2.0. 3.0, 4.0, 6.0] ratio   
10 “crec”:  str [100, 400, 800, 1500 
                 A1, A2] comp rec 
11 “cfast”: int [0, 1] comp fast 

  

 

Eternal Bliss 
 0 “mdl”:   BLISS 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-50, 0, 101] dB, thr 
 4 “ratio”: flt [1.2, 1.3, 1.6, 2.0, 3.0,  
                 -1.0, -2.0, -3.0,  -4.0] ratio 
 5 “att”:   linf [.4, 150, 65] ms, attack 
 6 “rel”:   logf [5, 1200, 65] ms release 



 
 
 
 

©Patrick-Gilles Maillot 181 WING remote protocols – V 3.0.6-27 
 
 
 

 7 “afast”: int [0, 1] auto fast 
 8 “alog”:  int [0, 1] anti log 
 9 “glon”:  int [0, 1] gr limit on 
10 “glim”:  linf [-21, 0, 43] gr limit 

  

 

Amplifier76 Limiting Amplifier  
 0 “mdl”:   76LA 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “in”:    linf [-48, 0, 97] dB, input 
 4 “out”:   linf [-48, 0, 97] dB 
 5 “att”:   linf [1, 7, 61] attack 
 6 “rel”:   linf [1, 7, 61] release 
 7 “ratio”: str [4, 8, 12, 20, ALL] ratio  

  

 

Leveling Amplifier 2A 
 0 “mdl”:   LA 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “ingain”:linf [0, 100, 101] gain 
 4 “peak”:  linf [0, 100, 101] peak  
 5 “mode”:  str [comp, lim] mode  

  

 

PSE/LA Combo 
 0 “mdl”:   CMB 
 1 “thr”:   linf [-36, 12, 97] dB, threshold 
 2 “depth”: linf [0, 20, 41] dB, depth  
 3 “fast”:  int [0, 1] fast  
 4 “peak”:  int [0, 1] peak 
 5 “ingain”:linf [0, 100, 101] gain 
 6 “peak”:  linf [0, 100, 101] peak  
 7 “mode”:  str [comp, lim] mode 

  

 

Fairkid Model 670 
 0 “mdl”:   F670 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “in”:    linf [-20, 0, 81] dB, input 
 4 “thr”:   linf [0, 10, 41] thr 
 5 “time”:  int [1…6] time 
 6 “bias”:  linf [0, 1, 101] bias 

  

 

No Stressor 
 0 “mdl”:   NSTR 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “in”:    linf [0, 10, 101] input 
 4 “ou”:    linf [0, 10, 101] output 
 5 “att”:   linf [0, 10, 101] attack 
 6 “rel”:   linf [0, 10, 101] release 
 7 “ratio”: str [1.5:1, 2:1, 3:1, 4:1, 6:1,  
                 10:1, 20:1, NUKE] ratio 

  

 

PIA 2250 
 0 “mdl”:   2250 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [0, 10, 101] threshold 
 4 “ratio”: linf [0, 10, 101] output 
 5 “att”:   str [FAST, MED, SLOW] attack 
 6 “rel”:   logf [50, 3000, 130] ms, release 
 7 “knee”:  str [HARD, SOFT] knee 
 8 “Type”:  str [OLD, NEW] type 

  



 
 
 
 

©Patrick-Gilles Maillot 182 WING remote protocols – V 3.0.6-27 
 
 
 

 

LTA100 Leveler 
 0 “mdl”:   L100 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “ingain”:linf [0, 10, 101] gain 
 4 “gr”:    linf [0, 10, 101] gain reduction 
 5 “att”:   str [FAST, MED, SLOW] attack 
 6 “rel”:   str [FAST, MED, SLOW] release 

  

 

Wave Designer 
 0 “mdl”:   WAVE 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “att”:   linf [-15, 15, 61] dB, attack 
 4 “sust”:  linf [-24, 24, 97] dB, sustain 
 5 “g”:     linf [-16, 9, 55] dB, gain 

  

 

Auto Rider Dynamics 
 0 “mdl”:   RIDE 
 1 “mix”:   linf [0, 100, 101] %, mix 
 2 “gain”:  linf [-6, 12, 37] dB, gain 
 3 “thr”:   linf [-54, 18, 73] dB, thr 
 4 “tgt”:   linf [-48, 0, 97] dB, target 
 5 “spd”:   int [1…50] speed 
 6 “ratio”: flt [2.0, 4.0, 8.0,  
                 20.0, 100.0] ratio  
 7 “hld”:   logf [.1, 10, 65] s, hold 
 8 “range”: linf [1, 15, 29] dB, range 

 
 



 
 
 
 

©Patrick-Gilles Maillot 183 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: WING Effects Description 
In May 2025, Dana Tucker101 used AI, contents from the Behringer.world102 forum and multiple sources to 
generate a description of WING effects. The result is reproduced here with permission from the author. 
 
This appendix provides a detailed description of some of the WING effects and effects parameters, and when 
possible, the application and model used as the origin of the effect; Indeed, many of these Effects (FX) are 
emulated after very high-end outboard models that have been proven over time. We provide here as much 
information as possible to help explain what each FX is used for, as well as who used them. The goal is to help 
understand what they do. 
 
This guide is nothing more than a starting point for anyone who may be reading/using it. Like anything else in 
audio, you really need to spend some time playing around with these effects so you can see just how much 
they can enhance your style of music or the way you use your mixer. 
 
In audio mixing, effects are used to shape, enhance, and transform audio signals. There are numerous types of 
effects, and they can be broadly categorized based on their function. Here are some of the most common 
types of audio effects: 
 
Time-Based Effects: 

 Reverb: Adds spatial depth and ambiance by simulating reflections in a space. 
 Delay: Creates echoes by repeating the sound after a set time. 
 Chorus: Simulate the subtle pitch and timing differences that occur when multiple musicians or 

vocalists play the same note. 
 Flanger: A swirling, "jet-like" sound by mixing two signals together, with one signal slightly delayed 

and modulated in phase. 
 Phaser: Modulation effect that alters the phase of an audio signal. 
 Echo: A specific type of delay with feedback. 

  
Modulation Effects: 

 Chorus 
 Flanger 
 Phaser 
 Vibrato: Pitch modulation effect at constant speed. 
 Tremolo: Amplitude (volume) modulation. 

 
Dynamic Effects: 

 Compression: Reduces the dynamic range by attenuating loud sounds. 
 Limiter: Prevents signals from exceeding a certain threshold. 
 Expansion: Opposite of compression, increases dynamic range. 
 Gating: Cuts off sound below a certain threshold. 

 
Filter Effects: 

 Equalization (EQ): Adjusts the balance of frequency components. 
 High-pass filter: Removes low frequencies. 

 
101 www.DanaTucker.Com – Thanks for the authorization to copy this material 
102 www.DanaTucker.Com – Thanks for the authorization to copy this material 



 
 
 
 

©Patrick-Gilles Maillot 184 WING remote protocols – V 3.0.6-27 
 
 
 

 Low-pass filter: Removes high frequencies. 
 Band-pass filter: Allows only a specific frequency band. 
 Notch filter: Removes a narrow frequency range. 

 
Distortion and Saturation Effects: 

 Overdrive: Adds harmonic distortion for a warm or aggressive sound. 
 Distortion: Creates more intense tonal changes, often used in guitars. 
 Fuzz: Extreme distortion for a fuzzy sound. 

 
Specialty Effects: 

 Auto-tune / Pitch correction: Corrects or alters pitch. 
 BitCrusher: Reduces bit depth, creating a lo-fi sound. 
 Ring Modulation: Combines two signals to produce metallic or bell-like sounds. 
 Synthesizer effects: Creating sounds via synthesis. 

 
Creative and Experimental Effects: 

 Granular synthesis effects. 
 Reverse effects: Playing sounds backward. 
 Spectral effects: Manipulating the frequency spectrum directly. 

  
 

Gate Section 

Wing Gate/Expander 
The Behringer Wing Gate/Expander is known for its 
versatile and high-quality dynamics processing capabilities 
integrated into the Behringer Wing digital mixing console. 
Specifically, it is recognized for: 
 
Comprehensive Dynamics Control: The gate/expander 
allows precise control over audio signals by reducing or 
eliminating unwanted noise, feedback, or background sounds when the input falls below a certain threshold. 
 
Intuitive User Interface: The feature is accessible via the console’s touchscreen and dedicated controls, 
making it user-friendly for both novice and experienced engineers. 
 
Flexibility and Precision: With adjustable parameters such as threshold, ratio, attack, release, and hold, users 
can finely tune the gating or expansion to suit various applications—from live sound reinforcement to studio 
recording. 
 
Integrated with the Digital Mixer: Because it’s built into the Wing’s comprehensive digital ecosystem, it can be 
linked with other effects and processing modules for streamlined workflow. 
 



 
 
 
 

©Patrick-Gilles Maillot 185 WING remote protocols – V 3.0.6-27 
 
 
 

High-Quality Sound Performance: Behringer is known for providing professional-grade audio processing at a 
more accessible price point, and the Gate/Expander on the Wing maintains clarity and transparency in 
dynamics control. 
  
Overall, the Behringer Wing Gate/Expander is known for offering powerful, flexible, and easy-to-use gating 
and expansion functions within a professional digital mixing environment. 
Attack is the time taken for the gate to open after an over threshold signal. The shape of the attack is fixed 
and has been carefully tailored to produce a transparent gating action. 
Hold minimizes chattering in conjunction with the internal hysteresis. Once the signal has been detected as 
having fallen below threshold, this control defines a waiting period before the gate starts to close. This is 
particularly useful for low frequency material and instruments with oscillating or unpredictable decay 
envelopes. 
Release is the time taken for the gate to close after the program material falls back below threshold. As with 
attack, the shape is crucial to the sound and has been tailored to produce the most transparent gating action 
possible. 
Range controls the amount of gain reduction that is applied to signals below threshold. The gain reduction can 
be infinite, but things often sound more natural when it is backed off to only 10dB or 15dB. With this type of 
setting, the background noise and spill remain at a reduced level, but become less noticeable because they do 
not noticeably switch in and out with the gating action. The maximum range is given when the control is fully 
anti-clockwise, that is, set to infinity. 
Threshold is the gate operating point. Signals that go over threshold will open the gate, while signals that go 
below threshold will close the gate. In both cases, gate opening/closing occurs over a period of time, which is 
dependent on the envelope (attack and release) control settings. 
Accent. The inspiration of the gate-expander accent control comes from the Klark Teknik DN530 Quad Gate. It 
accents (boosts) the transient signal as the gate opens for a brief 50 milliseconds, which is useful for 
percussion type signals, such as snare, kick, etc. Normally, during an opening transition the gain changes from 
-n dB (n is set up by the range control) to 0dB. When the accent control is turned up the transition goes from 
-n dB to a positive +n dB gain (the amount of positive gain is set by the accent control up to a maximum of 
+12dB). This accented level only lasts for a short period of time (50ms), after which the gain returns to 0dB. 
The effect this produces is similar to the thickening action compressors impart on drums when their attack 
time is set very slow. 
  
 

Soul 9000 Gate. Emulates the SSL 9000 Channel Gate 
The SSL 9000 Channel Gate is a renowned gate plugin that 
emulates the noise gate and expansion features of the 
Solid State Logic (SSL) 9000 series console's channel strip. 
It is known for its high-quality, musical gating capabilities, 
allowing engineers to control unwanted noise, tighten up 
recordings, and add punch to individual tracks. 
 
The SSL 9000 Channel Gate is appreciated for its transparent sound, intuitive interface, and its ability to 
preserve the natural character of the audio while effectively gating unwanted signals, making it a popular 
choice in mixing and mastering workflows. 
The Gate can act as an infinite:1 Gate or as a 2:1 Expander when the 2:1 button is engaged. A yellow LED 
indicates that Expand mode has been selected. 



 
 
 
 

©Patrick-Gilles Maillot 186 WING remote protocols – V 3.0.6-27 
 
 
 

Range determines the depth of Gating or Expansion. When set to 0, this section is inactive. When turned fully 
clockwise, a Range of 40dB can be obtained. 
Threshold – Variable hysteresis is incorporated in the Threshold circuitry. For any given 'open' setting, the 
Expander/Gate will have a lower 'close' threshold. The hysteresis value is increased as the threshold is 
lowered. This is very useful in music recording as it allows instruments to decay below the open threshold 
before Gating or Expansion takes place. 
Release – This determines the time constant (speed), variable from 0.1 - 4 seconds, at which the 
Gate/Expander reduces the signal level once it has passed below the threshold. 
  
The Fast attack button provides a fast attack time (100µs per 40db) indicated with a yellow active LED. When 
off, a controlled linear attack time of 1.5ms per 40dB is 
selected. The attack time is the time taken for the Expander/Gate to 'recover' once the signal is above the 
threshold. When gating signals with a steep rising edge, such as drums, a slow attack may effectively mask the 
initial THWACK, so you should be aware of this when selecting the appropriate attack time. 
Hold determines the time after the signal decays below the threshold before the gate closes. Variable from 0 
to 4 seconds. 
 
  

Even 88 Gate. Emulates the Neve 88RS Gate. 
The Neve 88RS Gate is renowned for its high-quality, 
musical gating capabilities, integral to the classic Neve 
88RS console's reputation. It is known for: 
Transparent and Musical Gating: The gate provides 
smooth, musical attenuation that preserves the natural 
character of the sound, making it ideal for controlling 
bleed and unwanted noise without sounding obvious or 
choppy. 
High-Quality Sound: Built with the renowned Neve transformer design and high-grade components, it offers a 
warm, sonically pleasing attenuation that complements the Neve console's overall sonic signature. 
Versatility: The gate is versatile, suitable for a wide range of applications, including drums, vocals, and 
instruments, allowing for precise control over audio dynamics. 
Integral to the 88RS Console: As part of the Neve 88RS console's channel strip, it contributes to the console’s 
reputation for delivering professional-grade, warm, and musical sound processing. 
Overall, the Neve 88RS Gate is celebrated for its blend of transparency, musicality, and classic Neve character, 
making it a sought-after piece of equipment both in its original form and as a standalone component in 
modern studio setups. 
In the context of audio gates, hysteresis refers to the difference between the threshold 
level at which a gate opens and the threshold level at which it closes. This helps prevent "chattering" or 
unwanted opening and closing of the gate when the signal fluctuates around the threshold. 
  
Hysteresis can help preserve the natural sound of vocals or instruments, especially when they naturally 
fluctuate in volume. It's particularly useful for signals that have subtle changes in volume, preventing the gate 
from opening and closing repeatedly and can be fine-tuned for very subtle differences. 
  



 
 
 
 

©Patrick-Gilles Maillot 187 WING remote protocols – V 3.0.6-27 
 
 
 

Draw More 241. Emulates the Drawmer DL241 Expander/Gate Section. 
The Drawmer DL241 Expander/Gate Section is renowned 
for its high-quality, versatile dynamics processing 
capabilities. It is particularly recognized for: 
Transparent Dynamic Control: The DL241 provides clean 
and transparent gating and expansion, allowing engineers 
to control noise and leakage without introducing unwanted 
artifacts. 
Dual-Channel Operation: Designed for stereo or dual-mono applications, it offers precise, independent control 
over each channel, making it suitable for complex mixing and mastering tasks. 
High-Quality Components and Design: Built with professional-grade circuitry, the DL241 ensures reliable 
performance and minimal signal coloration. 
Flexible Threshold and Ratio Controls: It allows detailed adjustment of gating and expansion parameters, 
enabling both subtle noise reduction and aggressive gating when needed. 
User-Friendly Interface: The layout and controls are designed for intuitive operation, facilitating quick setup 
and adjustments during critical recording or mixing sessions. 
 
 
Overall, the Drawmer DL241 is valued for its clarity, flexibility, and professional-grade performance in 
controlling dynamics within a studio or live sound environment. 
  
 

BDX 902 De-Esser. Emulates the DBX 902. 
The BDX 902 De-Esser is known for being a high-quality 
audio processing device designed to reduce sibilance (the 
harsh "s" and "sh" sounds) in vocal recordings. It is 
particularly valued in professional audio production for its 
precise and transparent 
de-essing capabilities, helping to produce clearer, more 
natural-sounding vocals without sacrificing detail. 
 
The BDX 902 often features advanced filtering and control options, making it a preferred choice for engineers 
seeking effective de-essing in both studio and broadcast environments. 
  
 

76 Limiter Amp. Emulates the UREI/Universal Audio 1176 FET Compressor. 
The UREI/Universal Audio 1176 FET Compressor is 
renowned for its distinctive sound and versatility in audio 
processing. It is widely regarded as one of the most iconic 
and sought-after compressors in professional recording 
and mixing. Key features and qualities it is known for 
include: 
Fast Attack and Release Times: The 1176 is famous for its 
incredibly quick attack and release times, allowing it to catch transient peaks and shape dynamic responses 
sharply. 



 
 
 
 

©Patrick-Gilles Maillot 188 WING remote protocols – V 3.0.6-27 
 
 
 

Unique "All-Button" Mode: Engaging all ratio buttons simultaneously creates a distinctive "British" style 
compression—characterized by a heavily saturated, harmonically rich sound. 
FET Technology: Its use of Field Effect Transistors (FETs) provides a distinctive tonal character, often described 
as aggressive, punchy, and musical. 
Musical and Transparent Compression: Depending on settings, it can deliver transparent leveling or a more 
colored, colored compression that adds character and mojo to vocals, drums, bass, and other sources. 
Versatility: The 1176 excels across a wide range of audio sources—vocals, drums, bass, guitars, and mix bus 
compression—making it a studio staple. 
Historical Significance: Originally designed in the 1960s by Bill Putnam’s UREI company, the 1176 became a 
standard piece of equipment in studios worldwide and has influenced countless compressor designs. 
  
Overall, the UREI/Universal Audio 1176 FET Compressor is celebrated for its ability to add punch, presence, 
and musical character to recordings, making it a legendary tool in both tracking and mixing contexts. 
Great on drums, vocals, bass, parallel compression. The Threshold is fixed, Input drives level up into the 
threshold, output gain compensates for compression and possible input increase. It has a very fast attack and 
release. Be very careful as the timing knobs are reversed from normal with 1 being the slowest and 7 being 
the fastest. 
  
 

LA Leveler. Emulates the Teletronix LA-2A. 
The Teletronix LA-2A is renowned for its smooth, musical, 
and transparent optical compression characteristics. It is 
widely regarded as a classic leveling amplifier, prized for its 
ability to gently control dynamics without introducing 
harsh artifacts. 
 
The LA-2A is especially favored for vocals, bass, and other 
instruments where natural, transparent compression is desired. Its unique design uses an 
electro-optical attenuator and a tube-based amplifier, resulting in a warm, musical sound that has made it a 
staple in professional recording and broadcast studios worldwide. 
It is well known for its warm optical compressor and works great on vocals, bass, horns and strings. It has fixed 
slow attack, slow release & ratio. The compression is 3:1 and the limit is infinite:1. You turn up Peak Reduction 
to increase the amount of compression, essentially a reverse threshold. The gain is post-compression makeup 
gain and the VU meter trails actual compression. 
  
 

Source Extractor. Emulates the Rupert Neve Primary Source Enhancer PSE-545. 
The Rupert Neve Primary Source Enhancer (PSE-545) is 
renowned for its ability to improve the clarity, presence, 
and detail of vocal and instrumental recordings. It is a 
specialized audio processor designed to enhance the 
primary source signals—such as vocals or solo 
instruments—by emphasizing their character and reducing 
background noise or masking elements. Key features and 
qualities include: 



 
 
 
 

©Patrick-Gilles Maillot 189 WING remote protocols – V 3.0.6-27 
 
 
 

Enhanced Clarity and Presence: The PSE-545 accentuates the fundamental frequencies and harmonics of the 
primary source, making it sound more prominent and lifelike in a mix. 
Selective Enhancement: It intelligently emphasizes the desired source without overly affecting the 
surrounding audio, preserving naturalness. 
Analog Circuit Design: Built with Rupert Neve’s signature high-quality analog circuitry, it offers a warm, 
musical character to the processed signals. 
Application Flexibility: Commonly used in recording and mixing environments to improve vocal intelligibility, 
instrument definition, and overall mix clarity. 
Controls Include: 
 
Active Light: Indicates when the 545 is actively affecting signal. This is the key to using this processor. 
Threshold Knob: Sets the dBu level at which the Primary Source Extractor engages. 
 
Depth Knob: Controls the maximum amount of effect from the 545 – or in other words, how much 
attenuation is applied after the input signal falls below the set THRESHOLD. 
  
By rotating the DEPTH control clockwise from 0dB towards -20dB, the 545 will attenuate the input signal more 
dramatically, letting the user find the perfect balance between audibility of the Primary Source Enhancement 
effect and feedback reduction. 
Fast Control: Is an illuminated push-button that selects between two available time constants, tuning the 
545’s response by determining how quickly the attenuation occurs in the quiet sections between words or 
phrases. Without this button pressed, the 545 achieves a slower attack and release that is useful as a starting 
point for most sources. Pressing the FAST button engages the faster attack and release time constant, Fast is 
useful on more dynamic sources or passages where faster transient detection is necessary. 
Peak: Selects between RMS and Peak detection modes. When illuminated, the 545 is in PEAK mode – useful 
for detecting faster transient peaks and for creative dynamic envelope shaping. When not illuminated, the 
545 is in RMS mode, which utilizes a slower, more averaged response characteristic in the sidechain. 
Overall, the PSE-545 is valued by engineers and producers for its ability to subtly and effectively enhance the 
perceived quality of key audio sources, resulting in clearer and more engaging recordings. 
  
 

Wave Designer. Emulates the SPL Transient Designer. 
The SPL Transient Designer is renowned for its ability to 
manipulate the transient and sustain characteristics of 
audio signals. Specifically, it allows producers and 
engineers to shape the attack (initial transient) and decay 
(sustain) of sounds independently. 
 
This makes it a powerful tool for enhancing punch and 
clarity in drums and percussion, or for smoothing out or emphasizing transients in various instruments. Its 
unique approach provides a more natural and musical way to control dynamics compared to traditional 
compressors, making it a popular choice in mixing and sound design. 
 
A full manual is available at https://spl.audio/wp-content/uploads/transient_designer_2_9946_manual.pdf 
 
  
 



 
 
 
 

©Patrick-Gilles Maillot 190 WING remote protocols – V 3.0.6-27 
 
 
 

Auto Rider. Emulates the Waves Vocal Rider 
Waves Vocal Rider is known for its ability to automatically 
and transparently adjust vocal levels within a mix. It 
functions as an intelligent leveling plugin that dynamically 
rides the fader in real-time, ensuring consistent vocal 
volume without the need for manual automation. 
 
This helps producers and engineers achieve a balanced, 
professional-sounding vocal track more efficiently by saving time and maintaining natural dynamics. 
  
 

Soul Warmth Pre. Emulates the SSL Console Emulated Preamp. 
The SSL Console Emulated Preamp is renowned for its 
ability to replicate the distinctive sound characteristics of 
classic SSL analog consoles, particularly their preamp and 
channel strip qualities. It is known for: 
 
Imitatively Reproducing SSL Sound: Capturing the punch, 
clarity, and musicality associated with SSL consoles, often 
favored in professional recording and mixing environments. 
Adding Character and Warmth: Providing a sonic coloration that enhances vocals, drums, and other 
instruments with a lively, punchy, and polished tone. 
Ease of Use: Typically offering intuitive controls that emulate the familiar SSL console interface, making it 
accessible for both novice and experienced engineers. 
Versatility: Suitable for a variety of sources, from vocals to drums, giving producers and engineers a quick way 
to add SSL-style presence and depth to their tracks. 
Overall, the SSL Console Emulated Preamp is valued for delivering the signature SSL console sound in a 
flexible, plugin or hardware form, making it a popular choice for mixing and mastering professionals seeking 
that classic SSL flavor. 
  
 

Wing Gate Dynamic EQ 
The Wing Gate Dynamic EQ is known for its innovative 
approach to equalization by combining the traditional 
functionalities of a parametric EQ with dynamic processing 
capabilities. It is designed to provide precise, transparent, 
and musical dynamic EQ adjustments, allowing users to 
target specific frequency ranges that need dynamic control 
rather than static adjustments. 
Dynamic Filtering: Unlike standard EQs, the Wing Gate Dynamic EQ can respond dynamically to audio signals, 
reducing or enhancing frequencies only when certain thresholds are exceeded. 
Transparency and Musicality: It is praised for maintaining audio clarity while shaping tone, making it suitable 
for mixing and mastering tasks. 
Versatility: Its ability to act as a dynamic EQ, compressor, or de-esser within a single plugin makes it popular 
among engineers for complex sound shaping. 



 
 
 
 

©Patrick-Gilles Maillot 191 WING remote protocols – V 3.0.6-27 
 
 
 

Ease of Use: Despite its advanced features, it is known for an intuitive interface that allows precise control 
over dynamic and static EQ settings. 
Innovative Design: Wing Gate introduces a unique "gate" mechanism that helps in controlling the dynamic 
range more effectively, especially useful for controlling resonances, sibilance, or problematic frequencies. 
In summary, the Wing Gate Dynamic EQ is known for its flexibility, transparency, and innovative dynamic 
processing capabilities, making it a powerful tool in professional audio production. 
  

  



 
 
 
 

©Patrick-Gilles Maillot 192 WING remote protocols – V 3.0.6-27 
 
 
 

Equalizer Section 
 

Wing EQ 
The Behringer Wing EQ is renowned for its high-quality, 
flexible, and musical equalization capabilities integrated 
into the Wing digital mixing console. Specifically, it is 
known for: 
Powerful Digital EQs: The Wing features high-resolution, 
24-bit/96 kHz digital EQs that provide precise control over 
sound shaping, allowing for detailed adjustments to 
individual channels and buses. 
Musical Sound Quality: The EQs are designed to be musical and transparent, enabling engineers to enhance 
clarity, warmth, and presence without introducing harshness or artifacts. 
Flexible Filter Types: It offers a variety of filter types, including parametric, shelving, and high/low-pass filters, 
giving users versatile tools for shaping sound. It also has a fantastic “Tilt” feature. 
Intuitive Control Interface: The EQ controls are accessible via the touchscreen interface, physical knobs, and 
dedicated controls, making real-time adjustments straightforward during live performances. 
Integrated Processing: Being part of a digital console, the EQ works seamlessly with other processing features 
like dynamics and effects, facilitating comprehensive sound optimization. 
Overall, the Behringer Wing EQ is known for providing professional-grade, versatile, and user-friendly 
equalization tools within a compact digital mixing environment, suitable for live sound, touring, and studio 
applications. 
 
 

Soul Analog. Emulates the SSL Channel EQ. 
The SSL Channel EQ is renowned for its distinctive sound 
and musical character, primarily because it is modeled 
after the equalizer found in Solid State Logic (SSL) consoles, 
particularly the SSL 4000 Series. It is known for: 
Musical Tone Shaping: The SSL Channel EQ offers a musical 
and punchy sound, making it ideal for adding clarity, 
presence, and warmth to individual tracks or entire mixes. 
Flexible Filtering: It provides a combination of high-pass and low-pass filters along with parametric EQ bands, 
allowing precise control over tonal balance. 
Characterful Sound: The EQ is celebrated for its slightly aggressive, yet musical, midrange boost and cut 
capabilities, which help individual sounds sit well in a mix. 
Versatility: It can be used on a wide range of sources—vocals, drums, guitars, and mix buses—thanks to its 
versatile frequency bands and intuitive interface. 
Iconic Status: As a staple in mixing and mastering, the SSL Channel EQ is often emulated in software plugins, 
and its sound signature is highly regarded in the audio production community. 
In summary, the SSL Channel EQ is known for its musical, punchy sound and its ability to enhance clarity and 
presence in a mix, making it a favorite among engineers for both corrective and creative equalization tasks 
and is often used on vocals, bass, and acoustic guitars. 
  
 



 
 
 
 

©Patrick-Gilles Maillot 193 WING remote protocols – V 3.0.6-27 
 
 
 

Even 88-Formant. Emulates the Neve 88 EQ. 
The Neve 88 EQ is renowned for its exceptional sound 
quality and musical character, making it a favored choice 
among audio engineers and producers. Specifically, it is 
known for: 
High-Quality Equalization: The Neve 88 EQ offers smooth, 
musical EQ curves that enhance the warmth and clarity of 
recordings. Its design allows for precise tonal shaping 
without introducing harshness. 
Classic Neve Sound: It embodies the legendary Neve console sound, characterized by a rich, punchy, and 
harmonically pleasing tone that is especially prized in recording and mixing. 
Versatility: The EQ is versatile, suitable for a wide range of applications—from vocals and guitars to drums and 
mix buses—adding depth and presence while maintaining musicality. 
Analog Warmth: As an analog EQ, it imparts a desirable warmth and character that many digital EQs struggle 
to replicate authentically. 
Overall, the Neve 88 EQ is celebrated for its ability to subtly or dramatically shape sound with a musical, 
vintage-inspired quality that enhances the emotional impact of recordings. 
Product page for the Neve 88 EQ: https://www.ams-neve.com/outboard/88-series-range/8803-2 
 
 

Even 84. Emulates the AMS Neve 1084 EQ. 
The AMS Neve 1084 EQ is renowned for its classic, musical 
character and high-quality sound, making it a favorite 
among audio engineers and producers. It is a vintage-style 
EQ that emulates the legendary Neve 1084 console 
equalizers, known for their warm, musical tonality and 
smooth, musical curves. The 1084 EQ is particularly prized 
for its: 
Rich Midrange Shaping: It offers a distinctive, musical midrange boost and cut, ideal for adding warmth and 
presence to vocals, guitars, and other instruments. 
Musical Sound Quality: Its design emphasizes musicality, making it excellent for enhancing recordings without 
sounding harsh or clinical. 
Versatility: Suitable for both tracking and mixing, it can be used on a variety of sources to add character and 
clarity. 
Authentic Vintage Tone: The AMS Neve 1084 EQ captures the essence of the classic Neve console sound, 
sought after in professional recording and mixing environments. 
Overall, the AMS Neve 1084 EQ is celebrated for its ability to impart a warm, musical, and vintage-inspired 
character to audio, making it a staple in high-end studios. 
Nerve Website. https://www.ams-neve.com/outboard/classic-range/1084-2 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 194 WING remote protocols – V 3.0.6-27 
 
 
 

Fortissimo 110. Emulates the Focusrite ISA 110 EQ. 
The Focusrite ISA 110 EQ is renowned for its classic, warm, 
and musical sound character, making it a popular choice 
among audio engineers and producers. It is part of the ISA 
series, inspired by the legendary Focusrite ISA 110 and 130 
modules from the 
original British console designs. Some of the key features 
include: 
 
Distinctive Tone: Its EQ section provides a musical and musical-sounding equalization, often described as 
smooth and musical, helping to enhance recordings without harshness. 
Versatility: The ISA 110 offers both high- and low-frequency EQ bands, allowing for precise tonal shaping of 
vocals, instruments, and mixes. 
Vintage Character: The design and circuitry emulate classic British console modules, giving recordings an 
authentic vintage flavor. 
Transparency and Musicality: While it can add character, it also maintains clarity, making it suitable for a 
variety of sources. 
Build Quality: As part of Focusrite’s heritage, it is built with high-quality components, ensuring durability and 
consistent performance. 
Overall, the Focusrite ISA 110 EQ is appreciated for its ability to add musicality and character to recordings, 
making it a sought-after tool for mixing and mastering in both studio and live settings. 
Sound on Sound Review. https://www.soundonsound.com/reviews/focusrite-isa-110 
 
  

Pulsar. Emulates the Pultec EQP-1A combined with MEQ-5. 
The Pultec EQP-1A combined with the MEQ-5 is renowned 
for its unique and highly musical analog equalization 
characteristics. Some key features are: 
Rich, Musical Tone: They impart a warm, smooth, and 
natural sound that’s difficult to replicate with digital EQs. 
Smooth, Musical Curves: The Pultec EQP-1A's design allows 
for gentle, resonant boosts and cuts, creating a “natural” 
enhancement of frequencies. 
Unique Interaction of Frequencies: The Pultec's tube circuitry and passive design enable it to produce 
resonant peaks and dips that blend seamlessly, often described as “musical” or “musical peak” shaping. 
Vintage Character: Both units are iconic in the studio world, associated with classic recordings, especially in 
mixing for vocals, bass, and drums. 
Parallel EQ Curves: The Pultec’s ability to boost and attenuate the same frequency simultaneously creates a 
distinctive “pumping” effect that adds depth and dimension. 
Versatility: The combination is used for broad tonal shaping, enhancing warmth, clarity, and presence. 
In summary, this combo is celebrated for its ability to add a vintage, musical quality to audio recordings, 
making it a favorite among mixing engineers seeking that classic analog sound. 
  



 
 
 
 

©Patrick-Gilles Maillot 195 WING remote protocols – V 3.0.6-27 
 
 
 

Mach EQ4. Emulates the Mäag EQ4. 
The Mäag EQ4 is renowned for its unique approach to 
equalization, primarily its use of a dynamic, "air" boost 
technique. It is a passive equalizer that employs a special 
circuitry design to enhance the high-frequency content, 
often described as adding "air" or "shine" to recordings. 
 
The EQ4 is particularly valued in professional audio for its 
musical and transparent sound, making it popular for mastering and mixing applications where subtlety and 
musicality are desired. Its reputation stems from its ability to subtly enhance 
high-frequency details without introducing harshness, making it a favorite among engineers seeking a natural 
and refined sound. 
The Mäag EQ4 is a well-regarded analog equalizer also known for its musical and musical-sounding tone, often 
favored in mixing and mastering contexts. Here are some of its key features: 
Four-Band Equalizer: The EQ4 offers four bands of equalization—typically low, low-mid, high-mid, and high—
allowing precise tonal shaping. 
Class-A Circuit Design: It uses Class-A circuitry, which is renowned for its warm, transparent, and musical 
sound quality. 
Variable Frequency & Bandwidth: Each band has adjustable frequency points and bandwidth (Q), giving users 
flexible control over the tonal adjustments. 
Analog Signal Path: The EQ maintains an entirely analog signal path, preserving natural warmth and character. 
  
High-Quality Components: Built with high-grade components to ensure durability and optimal sound quality. 
Wide Operating Range: The EQ can handle a broad spectrum of signals, making it suitable for various 
applications from mixing to mastering. 
User-Friendly Interface: Features intuitive controls for easy operation, often with classic VU meters for visual 
feedback. 
Versatility: Suitable for a wide range of audio sources, including vocals, instruments, and full mixes. 
Website: https://www.plugin-alliance.com/en/products/maag_eq4.html 
 
 

PIA 560 GEQ. Emulates: API 560 EQ. 
THIS EQ IS ONLY AVAILABLE ON THE BUS, MATRIX AND MAIN CHANNEL STRIPS! 

The API 560 EQ, also known as the API 560 Equalizer, is a 
well-known piece of audio processing equipment 
recognized for its high-quality, analog equalization 
capabilities. It is renowned for its: 
 
Vintage Sound Quality: The API 560 EQ imparts a 
distinctive tonal character often associated with classic 
analog recordings, characterized by musicality and warmth. 
Customizable Bands: It typically features multiple bands of equalization, allowing precise shaping of audio 
signals across various frequencies. 
Robust Construction: Built with durable components, the API 560 is valued for its reliability and longevity in 
professional studio environments. 
Versatility: It is widely used in mixing and mastering to enhance clarity, control tone, and shape the sonic 
image of individual tracks or entire mixes. 



 
 
 
 

©Patrick-Gilles Maillot 196 WING remote protocols – V 3.0.6-27 
 
 
 

Overall, the API 560 EQ is known for its musical, transparent, and versatile equalization, making it a favorite 
among audio engineers seeking classic analog character. 
 
 
 

Compressor Section 

Wing Compressor. 
The Behringer Wing Compressor is known for being a 
versatile and affordable audio processing tool integrated 
into the Behringer Wing digital mixing console. It is 
recognized for its high-quality dynamic range control 
capabilities, allowing users to effectively manage and 
shape audio signals with precise compression parameters. 
 
The compressor features transparent sound quality, user-friendly controls, and seamless integration within 
the digital mixer, making it popular among live sound engineers and audio professionals seeking reliable 
compression without a high cost. 
 
Additionally, its inclusion within the Wing console offers streamlined workflow and advanced processing 
features suitable for complex live sound and recording applications. 
The Behringer Wing Audio Compressor offers a range of features designed to enhance your sound quality and 
provide precise control over dynamics. Key features include: 
High-Quality Compression: Provides transparent and musical compression to control dynamic range and 
ensure consistent audio levels. 
Adjustable Parameters: Control over threshold, ratio, attack, release, and makeup gain to tailor compression 
to your needs. 
Sidechain Functionality: Allows external signal control for more complex compression setups. 
Built-In Limiters: Protect your audio signal from clipping and distortion with integrated limiting. 
  
Stereo and Mono Compatibility: Supports both stereo and mono processing for versatile application. 
Visual Metering: LED meters provide real-time feedback on gain reduction and output levels. 
User-Friendly Interface: Intuitive controls facilitate quick setup and adjustments. XOver (Crossover) Mode 
Features: 
Frequency Division: Splits audio signals into separate frequency bands (e.g., low/mid/high) for targeted 
processing. 
Adjustable Crossover Frequencies: Users can set the crossover points to suit specific audio applications. 
  



 
 
 
 

©Patrick-Gilles Maillot 197 WING remote protocols – V 3.0.6-27 
 
 
 

BDX 160. Emulates the DBX 160. 
The DBX 160 is renowned for its distinctive sound as a 
classic analog compressor/limiter, widely used in 
professional audio and music production. It is especially 
famous for its "warm" and "musical" compression 
characteristics, which help to add punch and sustain to 
audio signals. 
 
The DBX 160 is particularly popular for processing drums, bass, and vocals, providing a punchy, aggressive 
sound that has become a signature in many recordings and live mixes. Its straightforward design and reliable 
performance have made it a staple in both studio and live sound environments. 
Features: 
 
Variable Compression Ratio: Allows precise control over the amount of compression applied to the audio 
signal, from gentle to heavy compression. 
Threshold Control: Sets the level at which compression begins, enabling users to target specific signal peaks. 
Attack and Release Times: Adjustable parameters to shape how quickly the compressor responds to signal 
changes, offering flexibility for different audio sources. 
Make-up Gain: Compensates for level reduction caused by compression, ensuring consistent output volume. 
Metering: Visual indicators for input level, output level, and gain reduction, helping users monitor the 
compression process. 
  
Side-Chain Input: For external key signals, enabling techniques like ducking or frequency-specific compression. 
Bypass Switch: Allows quick comparison between processed and unprocessed signals. 
  
 

BDX 560 Easy. Emulates: DBX 560 VCA Overeasy Compressor. 
The DBX 560 VCA Overeasy Compressor is renowned for its 
transparent and musical compression, particularly its 
unique "Overeasy" compression style. This design allows 
for smooth, natural-sounding dynamics control that 
preserves the original character of the audio signal. 
 
It is especially favored in professional audio settings for 
vocals, drums, and mix bus compression, thanks to its ability to subtly tame peaks while maintaining clarity 
and punch. The DBX 560's VCA technology combined with the Overeasy circuitry makes it a versatile and 
reliable tool for achieving polished, dynamic mixes. 
 
 
The DBX 560 VCA Overeasy Compressor is a professional-grade audio compressor designed to provide 
transparent and musical dynamic control. Here are some of its key features: 
VCA Overeasy Compression: Utilizes VCA (Voltage Controlled Amplifier) technology with Overeasy knee 
characteristics, allowing for smooth and musical compression transitions. 
High-Resolution Metering: Features precise metering for gain reduction and output levels, facilitating accurate 
adjustments. 
Comprehensive Controls Include: Threshold, Ratio, Attack, Release, Make-up Gain & Sidechain Filter (for de-
essing or controlling low-frequency compression). 



 
 
 
 

©Patrick-Gilles Maillot 198 WING remote protocols – V 3.0.6-27 
 
 
 

Draw More D241. Emulates the Drawmer DL241. 
The Drawmer DL241 is known for being a high-quality, 
dual-channel, multiband dynamic equalizer and 
compressor. It is particularly recognized for its precise 
control over frequency-specific compression and limiting, 
making it a popular choice in professional audio and 
mastering environments. 
 
The DL241 offers independent operation of two channels, each with multiple frequency bands, allowing 
engineers to target specific problem areas in a mix or individual tracks with detailed dynamic processing. 
 
Its reputation stems from its transparent sound quality, flexible controls, and robust build, making it a 
versatile tool for shaping and controlling audio signals with high precision. Here are some of its key features: 
Variable Ratio: Compression ratios adjustable from 1:1 up to 20:1, allowing subtle to aggressive compression. 
Threshold Control: Precise threshold adjustment for each channel to set the level at which compression 
begins. 
Attack and Release Times: Fully variable attack (1 ms to 100 ms) and release (50 ms to 2 s) controls for 
tailoring response. 
Limiter Mode: Switchable to act as a peak limiter for transient control. 
  
Side-Chain Filtering: High-pass filter in the side-chain path to prevent low-frequency signals from triggering 
compression unnecessarily. 
Metering: Dual LED meters for each channel to visually monitor gain reduction. Bypass Switch: For A & B 
comparison. 
  
 

Red3 Compressor. Emulates: Focusrite Red 3 Compressor. 
The Focusrite Red 3 Compressor is renowned for its high-
quality, versatile compression capabilities, making it a 
popular choice among professional audio engineers and 
producers. It is part of the Focusrite Red series, which is 
known for its premium analog hardware designed to 
deliver transparent, musical compression with a rich, 
detailed sound. Some of its key features are: 
High-Fidelity Sound: The Red 3 Compressor offers a transparent and musical compression, preserving the 
tonal integrity of the source while controlling dynamics effectively. 
Versatility: It can be used across a wide range of applications—voice, vocals, instruments, and stereo bus—
thanks to its flexible controls and high-quality circuitry. 
Precision Control: Features include adjustable attack, release, ratio, and threshold controls, allowing 
meticulous tailoring of compression to suit various sources. 
In summary, the Focusrite Red 3 Compressor is known for delivering transparent, musical compression with a 
warm analog character, making it a sought-after tool for achieving polished, professional mixes and it is a 
clean VCA compressor used for mix buses & vocals and it adds a bit of high-mids back into the signal path. 
  
 
 



 
 
 
 

©Patrick-Gilles Maillot 199 WING remote protocols – V 3.0.6-27 
 
 
 

Soul 9000. Emulates the SSL 9000 Channel Compressor. 
The SSL 9000 Channel Compressor is renowned for its role 
in the SSL 9000 Series console, particularly as a high-
quality, integrated dynamics processing module. Some of 
its key features are: 
Transparent Compression: The SSL 9000 Channel 
Compressor provides smooth and transparent 
compression, making it suitable for a wide range of sources 
without adding unwanted coloration. 
Versatile Dynamics Control: It offers flexible control settings, allowing engineers to precisely shape the 
dynamics of individual channels, whether vocals, drums, or other instruments. 
Integrated Design: As part of the SSL 9000 console's architecture, it is highly integrated with the console's 
other features, enabling streamlined workflow and consistent sound quality. 
Characteristic SSL Sound: The compressor is known for imparting the classic SSL 
"glue" and punch, especially when used on drums, vocals, and mix buses, contributing to the iconic SSL sound. 
High-Quality Build and Components: Like other SSL modules, it is built with professional-grade components, 
ensuring durability and reliability in studio environments. 
  
Overall, the SSL 9000 Channel Compressor is celebrated for its combination of transparency, versatility, and 
the distinctive SSL sonic character, making it a favored choice for professional mixing engineers. 
 
 

Soul G Buss. Emulates the SSL 9000 G Bus Compressor. 
The SSL 9000 G Bus Compressor is renowned for its 
distinctive sound and musical characteristics, making it a 
highly sought-after hardware compressor in professional 
recording and mixing. It is best known for: 
Musical Compression: The SSL G Bus Compressor imparts a 
cohesive, glue-like quality to mixes, helping elements sit 
together smoothly and dynamically. 
Punch and Clarity: It enhances punch and clarity without overly squashing the dynamics, preserving transients 
while controlling peaks. 
Signature SSL Sound: It contributes the classic SSL "glue" effect, characterized by a musical and transparent 
compression that has become a hallmark of many hit recordings. 
Versatility: While primarily used on the stereo mix bus, it is also effective on individual tracks such as drums, 
vocals, and bass. 
Historical Significance: The SSL 9000 G Bus Compressor has been a staple in 
professional studios since the 1980s, appreciated for its reliability and consistent sonic performance. 
  
In summary, the SSL 9000 G Bus Compressor is celebrated for its ability to enhance mixes with a musical, 
transparent compression that adds cohesiveness, punch, and clarity—traits that have made it a classic and 
enduring piece of studio gear. 
 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 200 WING remote protocols – V 3.0.6-27 
 
 
 

Even Compressor/Lim. Emulates: Neve 33609. 
The Neve 33609 is renowned for its high-quality mono 
channel strip, widely regarded as a flagship preamp and 
dynamics module from Neve's classic 80-series consoles. It 
is particularly celebrated for its rich, musical sound, 
characterized by warm, punchy preamplification and 
smooth, musical compression. 
 
The 33609 is highly sought after in professional recording studios for its ability to add character and depth to 
vocals, drums, and other instruments, making it a favorite among engineers and producers seeking the 
legendary Neve sound. 
Some of its key features are: 
 
Compressor and Limiter Functions: Combines compression and limiting capabilities to control dynamic range 
effectively. 
Variable Attack and Release: Adjustable attack and release times for precise dynamic shaping. 
Threshold Control: Sets the level at which compression begins. 
 
Ratio Control: Adjustable compression ratio to determine the degree of compression. Make-Up Gain: Allows 
compensation for level reduction after compression. 
  
Sidechain Filter: Optional high-pass filter in the sidechain to prevent low-frequency buildup from affecting 
compression. 
High-Resolution Metering: VU or peak meters to monitor gain reduction and output levels accurately. 
Classic Neve Sound: Known for its musical, warm compression characteristic favored in professional recording 
and mixing. 
 
Applications: 
Tracking (vocals, drums, instruments), Mix Buss Compression, Mastering, Broadcast 
 
 

Eternal Bliss. Emulates the Elysia Mpressor. 
Elysia Mpressor is known for its innovative approach to 
music production, particularly in blending genres such as 
electronic, experimental, and ambient sounds. It has 
gained recognition for its unique sound design, creative 
use of synthesizers, and compelling compositions that 
often explore themes of emotion and atmosphere. The 
original is a top-end unit with pristine electronics and 
several unique features. 
The Elysia Mpressor is a high-end stereo compressor known for its transparent and musical dynamics control. 
The Elysia Mpressor is often praised for its transparency, musicality, and versatility in mastering and mix bus 
applications. Some of its key features include: 
Pure VCA Compression: Utilizes a proprietary VCA design for precise and clean compression, allowing for 
transparent dynamics control. 
High-Quality Audio Path: Designed with high-grade components to ensure pristine audio fidelity and minimal 
coloration. 



 
 
 
 

©Patrick-Gilles Maillot 201 WING remote protocols – V 3.0.6-27 
 
 
 

Flexible Control Parameters: 
 
Threshold: Adjustable to set the level at which compression begins. Ratio: Multiple ratio settings for gentle to 
aggressive compression. 
  
Attack and Release Times: Precise control for shaping the compression response. Knee Control: Allows for soft 
or hard knee compression characteristics. 
Make-up Gain: Compensates for level reduction caused by compression. 
 
Stereo Linking: Ensures balanced processing of stereo signals for coherent sound. Metering: 
Gain Reduction Meter: Visual indicator of compression amount. Input/Output Meters: Monitor signal levels 
throughout the process. 
Side-Chain Filtering: Optional high-pass filter in the side-chain to prevent bass frequencies from triggering 
compression excessively. 
Bypass Function: Allows quick A/B comparison between compressed and uncompressed signals. 
Auto-Fast button: Allows for manual setting of the attack timing yet kicks in with faster attack timing when it 
detects faster and louder signals. 
Anti-Log release button: Inverts typical release timing providing long releases with high gain reduction and 
fast release times with low gain reduction. 
Negative Ratios: Negative ratios don't limit the volume to the threshold but turn the volume down below the 
threshold. As the input goes up, the volume reduction increases. 
Gain Reduction Limiter: This prevents gain reduction from exceeding the specified amount no matter how 
loud the input, low the threshold or how high the ratio. 
 
 

76 Limiter Amp. Emulates: UREI/Universal Audio 1176 FET Compressor. 
The UREI/Universal Audio 1176 FET Compressor is 
renowned for its distinctive sound and versatile 
performance in professional audio production. Introduced 
in the late 1960s, it became one of the most popular and 
iconic hardware compressors in recording studios 
worldwide. Some of its key features include: 
Fast Attack and Release Times: The 1176 is celebrated for 
its extremely rapid attack and release, enabling it to effectively tame transient peaks and add punch to drums, 
vocals, and other instruments. 
Distinctive "All-Button" Mode: Engaging all ratio buttons creates a unique, aggressive compression 
characteristic often used for special effects or more pronounced compression. 
FET (Field Effect Transistor) Circuitry: Its design utilizes FETs to emulate classic optical or variable-mu 
compressors, but with the added benefit of faster response times and a distinctive sonic character. 
Coloration and Harmonics: The 1176 imparts a recognizable sonic flavor, adding warmth, presence, and a 
certain "glue" to mixes, which many engineers seek out. 
Versatility: It can be used on a variety of sources—vocals, drums, bass, and even stereo bus compression—
making it a staple in mixing and mastering. 
  
Historical Significance: The 1176 is considered a classic piece of gear that helped shape the sound of modern 
music from rock and pop to jazz and beyond. 
 



 
 
 
 

©Patrick-Gilles Maillot 202 WING remote protocols – V 3.0.6-27 
 
 
 

 
In summary the UREI/Universal Audio 1176 FET Compressor is known for its fast, aggressive compression, 
distinctive tonal coloration, and versatility, making it a favorite among engineers and producers for adding 
punch, character, and consistency to recordings and is fantastic on drums, vocals, bass, and parallel 
compression. Always remember that the timing knobs are reversed from normal with 1 being the slowest and 
7 being the fastest. 
 
 

LA Leveler. Emulates the Teletronix LA-2A. 
The Teletronix LA-2A is renowned for its smooth, musical 
compression characteristics. It is a classic optical leveling 
amplifier that uses an electro-optical process to achieve its 
compression, resulting in a natural and transparent sound. 
 
The LA-2A is especially favored in recording and mixing for 
vocals, bass, and other instruments where gentle, 
transparent compression is desired. Its distinctive sound and ease of use have made it a legendary piece of 
studio equipment in the world of professional audio. The LA-2A remains a favorite among audio engineers and 
producers for its musicality and classic tone, making it a staple piece of equipment in many professional and 
home studios. Some of its key features include: 
 
Optical Gain Reduction: Utilizes an electro-luminescent panel and a photo-sensor to achieve natural,Program-
dependent compression with minimal distortion. 
Vintage Tube Design: Incorporates a tube-based amplifier (typically a 12AX7 tube), contributing to its warm, 
musical sound. 
Simple Control Interface: 
 
Peak Reduction (Compression) knob: Adjusts the amount of gain reduction. 
  
Gain (Make-up Gain) knob: Compensates for the gain reduction to preserve output level. 
Peak Reduction Meter: Displays the amount of compression applied. Input Level Meter: Shows incoming 
signal level. 
Automatic Leveling: Its design provides a natural, transparent compression ideal for vocals, bass, and other 
instruments requiring gentle leveling. 
Slow Attack and Release: The LA-2A features inherently slow attack and release times, making it excellent for 
smoothing out dynamic signals without introducing artifacts. 
Classic Sound: Its unique optical compression circuit imparts a warm, rounded tone that’s highly sought-after 
in mixing and mastering. 
Side-Chain Capabilities: While primarily an automatic leveler, it lacks advanced side-chain filtering but excels 
at transparent compression. 
  
 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 203 WING remote protocols – V 3.0.6-27 
 
 
 

Fairkid Model 670. Emulates: Fairchild 670. 
The Fairchild 670 is renowned for being one of the most 
legendary and highly regarded vintage compressor/limiter 
units in audio production. Manufactured by Fairchild 
Recording Equipment Corporation in the 1950s and 1960s, 
it is particularly famous for its exceptional sound quality, 
warm compression characteristics, and its distinctive, 
smooth gain reduction. 
 
The 670 is often considered a benchmark for audio compression, especially in high-end recording studios, and 
is prized by engineers and producers for its ability to add a rich, musical character to vocals, drums, and other 
instruments. 
 
Due to its rarity and exceptional performance, the Fairchild 670 has become a highly sought-after piece of 
vintage audio gear, symbolizing the golden age of analog recording equipment. 
 
The Fairchild 670 is one of the most legendary and sought-after vintage audio compressors, renowned for its 
warm, musical compression and its use in top studios around the world. Here are some key features of the 
Fairchild 670: 
 
Stereo Compression: Designed for stereo operation, providing dual-channel compression within a single unit, 
ensuring consistent stereo imaging. 
  
High Power and Large Size: Extremely heavy and large, often weighing over 400 pounds, reflecting its robust 
construction and powerful circuitry. 
Opto-Triode Gain Reduction: Employs opto-electronic gain reduction elements for smooth, musical 
compression. 
Attack and Release Controls: Features adjustable attack and release times, allowing precise tailoring of the 
compression response. 
Threshold and Ratio Controls: Provides control over the level at which compression begins and the degree of 
compression applied. 
Output Gain Control: Allows for makeup gain to compensate for level reduction caused by compression. 
Variable Compression Ratios: Offers a range of ratios, typically up to 20:1, for subtle or aggressive 
compression. 
High-Fidelity Audio Path: Designed to preserve audio quality with minimal coloration, enhancing warmth and 
clarity. 
Vintage and Rare: Due to its scarcity and legendary status, original units are highly valued and often 
considered collector’s items. 
Additional Notes: The Fairchild 670 is prized not only for its technical capabilities but also for its unique sonic 
signature—often described as warm, smooth, and musical. It’s widely used in mastering, tracking, and mixing 
for vocals, drums, and other critical elements. 
  
 
 



 
 
 
 

©Patrick-Gilles Maillot 204 WING remote protocols – V 3.0.6-27 
 
 
 

No Stressor. Emulates the Emperical Labs EL8 Distressor. 
The Empirical Labs EL8 Distressor is renowned for its 
versatility and high-quality compression capabilities. It is a 
widely used hardware compressor known for its ability to 
emulate a variety of classic compression styles while 
offering unique features that make it suitable for a broad 
range of audio applications. Some of its key characteristics 
include: 
Versatility: The EL8 Distressor can function as a gentle opto compressor or as a more aggressive, “in-your-
face” compressor, making it suitable for vocals, drums, bass, guitars, and even mix bus compression. 
Distinctive Sound: It is prized for its ability to add character and “glue” to mixes, often described as bringing a 
sense of punch and cohesion to recordings. 
Unique Features: The unit includes controls for “Distortion,” “Nuke” (extreme compression), and “Grain” 
modes, allowing users to creatively shape their sound. 
Emulation of Classic Compressors: It can emulate the behavior of classic units like the 1176 and LA-2A, 
providing a range of compression styles from transparent to heavily colored. 
Musical and Transparent Options: It offers both transparent compression and more aggressive, colored 
compression, giving engineers creative flexibility. 
  
Overall, the Empirical Labs EL8 Distressor is known for its flexibility, distinctive tone, and its ability to serve as 
both a transparent and an aggressively characterful compressor, making it a staple in professional studios 
worldwide. 
 
 
 
Controls & Special Settings: 
 
Ratio Adjustment: Controls ratio, knee and threshold settings. 3:1 and lower: Are soft knee. 
4:1 and 6:1: Are soft knee below the threshold and move to hard knee above the threshold. 
10:1: Is a special optical type compression. Additional Notes/Features 
20:1: Attack 10 Release 0 emulates an LA-2A. Nuke is a brickwall limiter. 
Input drives the signal into the threshold. 
 
Setting 5-5-5-5 on all four knobs is the classic starting point. 
 
 
The  Distressor Manual is available at https://www.empiricallabs.com/distressor 
 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 205 WING remote protocols – V 3.0.6-27 
 
 
 

PIA2250 Rack. Emulates: API 225L 200 series module. 
The API 225L 200 Series module is known for its high-
quality, versatile analog signal processing capabilities, 
particularly in professional audio and broadcast 
applications. It is part of API's 200 Series channel modules, 
which are renowned for their rugged construction, 
transparent sound, and classic API tone. 
 
Specifically, the 225L module is often used for microphone preamplification, 
line-level amplification, or as a versatile gain stage, providing clean, warm, and detailed audio signals with 
precise control. Its reputation stems from its consistent performance, durability, and the signature API sound 
that is highly valued in recording studios, broadcast environments, and sound reinforcement systems. 
 
The API 225L Compressor is ideal for all studio, live sound and broadcast applications. Regardless of the 
threshold or ratio settings, the output level always remains at unity. This unique feature allows for real-time 
adjustments without the need for changing the output level. 
 
 
Release time is adjusted by rotating the REL knob. Release time constants: 50m/sec to 3/sec. Attack time is 
switch selectable to Fast (2mS), Medium (18mS) or Slow (75mS). The 225L is designed for individual channel 
use or, through the use of the external LINK 
  
function, two units can be combined for Stereo applications via a rear access pin. The 225L also has a side-
chain input for the detector amplifier. 
The 225L can be used in the Legacy, Legacy Plus or Vision Series Consoles, or in the L200 Rack. The 225L 
Compressor makes use of the 2520 and 2510 op-amps and therefore exhibits the reliability, long life and 
uniformity which are characteristic of all API products. 
Website: https://www.odysseyprosound.com/dynamics/api-225l 
 
 

LTA100 Leveler. Emulates the Summit Audio TLA-100. 
The Summit Audio TLA-100 is renowned for its warm, 
transparent, and musical 
tube-based compression. It is widely appreciated in both 
music production and mixing for its ability to add glue and 
cohesion to tracks while preserving the natural dynamics 
of the source. 
 
The TLA-100 is particularly favored for vocals, bass, and acoustic instruments, thanks to its smooth 
compression characteristics and the characteristic harmonic richness imparted by its tube circuitry. Its 
intuitive controls and high-quality build make it a popular choice among engineers seeking a classic, analog-
style compressor. 
 
The Summit TLA-100 is appreciated for its musicality and ability to add warmth and punch to recordings, 
making it a staple in many professional studios. Some of the key features are: 
 
Compression Characteristics: 



 
 
 
 

©Patrick-Gilles Maillot 206 WING remote protocols – V 3.0.6-27 
 
 
 

 
Variable attack, release, and ratio controls for precise tailoring. 
  
Soft knee compression for smooth control. 
 
High-pass sidechain filter to prevent bass frequencies from triggering compression excessively. 
Controls and Parameters: 
 
Threshold control for setting the compression onset. Ratio control for adjusting the compression amount. 
Attack and release knobs for dynamic response shaping. Makeup gain for compensating gain reduction. 
Metering: 
 
VU meter displaying gain reduction. 
 
Optional peak indicator for transient handling. Audio Quality and Features: 
Warm, musical compression characteristic. 
 
Suitable for vocals, drums, bass, and mix bus applications. Sidechain filtering for more transparent 
compression. 
Additional Features: 
 
Bypass switch for A/B comparison.  
 
The Summit Audio TLA-100 PDF Manual is available at https://www.summitaudio.com/manual.php?m=tla-
100a 
 
 

Wave Designer. Emulates the SPL Transient Designer. 
The SPL Transient Designer is known for its innovative 
ability to shape and manipulate the transients of audio 
signals. Specifically, it allows users to independently adjust 
the attack and sustain portions of a sound without 
affecting the overall level or tone. 
 
This makes it a powerful tool for enhancing punchiness in 
drums, tightening up sounds, or softening transients to create a more controlled and polished mix. Its intuitive 
interface and real-time processing have made it a popular choice among audio engineers and producers for 
dynamic sound shaping and transient management. 
 
The SPL Transient Designer is a popular audio processing tool used to shape the attack and sustain 
characteristics of audio signals, particularly drums and percussion. Here are some of its key features: 
 
Transient Enhancement and Reduction: 
Allows users to either emphasize or reduce the attack (initial hit) and sustain (tail) of the sound. 
Simple, Intuitive Controls: 
  
Attack: Adjusts the initial transient's strength. Sustain: Controls the tail length and decay. 



 
 
 
 

©Patrick-Gilles Maillot 207 WING remote protocols – V 3.0.6-27 
 
 
 

Output Gain: Controls the amount of output makeup gain. 
 
Dynamic Processing: Unlike traditional compressors or EQs, it specifically targets the transient portion of the 
audio, making it highly effective for drums, percussion, and plucked instruments. 
Real-Time Processing: Provides immediate results, useful for live mixing or quick edits. Versatile Use Cases: 
Tightening drums for a punchier sound. Loosening instruments for a more natural feel. Creative effects by 
drastically altering transients. 
Minimal Phase Distortion: Designed to process transients without introducing significant phase issues, 
preserving the natural sound. 
Additional Features: Bypass options for quick A/B comparisons. 
 
 
 

PSE LA Combo. Emulates the Vintage LA-style Compressors. 
The PSE LA Combo Compressor emulates the classic sound 
and characteristics of vintage LA-style compressors, 
specifically those associated with large-format analog 
mixing consoles like the Neve and SSL desks. It aims to 
recreate the warm, musical compression and punchy 
dynamics that are typical of analog hardware used in 
professional recording and mixing environments. 
 
The plugin often combines multiple compression stages or circuitry to capture the richness, glue, and subtle 
coloration that analog LA-style compressors are known for, making it a popular choice for adding warmth and 
cohesion to vocals, drums, and full mixes. 
 
The PSE LA Combo Compressor is known for its distinctive combination of compression and limiting 
capabilities, often appreciated in audio production for its versatility and unique tonal characteristics. 
Specifically, it is renowned for: 
 
Versatility: It can serve as both a compressor and a limiter, making it suitable for a wide range of audio 
processing tasks. 
 
Unique Sound Character: The PSE LA Combo is celebrated for its warm, musical compression that adds 
character and punch to vocals, drums, and other instruments. 
 
Ease of Use: With intuitive controls, it allows engineers and producers to quickly shape their sound without 
complex setup. 
  
Overall, the PSE LA Combo Compressor is known for its ability to enhance tracks with smooth, musical 
compression while adding a touch of harmonic richness, making it a favorite among audio professionals 
seeking a vintage vibe. 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 208 WING remote protocols – V 3.0.6-27 
 
 
 

Auto Rider. Emulates the Waves Vocal Rider. 
The Waves Vocal Rider is known for its ability to 
automatically and transparently ride vocal levels in a mix. It 
dynamically adjusts the volume of vocal tracks in real-time, 
ensuring consistent presence and clarity without the need 
for manual fader riding. This tool is widely used in mixing 
to streamline the process of achieving balanced vocals, 
saving time and maintaining a natural sound. 
  
 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 209 WING remote protocols – V 3.0.6-27 
 
 
 

Pre FX Effects Section REVERBS 

Hall Reverb 
A hall reverb is a type of audio effect that simulates the 
reverberation characteristics of a large concert hall or 
auditorium. It is used in music production, sound design, 
and audio engineering to create a sense of space and 
depth in a sound recording or live performance. 
How It Works: 
 
When a sound is produced in a large space like a hall, it reflects off walls, ceilings, and other surfaces. 
These reflections arrive at the listener’s ears at different times and intensities, creating a complex, spacious 
sound. 
Hall reverb mimics these reflections digitally or through hardware, adding a natural echo and spaciousness to 
the original sound. 
Characteristics of Hall Reverb: 
  
Long Decay Time: The reverberation lasts longer, often several seconds, giving a sense of grandeur and 
openness. 
Smooth, Diffused Reflections: The reflections blend smoothly, avoiding harsh echoes. 
 
Lush and Spacious Sound: It enhances vocals, orchestral instruments, and other sources that benefit from a 
grand, ambient feel. 
Applications: 
 
Making vocals sound more expansive and natural. Adding depth to orchestral recordings. 
Creating an atmospheric background in various music genres. Historical significance: 
One notable group that used a Hall Reverb in their music is The Beatles. They employed a Hall Reverb to 
create spacious, ambient sounds in several of their recordings. For example, their song "A Day in the Life" 
features prominent use of a large hall reverb to give it an expansive, atmospheric quality. 
Other artists and groups across different genres have also utilized Hall Reverb to add depth and space to their 
recordings, but The Beatles are among the most historically significant and well-known for pioneering the use 
of this effect in popular music. 
In summary, a hall reverb is a reverb effect that emulates the acoustic environment of a large hall, enriching 
the sound with a sense of space and ambiance. 
 
 

Room Reverb 
A room reverb, or room reverberation, refers to the 
natural or artificial echo and spatial reflections that occur 
when sound waves bounce off surfaces within a room or 
enclosed space. It creates the sense of space and depth in 
audio recordings or live sound by simulating how sound 
behaves in different environments. 
In audio processing, room reverb is often added using 
reverb effects to make a sound 



 
 
 
 

©Patrick-Gilles Maillot 210 WING remote protocols – V 3.0.6-27 
 
 
 

feel like it’s happening in a particular type of room—such as a small studio, a cathedral, or a concert hall—
enhancing realism and emotional impact. It can be customized with parameters like decay time, size, 
damping, and early reflections to match the desired acoustic environment. 
 
Characteristics of Room Reverb: 
 
Short to Moderate Decay Time. The reverberation in a room reverb tends to decay relatively quickly, usually 
within a fraction of a second to a couple of seconds. This short decay helps maintain clarity while adding a 
sense of space. 
Reflections with Less Diffusion: 
  
In a typical room, reflections are more direct and less diffused compared to larger spaces. The reflections 
often arrive sooner and are more defined, creating a sense of intimacy. 
Intimate and Natural Sound: 
 
Room reverb provides a natural, close-mic’d ambiance, making it suitable for capturing the original character 
of the sound source. It enhances the sense of being in a small, enclosed space. 
Frequency Response: 
 
Often characterized by a relatively flat or slightly colored frequency response, depending on the room’s 
surfaces. Some room reverbs emphasize certain frequencies based on the room’s acoustics. 
 
Applications: 
Emphasizing the natural sound of vocals or instruments in a small space. Adding subtle ambiance without 
overwhelming the original sound. 
Creating a realistic sense of intimacy or closeness in recordings. Historical significance: 
Several musical groups and artists have used room reverb or natural room acoustics as a significant element in 
their recordings to create a sense of space and atmosphere. 
One notable example is: 
 
The Beatles – In their song "A Day in the Life", especially during the orchestral crescendos and final piano 
chord, natural room reverb and ambient effects are used to enhance the spacious sound. Additionally, the use 
of room reverb can be heard in various tracks throughout their catalog, often achieved through techniques 
like recording in large rooms or using artificial reverb to emulate natural spaces. 
Other notable examples include: 
 
Pink Floyd – Known for their expansive soundscapes, many of their tracks (such as 
"Echoes" or "Shine On You Crazy Diamond") incorporate room reverb, either naturally or artificially, to create 
immersive atmospheres & Radiohead – In songs like "Everything in Its Right Place," the production employs 
room reverb to add depth and space to their electronic and experimental sounds. 
  
Brian Eno – As a pioneer of ambient music, Eno frequently used room reverb and 
natural space recordings to craft lush, immersive sound environments. In general, many artists and producers 
have used room reverb either through recording in large spaces, using reverb plates and chambers, or adding 
artificial reverb effects during mixing to achieve desired spatial qualities in their songs. 
 
Summary: Room reverb mimics the acoustic environment of a small to medium-sized space, characterized by 
shorter decay times, distinct and less diffused reflections, and an intimate, natural quality. It’s often used to 



 
 
 
 

©Patrick-Gilles Maillot 211 WING remote protocols – V 3.0.6-27 
 
 
 

add a realistic sense of space while maintaining clarity and detail. Basically, room reverb is both a natural 
acoustic phenomenon and an audio effect used to add spatial characteristics to sound. 
 
 

Chamber Reverb 
A Chamber Reverb is a type of artificial reverberation 
effect that simulates the sound characteristics of a small, 
enclosed space—originally created using a dedicated 
sound chamber or echo chamber. In the context of audio 
production, it typically refers to a reverb effect that 
emulates the acoustics of a vintage or small room 
environment, often characterized by a warm, smooth, and 
natural decay. 
Historically, chamber reverb was produced by sending audio signals into a specially designed physical space—
such as a tiled or echo chamber—and capturing the reflected sound via microphones. In modern digital audio 
production, chamber reverb effects are often emulated through software plugins that model the acoustic 
properties of these spaces, offering a distinct, lush reverb sound that adds depth and character to vocals, 
instruments, and mixes. 
Key characteristics of Chamber Reverb: Mimics small, enclosed spaces. 
Offers a warm, natural ambiance. 
  
Often used to add subtle depth without overwhelming the original sound. 
 
Can be more musical and less artificial compared to algorithmic or hall reverb settings. Historical significance: 
Many artists and groups have used chamber reverb to achieve a lush, spacious sound in their recordings. One 
notable example is The Beatles, who frequently employed chamber reverb—most famously on songs like "A 
Day in the Life" and "Tomorrow Never Knows." They used the "Leslie" chamber (a specially designed 
reverberation chamber) at Abbey Road Studios to create their distinctive sound. 
Another example is Pink Floyd, who used various types of reverb, including chamber reverb, to craft 
atmospheric textures in their music. Additionally, artists like Simon & Garfunkel and The Beach Boys 
incorporated chamber reverb techniques in their recordings for a spacious, immersive effect. 
Overall, chamber reverb is valued for its ability to create a vintage, intimate, and organic reverb sound that 
enhances the spatial quality of recorded audio. 
 
 

Plate Reverb 
A Plate Reverb is a type of artificial reverberation device 
that uses a large metal plate to produce reverberation 
effects. It was widely used in recording studios before 
digital reverb technologies became prevalent. 
How it works: 
 
A transducer (similar to a loudspeaker) is attached to the 
metal plate to convert an audio signal into vibrations. 
These vibrations travel across the metal surface, reflecting and dispersing. 
 



 
 
 
 

©Patrick-Gilles Maillot 212 WING remote protocols – V 3.0.6-27 
 
 
 

A pickup (like a microphone) mounted on or near the plate captures the vibrations, converting them back into 
an audio signal that contains the reverb effect. 
Characteristics: 
 
Produces a dense, smooth, and warm reverb sound. Has a distinctive metallic, resonant quality. 
  
Offers a relatively short decay time compared to natural reverberation, but can be adjusted with damping and 
size. 
Historical significance: 
 
Plate reverbs were popular in the 1950s and 1960s for vocals, drums, and other instruments. Famous 
examples include the EMT 140, one of the most iconic plate reverberators. Today, digital and software reverb 
plugins often emulate the sound of plate reverbs, allowing for easier use without the need for physical 
equipment. 
Several artists and groups have used plate reverbs to create distinctive sounds in their recordings. One 
notable example is The Beatles, who famously used a plate reverb on John Lennon's vocals and other 
instruments during the production of songs like "A Day in the Life" and "Tomorrow Never Knows." 
Another prominent example is Pink Floyd, who employed plate reverbs extensively in their recordings to 
achieve lush, spacious soundscapes, especially in albums like The Dark Side of the Moon. 
Led Zeppelin also used plate reverbs in their recordings, notably on Robert Plant's vocals to add depth and 
resonance. Additionally, The Beach Boys and The Rolling Stones are known to have utilized plate reverbs in 
their studio work to enhance their recordings. 
 
 

Concert Reverb 
A Concert Reverb refers to the natural or artificially 
created reverberation experienced during live musical 
performances in concert halls or large venues. 
Reverberation (or reverb) is the persistence of sound after 
the original source has stopped, caused by reflections of 
sound waves bouncing off walls, ceilings, and other 
surfaces. 
In the context of a concert, "concert reverb" often describes the characteristic acoustic qualities of a specific 
venue—how it amplifies, sustains, and diffuses sound—contributing to the overall ambiance and perceived 
space of the performance. For example: 
Natural concert reverb: The inherent echo and reverberation created by a venue's architecture. 
Artificial or added reverb: Signal processing effects used in sound reinforcement systems to emulate or 
enhance the natural reverb characteristics of a venue. 
Understanding concert reverb is essential for sound engineers, musicians, and producers to achieve the 
desired spatial and acoustic effects, whether in live sound 
  
reinforcement or in studio recordings aiming to replicate the feeling of a live concert environment. 
Historical significance: 
 
The band Pink Floyd is notably associated with the use of "concert reverb" effects in their music. One 
prominent example is their song "Echoes" from the album Meddle (1971), where they employed extensive 
reverb and echo effects to create spacious, atmospheric soundscapes. 



 
 
 
 

©Patrick-Gilles Maillot 213 WING remote protocols – V 3.0.6-27 
 
 
 

Additionally, various progressive and psychedelic rock bands during the late 1960s and early 1970s 
experimented with concert reverb and similar effects to craft immersive auditory experiences, though Pink 
Floyd remains one of the most recognized for their innovative use of such effects. 
 
 

Ambience Reverb 
An Ambience Reverb is a type of reverb effect used in 
audio production to create a sense of space and 
environment around a sound. It simulates the natural 
reflections and echoes that occur in a physical space, such 
as a room, hall, or outdoor environment, adding depth and 
dimension to the audio. 
Unlike more prominent reverb effects that might produce 
noticeable echoes or long decay times, ambience reverb typically features a subtle, gentle reverberation with 
a relatively short decay. Its purpose is to enhance the overall atmosphere without overpowering the original 
sound, making it ideal for creating a natural, immersive soundscape. 
Key characteristics of Ambience Reverb: Short to medium decay time. 
Low to moderate reverb level. Designed to add spatial context subtly. 
  
Often used on vocals, instruments, or entire mixes to create a sense of space. Historical significance: 
Several musical groups and artists have used ambient reverb effects to create atmospheric sounds in their 
songs. One notable example is Pink Floyd, who frequently employed expansive reverb and ambient effects to 
craft their signature psychedelic and progressive rock sound. 
For instance, their song "Echoes" features extensive use of reverb and ambient textures to create a spacious, 
immersive atmosphere. 
Another example is U2, particularly in their song "Where the Streets Have No Name," where reverb and 
ambient effects are used to enhance the song's expansive feel. 
Additionally, artists like Brian Eno—known as a pioneer of ambient music—used ambient reverb extensively in 
his compositions to generate lush, atmospheric soundscapes. 
In summary: An Ambience Reverb enriches a sound by mimicking the natural acoustic environment, providing 
a lush, spacious background that helps elements sit better within a mix. 
 
 

VSS3 Reverb 
VSS3 Reverb is a digital reverberation algorithm developed 
by Yamaha, originally introduced as part of their 
professional digital mixing consoles and effects processors. 
It is renowned for its high-quality, natural-sounding 
reverberation and is widely used in music production, live 
sound, and post-production. It has 109 adjustable reverbs! 
Key features of VSS3 Reverb include: 
 
Algorithm Type: It is a form of algorithmic reverb, designed to simulate the reflections and decay of sound in a 
space. 
Sound Quality: Known for its smooth, natural reverberation with a rich tail and spacious ambience. 



 
 
 
 

©Patrick-Gilles Maillot 214 WING remote protocols – V 3.0.6-27 
 
 
 

Control Parameters: Typically offers controls for parameters such as decay time, early reflections, diffusion, 
density, and damping, allowing users to tailor the reverb to suit various acoustic environments. 
Usage: Frequently integrated into Yamaha's digital consoles and effects units, but also emulated or included in 
third-party plugins and hardware. 
  
In summary: The VSS3 Reverb is a highly regarded digital reverb algorithm that provides realistic and musical 
reverberation effects, making it a popular choice among audio engineers and producers for enhancing the 
spatial quality of recordings and live sound. 
 
 

Vintage Room Reverb 
A Vintage Room Reverb refers to a type of reverb effect 
that emulates the acoustic characteristics of classic, older 
recording spaces or analog reverb units from past decades. 
It aims to recreate the warm, lush, and sometimes slightly 
colored reverberation that was typical of vintage hardware 
or famous recording studios. 
Key characteristics of Vintage Room Reverb include: 
 
Analog Warmth: Often featuring subtle saturation and harmonic distortion reminiscent of analog equipment. 
Distinct Acoustic Spaces: Mimicking the unique reverberation qualities of historic rooms, such as concert halls, 
studios, or chambers used in classic recordings. 
Emulation of Vintage Hardware: Many plugins or hardware units designed as Vintage Room Reverbs emulate 
classic spring, plate, or chamber reverbs from mid-20th century equipment. 
These reverbs are popular in music production for adding a sense of nostalgia, richness, and character to 
recordings, especially when aiming for a vintage or retro sound aesthetic. 
  
Historical significance: 
 
Several musical groups and artists have used vintage room reverb to create distinctive sounds in their 
recordings. One notable example is The Beatles, who utilized vintage reverb effects, including spring and plate 
reverbs, to craft their iconic sound. For instance, the song "A Day in the Life" features the use of vintage 
reverb techniques to add depth and atmosphere. 
Another example is Pink Floyd, who extensively used vintage reverb units like the EMT 140 plate reverb to 
produce spacious and immersive soundscapes in tracks such as "Time" and "Echoes." 
Additionally, artists like The Beach Boys and Led Zeppelin incorporated vintage reverb effects to achieve their 
signature sounds, often employing classic spring reverbs and early digital units that emulate vintage 
characteristics. 
 
 



 
 
 
 

©Patrick-Gilles Maillot 215 WING remote protocols – V 3.0.6-27 
 
 
 

Vintage Reverb 
A Vintage Reverb refers to a type of audio reverb effect 
that emulates the sound characteristics of classic reverb 
units and techniques from earlier eras, typically from the 
1950s to the 1980s. These reverb sounds are often prized 
for their warm, lush, and sometimes distinctively colored 
or saturated quality, which can add a nostalgic or timeless 
character to recordings. 
Common examples of vintage reverb units include: 
 
Plate Reverbs: Like the EMT 140, known for their smooth, dense reverberation. 
 
Spring Reverbs: Found in vintage guitar amplifiers, offering a distinctive metallic and boingy sound. 
Spring Reverb Units: External hardware units used in studios or on instruments. 
 
Hardware Spring Reverb Units: Classic outboard gear that uses actual springs to create reverb effects. 
  
In addition to hardware units, "vintage reverb" can also refer to software plugins modeled after these classic 
units, capturing their unique tonal qualities and saturation characteristics. 
Characteristics of Vintage Reverb: 
 
Warmth and musicality due to analog circuitry and saturation. Distinctive coloration and character. 
Often more subtle and less pristine than modern digital reverbs. Can evoke a sense of nostalgia or classic vibe 
in recordings. 
Historical significance: 
 
Many bands and artists across various genres have used vintage reverb units to achieve their distinctive 
sounds. One notable example is The Beach Boys. They famously used an EMT 140 plate reverb on many of 
their recordings, including the iconic "Good Vibrations," to create lush, spacious sounds. 
Other artists and groups that have utilized vintage reverb units include: 
 
The Beatles – Used various vintage reverb units, including the EMT 140, for their experimental and 
atmospheric soundscapes. 
Pink Floyd – Employed vintage reverbs like the EMT 140 and EMT 250 to craft their atmospheric textures. 
U2 – Used vintage plate reverbs during the 1980s for certain tracks, such as "With or Without You." 
The Rolling Stones – Utilized vintage reverbs for their recordings in the 1960s and 70s. 
 
Using vintage reverb can add a special personality to recordings, making them sound more organic, spacious, 
and emotionally engaging. 
  
 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 216 WING remote protocols – V 3.0.6-27 
 
 
 

Vintage Plate 
A Vintage Plate Reverb is an early type of artificial reverb 
that uses a large, suspended metal plate to produce 
reverberation effects. Invented in the mid-20th century, 
especially popular from the 1950s through the 1970s, plate 
reverb units consist of a thin, circular or rectangular metal 
plate that vibrates when an audio signal is fed into it via 
transducers (pickups). 
The vibrations are then captured by pickups placed on or near the plate, converting them back into an audio 
signal with a lush, dense reverberation characteristic. 
Key features of Vintage Plate Reverb: 
 
Distinct sound: Known for its warm, smooth, and dense reverb with a slightly metallic quality. 
Physical construction: Uses a large metal plate, a transducer (input), pickups (output), and mechanical 
components. 
  
Historical significance: 
 
One notable group that used a vintage plate reverb is Pink Floyd. They famously employed a classic EMT 140 
plate reverb on several of their recordings, including the iconic track "Shine On You Crazy Diamond." The EMT 
140 plate reverb contributed to the spacious, ethereal sound characteristic of Pink Floyd's atmospheric style. 
Other artists and producers from the 1960s and 1970s also used vintage plate reverbs, such as The Beatles 
and The Beach Boys, to achieve lush, immersive reverberation effects in their recordings. It is widely used in 
recording studios before digital reverbs, favored for vocals, drums, and instruments. 
Examples: The EMT 140 as seen below is one of the most iconic vintage plate reverb units ever developed. 
 

 
 
Today, while digital emulations and plugins replicate the sound, vintage plate reverbs are prized for their 
unique sonic qualities and nostalgic appeal. 
 
 

Blue Plate 
A Blue Plate Reverb is a classic, plate-type reverberation 
unit that was originally manufactured by the American 
company Ampex in the 1950s. It is renowned for its 
distinctive, warm, and smooth reverb sound, which 
became popular in recording studios for adding depth and 
ambiance to vocals, drums, and other instruments. 
Key features of the Blue Plate Reverb include: 
 



 
 
 
 

©Patrick-Gilles Maillot 217 WING remote protocols – V 3.0.6-27 
 
 
 

Design: It uses a large, thin steel or aluminum plate suspended within a metal frame, which vibrates to 
produce reverb. An electromagnetic transducer (speaker) sends audio signals to the plate, and pickups 
(similar to those in electric guitars) capture the vibrations as reverberated sound. 
Sound Characteristics: The Blue Plate Reverb is known for its rich, musical decay with a slightly darker and 
more natural quality compared to digital reverbs. Its sound is often described as warm, smooth, and slightly 
elongated. 
Historical Significance: 
  
It was widely used in the 1950s and 1960s recording industry, notably in jazz, rock, and pop music. Its 
distinctive sound has made it a sought-after piece of vintage studio gear. The Blue Plate Reverb, a classic and 
sought-after piece of studio hardware, has been used by numerous artists across various genres. 
One notable example is U2, who employed the Blue Plate Reverb during the recording of their album The 
Joshua Tree (1987). It contributed to the distinctive spacious and atmospheric sound characteristic of some 
tracks on that album. 
Additionally, The Rolling Stones are known to have used the Blue Plate Reverb in their recordings, notably 
during the sessions for Some Girls (1978), to achieve a particular vintage reverb sound. 
While these are some prominent examples, many producers and engineers have favored the Blue Plate 
Reverb for its rich, warm, and musical reverb qualities, making it a popular choice for various recording 
projects. 
Contemporary Usage: 
Today, the Blue Plate Reverb is considered a vintage or boutique piece of gear. Many modern reverb plugins 
emulate its characteristics, and original units are prized by collectors and engineers seeking its classic tonal 
qualities. 
Summary: The Blue Plate Reverb is a vintage plate reverb unit known for its warm, musical reverb sound, 
historically used in professional recording studios to add depth and character to recordings. 
 
 

Gated Reverb 
A Gated Reverb is a popular audio effect used in music 
production, especially prominent in the 1980s. It combines 
a reverberation (reverb) with a noise gate to create a 
distinctive, punchy sound. 
How it works: 
 
Reverb Tail: First, a sound (often a drum hit or vocal) is 
processed with a reverb to create a spacious, echoing tail. 
Gating: A noise gate is then applied to the reverb tail, allowing only the initial part of the reverberation to pass 
through before abruptly cutting it off. 
Result: The effect produces a sharp, sudden decay rather than a lingering reverb, giving a " gated" or "cut-off" 
sound. This creates a punchy, energetic effect that emphasizes percussive hits. 
Historical Significance: 
  
The gated reverb sound became iconic with songs like Phil Collins' "In the Air Tonight" and other 80s 
productions. It was achieved by combining traditional reverb with a noise gate, and often involved additional 
processing to shape the sound. 
In summary: A Gated Reverb is an audio effect where a reverb's decay is abruptly cut off by a noise gate, 
resulting in a distinctive, punchy reverberation characteristic of many 80s hits. 



 
 
 
 

©Patrick-Gilles Maillot 218 WING remote protocols – V 3.0.6-27 
 
 
 

Reverse Reverb 
A Reverse Reverb is an audio effect where the reverb tail of 
a sound is played backward, creating a swelling or swelling-
like sound that leads into the original audio. Instead of the 
reverb trailing after the initial sound, the reversed reverb 
builds up before the note or phrase, producing a unique, 
ethereal, and often haunting effect. 
How it works: 
 
The original sound (e.g., a vocal or instrument) is recorded or processed. The reverb (or the entire sound with 
reverb applied) is reversed in time. 
The reversed reverb is then blended back with the original sound, so the swelling appears to lead into the 
sound. 
Often, the reversed reverb is trimmed or manipulated to fit the desired effect. Uses: 
  
Creating tension or anticipation in music. Adding an otherworldly or surreal atmosphere. 
Emphasizing transitions or emphasizing certain sounds. Historical Significance: 
Pink Floyd employed reverse reverb effects in their music. One notable example is in the song "Echoes" from 
their 1971 album Meddle. The band used various studio techniques, including reverse reverb, to create 
atmospheric textures and swirling sounds that contribute to the song’s immersive, spacious feel. 
The reverse reverb helped produce the shimmering, other worldly effects that are characteristic of Pink 
Floyd's experimental approach during that period. Additionally, Pink Floyd was known for their innovative 
studio effects and ambient soundscapes, often utilizing reverse reverb and other tape manipulation 
techniques to craft their distinctive sound. 
In summary: Reverse Reverb is a creative audio effect that reverses the reverb tail to produce a swelling 
sound that prefaces the original audio, resulting in a distinctive, dreamy, or haunting sonic texture. 
 
 

Delay Reverb 
A Delay Reverb is an audio effect that combines delayed 
sound signals with reverberation to create a spacious and 
immersive soundscape. Essentially, it involves adding 
echoes (delays) to the reverberated sound, resulting in a 
sense of depth and movement in the audio. 
How it works: 
 
Reverb simulates the natural reflections of sound in a space, creating a sense of environment. 
Delay involves repeating the sound after a set period, producing echo-like effects. 
 
When combined, a delay reverb can produce complex textures, such as cascading echoes within a reverberant 
space, or a sense of grandeur and width in the sound. This effect is popular in music production, sound 
design, and live performance to add dimension and atmosphere. 
  
Historical Significance: 
 



 
 
 
 

©Patrick-Gilles Maillot 219 WING remote protocols – V 3.0.6-27 
 
 
 

One notable example of a group that used a delayed reverb effect in their music was the British band “The 
Beatles”. Specifically, they employed a technique called "double tracking" combined with reverb and delay 
effects to create spacious, lush sounds on many of their recordings. 
A prominent track where you can hear a delayed reverb effect is "Tomorrow Never Knows" from the album 
Revolver (1966). The song features innovative studio techniques, including tape delay and echo effects that 
contribute to its psychedelic soundscape. 
Another example is Pink Floyd, who extensively used delay and reverb effects in their atmospheric and spacey 
soundscapes, especially in albums like The Dark Side of the Moon and Wish You Were Here. 
In summary: A Delay Reverb is an audio effect that layers delayed echoes onto reverberation, enhancing 
spatial and temporal qualities of the sound. 
 
 

Shimmer Reverb 
A Shimmer Reverb is a type of audio effect that combines 
traditional reverb with 
pitch-shifting elements to create a lush, ethereal, and 
spacious sound. It is often used in music production, 
especially in genres like ambient, post-rock, and shoegaze, 
to evoke a sense of vastness and dreaminess. 
Key Characteristics of Shimmer Reverb: 
 
Extended Decay: Longer reverb tails that create a sense of space. 
 
Pitch Shifting: The reverb signal is pitch-shifted upward (or sometimes downward) before being mixed back in, 
adding shimmering overtones. 
Harmonic Richness: The pitch-shifting generates harmonics that give the reverb a "shimmering" quality. 
Atmospheric Sound: It produces a glowing, almost otherworldly atmosphere. 
  
How It Works: 
 
Typically, a shimmer reverb effect involves splitting the reverb signal into multiple paths & one path remains 
unchanged (dry signal). The other path is pitch-shifted, often upward by a few semitones. The pitch-shifted 
signals are then mixed back with the original, creating a shimmering, luminous sound. 
Usage: 
 
Musicians and producers use shimmer reverb to add depth and texture to guitars, vocals, and other 
instruments, especially when aiming for a dreamy or spacious soundscape. 
Historical Significance: 
 
The Shimmer Reverb effect, known for its lush, expansive, and spacious sound, has been widely used across 
various genres by numerous artists. One notable example is the band U2, particularly in their song "Where the 
Streets Have No Name", where a shimmer reverb effect is used to create a soaring, atmospheric sound. 
Another example is Sigur Rós, who frequently incorporate shimmering reverb effects into their ambient and 
post-rock soundscapes, notably in tracks like "Hoppípolla". 
Additionally, the band Explosions in the Sky often utilize shimmer reverb effects to craft their expansive, 
cinematic sound. 



 
 
 
 

©Patrick-Gilles Maillot 220 WING remote protocols – V 3.0.6-27 
 
 
 

In Summary: A shimmer reverb is a specialized reverb effect that combines long, lush reverberation with 
pitch-shifted harmonics to produce a shimmering, ethereal sonic atmosphere. 
 
 

Spring Reverb 
A Spring Reverb is an audio effect that creates 
reverberation (echo-like sound) using a physical spring as 
the reverb medium. It works by sending an electrical audio 
signal through a transducer (called a driver) attached to 
one end of a coil of coiled metal spring. 
The mechanical vibrations travel through the spring, 
reflecting and bouncing along its length, then are picked up 
by another transducer (called a pickup) at the other end. The resulting signal is a delayed, diffused version of 
the original sound, producing a characteristic reverb effect. 
Spring reverbs are known for their distinctive, metallic, and slightly boomy sound, which has been popular in 
guitar amplifiers, vintage audio equipment, and certain studio settings. They are valued for their unique tonal 
qualities and their ability to add depth and space to audio recordings. 
  
Key points: 
 
Uses a physical metal spring to create reverberation. Produces a distinctive, metallic reverb sound. 
Commonly used in guitar amplifiers and vintage gear. Provides a characteristic "springy" echo effect. 
Historical Significance: 
 
Several music groups and artists have utilized spring reverb effects in their recordings to create distinctive 
sounds. One notable example is The Shadows, a British 
instrumental rock band, who famously used spring reverb to achieve their signature echoing guitar tones, 
notably on their hit "Apache”. 
Another prominent example is The Beach Boys, particularly in their early surf rock recordings, where they 
used spring reverb to create the lush, spacious sound characteristic of tracks like "Surfin' USA" and "Fun, Fun, 
Fun". 
The Ventures also employed spring reverb in their surf and instrumental rock recordings, contributing to the 
"wet" guitar sound. In the realm of electronic and 
experimental music, artists such as Brian Eno and Tangerine Dream have used spring reverb effects in their 
studio setups to craft atmospheric textures. 
Overall, spring reverb has been a popular effect among surf rock bands, instrumental groups, and 
experimental musicians for its distinctive, resonant echo. 
  



 
 
 
 

©Patrick-Gilles Maillot 221 WING remote protocols – V 3.0.6-27 
 
 
 

 

Appendix: Routing  
Routing is a key aspect in digital consoles and can be … intimidating, especially with desks such as WING, with 
a multitude of physical sources and destination, tap points, and total flexibility of signal path arrangements for 
mixing and routing. “In the world of digital consoles with a multitude of inputs, outputs, and complex mixing 
capabilities, routing is the fundamental process that determines how audio signals flow throughout the 
system. It's akin to a sophisticated traffic control center, ensuring each sound reaches its intended destination 
with the desired processing applied. Routing in digital consoles is the foundation for achieving a high-quality, 
well-controlled sound. By mastering this skill, you can unlock the full potential of your console and create 
professional-sounding mixes with unparalleled flexibility”103. 
 
The following chapters along with existing videos on routing you can find on the web will help you with your 
first steps in routing your signals in the WING console.  
 
WING routing is always done from a WING perspective:  

● For input routing, input SOURCES are the physical connections to WING, while destinations are either 
WING CHANNELS or OUTPUTS (i.e. physical outputs);  

● For output routing, signal SOURCES are any of the possible tap points in WING to send out a digital 
audio signal, including INPUT SOURCES, BUS, MAIN, MATRIX, USER SIGNAL, MONITOR, and FX SENDS, while 
destinations are the physical outputs available from the desk or additional devices that are connected 
to it. 

 
Benefits of Effective Routing: 

● Clean Mixes: Proper routing avoids unwanted signal bleed and ensures each element sits clearly 
within the mix. 

● Efficient Workflow: By creating custom routing setups, you can save time during live performances or 
studio sessions. 

● Creative Possibilities: Advanced routing unlocks creative options like sending specific instruments to 
dedicated effects mixes, or managing both FOH and Monitoring from the same desk. 
 

Understanding Routing Interfaces: 
Digital consoles such as WING offer visual interfaces for routing, with screens depicting virtual "patches" 
connecting inputs, outputs, and internal processing modules. For WING, the interfaces are the main 
touchscreen using the ROUTING dedicated button, or software applications such as WING-Edit104 or Mixing 
Station105. 
 

  

 
103 Source: Gemini AI 
104 See: https://www.behringer.com/series.html?category=R-BEHRINGER-WINGSERIES, under the Software section 
105 See: https://mixingstation.app/ 



 
 
 
 

©Patrick-Gilles Maillot 222 WING remote protocols – V 3.0.6-27 
 
 
 

Input Routing 
WING has numerous possibilities when it comes to connecting sources and channels (so called “routing”), 
effectively enabling audio to ‘flow’ from its source to the WING audio engine for processing and mixing within 
the desk. 

There is a very large choice of no less than 376 input sources that can be found under the ROUTING→SOURCES 
screen, the SOURCE GROUP selection includes:  

 LOCAL IN (8 local XLR inputs on the full-size desk) 
 AUX IN (8 local 6.3mm inputs on the full-size desk) 
 AES/EBU IN (2 AES/EBU inputs) 
 OSCILLATOR (2 internal oscillator sources with various signal options and settings) 
 AES50-A, B and C (each with 48 inputs)  
 ST CONNECT (StageConnect™, configurable 32 IN or OUT at line level on a standard XLR/DMX cable) 
 USB AUDIO (48 inputs from a USB-2.0 port) 
 WLIVE PLAY (2x 32 inputs from one or two SD cards) 
 DANTE106 (64 inputs from either a card or internal module, or 128 inputs if both are installed) 
 USB PLAYER (4 inputs from the USB stick input)  
 USER SIGNAL (48 configurable user data path or patches overlapping/referencing sources above) 

 
All Sources above come with their associated SETTINGS (Mono/Stereo/MS, Gain, Polarity, Mute, Phantom, …), ICON, 
COLOR, and TAGS.  

The process of “source routing” or “input routing” is the action of associating a SOURCE to one of the WING 48 
(input/aux) Channels (or Channel Strips) for mixing their audio within the desk. This is accomplished by 
pressing the ROUTING button on the left of the WING Screen, and selecting the CHANNELS tab on the screen, 
opening the following screen: 

 

 

There are two routing options: MAIN and ALT. Both serve the same purpose and can be selected within 
Channel Strips; There are therefore two routing tables available at the desk. 
WING routing tables are write-protected (to avoid major issues during live performances) unless the unlocked 

 
106 This could be another option 



 
 
 
 

©Patrick-Gilles Maillot 223 WING remote protocols – V 3.0.6-27 
 
 
 

padlock [ ] is selected. With the padlock being green, a Channel Strip can be selected in the left side of the 
screen and a SOURCE entry can be selected from the Sources available on the right side of the screen.  

Different groups of SOURCES blocks are available from the SOURCE GROUP pull down menu (see below): 

 

 

SOURCES include actual HW sources and logical audio paths such as BUS, MAIN, MATRIX and USER SIGNAL, which 
are either the result of partially mixed audio or a specific/customized selection of Source in the case of USER 
SIGNAL. 
 
After a console init as shown above, LOCAL IN 1…8 mono sources will already be routed to Channels 1…8, USB 
AUDIO 1&2 will be combined as a stereo source routed to Aux 1, and Aux 2 will receive USB PLAYER 1&2 as a 
stereo source. This constitutes the default MAIN routing table. The ALT routing table is empty. 
 
For example, routing WLIVE PLAY sources 1..16 to Channels 9..24 can be done by a click on the +1AUTO 
button, selecting the first Channel to modify routing for (9), selecting WLIVE PLAY in the SOURCE GROUP 
pull-down menu and sequentially clicking on the 16 first entries of WLIVE PLAY, resulting in the following 
screen (and MAIN routing table).  
 
Additional, similar, or different choices for routing could be done for the ALT routing table, offering an 
alternate set of SOURCES to mix from at the mixing desk. Note that the MAIN/ALT selection at the Channel Strip 
level is accomplished by selecting either the MAIN or the ALT source for that Channel, i.e. moving from one to 
the other will possibly select a different source to mix, losing the previous one. 
 



 
 
 
 

©Patrick-Gilles Maillot 224 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

At that point, Channel Strips 9 to 24 can be used to mix the audio data issuing from the first 16 tracks of SD 
card 1107. Channel Strip 1 to 8 can be used to mix the audio data coming from local inputs 1 to 8 at the back of 
the console, and Aux strips 1 and 2 can be used to mix the audio signals from USB 1 & 2 and the 2 tracks from 
the USB stick player. 
 
What if the 16 WLIVE PLAY tracks above were representing 8 distinct stereo channels?  
 
WLIVE PLAY sources must be declared as stereo pairs; This is done by returning to the SOURCES tab and 
selecting the WLIVE PLAY source group, showing all 64 possible entries. Selecting entry 1 and clicking on STEREO 
in the SETTINGS will automatically ‘join’ entries 1 and 2 as a stereo pair named CRD1/L and CRD2/R, the same 
action can then be done for entries 3, 5, 7, 9, 11, 13, and 15, resulting in 8 pairs of stereo sources that can 
be routed to 8 different channels as described earlier. The pictures below show the screens resulting from the 
actions we just described. 
 

 
 

 
107 Note that SD card 1 maps to entries 1..32, and SD card 2 maps to entries 33..64 in the WLIVE PLAY or REC screens 



 
 
 
 

©Patrick-Gilles Maillot 225 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
As a result from the operations above,  Channel Strips 9 to 16 can now  be used to mix the audio data issued  
from the first 16 tracks of SD card 1. Channel Strip 1 to 8 can still be used to mix the audio data coming from 
local inputs 1 to 8 at the back of the console, and Aux strips 1 and 2 can still be used to mix the audio signals 
from USB 1 & 2  and the 2 tracks from the USB stick player. 
 

Output Routing 
Output routing works in a similar way to Input routing. This time though, the OUTPUTS tab is selected in the 
ROUTING screen, revealing OUTPUT GROUPS from a pull-down menu, and representing the physical outputs 
where audio signals from the console can be routed to, using digital audio sources selected from the SOURCE 
GROUPS pull-down menu and entries.  
 
The selection of output physical connections is as numerous as for inputs and characterizes the console 
versatility and extended capabilities with 374 physical outputs that can be found under the ROUTING→OUTPUT 
screen; The OUTPUT GROUP selection includes:  

 LOCAL OUT (8 local XLR outputs on the full-size desk) 
 AUX OUT (8 local 6.3mm outputs on the full-size desk) 
 AES/EBU OUT (2 AES/EBU outputs) 
 AES50-A, B and C (each with 48 outputs)  
 ST CONNECT (StageConnect™, configurable 32 IN or OUT at line level on a standard XLR/DMX cable) 
 USB AUDIO (48 outputs from a USB-2.0 port) 
 WLIVE REC (2x 32 outputs to one or two SD cards) 
 DANTE108 (64 outputs from either a card or internal module, or 128 outputs if both are installed) 
 RECORDER (4 outputs to the USB stick input)  

 
As for source assignments, the console comes with a default output routing right after being initialized. This is 
shown below with LOCAL OUT 1..8 receiving BUS 1L to BUS 6L, MAIN 1L and MAIN 1R, respectively. Note also 
that AUX OUT 7&8 are receiving MONITOR A&B by default. 

 
108 Could be another option 



 
 
 
 

©Patrick-Gilles Maillot 226 WING remote protocols – V 3.0.6-27 
 
 
 

 

 

Changing the output routing is made from the ROUTING→OUTPUTS screen, with first clicking on the OUTPUT GROUP 
of interest to select the first physical destination you want to assign a WING signal to.  

Say we would like to record the first 8  (all stereo) channels of our show as a new session onto SD card 2, 
along with the resulting show mix on the USB stick of the front panel as a 2-track mix coming from MAIN1; 
The operations one would perform are as follows:  

After selecting the WLIVE REC group of physical output on the left side of the screen and clicking on any entry 
in that panel, we need to select where routed signals will be coming from. That selection is possible from the 
SOURCE GROUP pull-down menu on the right side of the screen that offers a list of all possible ‘tap points’ for 
getting digital signals from the desk to physical outputs. In our example, we would select the audio signal 
sources that feed our Channel Strips 1 to 8. Let’s further assume our 8 Channel Strips are taking their inputs 
from WLIVE PLAY as described above. SD card 2 maps its 32 entries from 33 to 64 in the WLIVE PLAY or REC 
panels. As we did for input routing, we first select the unlocked padlock [ ], click on the first entry for SD card 
2 (CRD 33) in the WLIVE REC panel on the left side of the screen, click on the +1AUTO button for ease of 
selection and choose our audio signals to route to our outputs by clicking on the 16 entries in the WLIVE PLAY 
panel on the right side of the screen, starting at entry CRD1, resulting in the following routing table: 

 

 



 
 
 
 

©Patrick-Gilles Maillot 227 WING remote protocols – V 3.0.6-27 
 
 
 

 

The audio data used for our mix will be recorded to SD card 2, from SD card 1 (only when engaging record on 
SD card 2 and play on SD card 1, of course). 

We also need to set the output routing for recording our live mix; In the ROUTING→OUTPUTS screen, with 
clicking on the OUTPUT GROUP on the left side of the screen, we select RECORDER and click on the first entry, 1. 
With the unlocked padlock [ ] selected and the +1AUTO button engaged, we select MAIN in the SOURCE GROUP 
on the right side of the screen, and then click on the 1L and 1R entries in the displayed table. This completes 
our output routing with the following screen: 

 

 

 

We can now select the USB recorder and start a 2-channel recording on USB stick, then select the SD card 
screen, start recording on card 2, select our 8 stereo tracks session and hit play on card 1 and mix our session, 
simultaneously getting a digital copy of our dry data from SD1 to SD2 and a live mix result as a stereo wav file 
in the USB stick. 

  



 
 
 
 

©Patrick-Gilles Maillot 228 WING remote protocols – V 3.0.6-27 
 
 
 

Advanced Routing Options 
All routing scenarios presented above have  a restriction when it comes to stereo pairs. The HW limitations of 
the desk impose stereo pairs to always be in the form [odd-even] SOURCE numbers; i.e. you cannot route a 
stereo signal to a single channel strip if your two mono sources are connected to say LOCAL IN 2 and LOCAL IN 
3, or if they are connected to WLIVE PLAY 1 and WLIVE PLAY 33.  

This is where USER SIGNALS come into play, leveraging the internal WING FPGA routing chip flexibility to 
remove some of this restriction. A USER SIGNAL is a virtual channel, and proposes two variants: USER SIGNAL 
and USER PATCHES which we’ll detail below: 

USER SIGNAL 
A USER SIGNAL can only accept INPUT, AUX or BUS, MAIN or MATRIX channels as source. Setting or assigning 
sources to USER SIGNAL is done with selecting the ROUTING->SOURCES screen and choosing one of the 24 USER 
SIGNAL entries in the SOURCE GROUP pull-down menu on the left side of the screen. 

Clicking on an entry will display the SOURCE characteristics on the right side of the screen, with SOURCE 
SETTINGS, ICON, COLOR, POLARITY, and MUTE, and a +ASSIGN button that is used for selecting which channel, tap 
point (TAP or POST) and whether using stereo, mono, or M/S data as signal(s) for the selected USER SIGNAL 
entry. If the selected USER SIGNAL entry is stereo, it is possible to choose two totally disjoint sources for each 
of the L and R paths of the selected USER SIGNAL, such as for example channel 1 and channel 5 that would be 
routed with WLIVE PLAY 1 and WLIVE PLAY 33 to take our example above, creating a stereo pair that can now 
be assigned/routed to a single Channel strip thanks to USER SIGNALS. The screenshots below show routing 
displays for such a case, with channels strips 1 and 5 routed to sources WLIVE PLAY 1 & 33, and channel strip 
9 routed to stereo USER SIGNAL 1 that routes channels 1 and 5 as a single stereo pair to itself.  

 

    

 

  



 
 
 
 

©Patrick-Gilles Maillot 229 WING remote protocols – V 3.0.6-27 
 
 
 

 

 

That same USER SIGNAL 1 can also be used as a SOURCE for an OUTPUT, such as for example to record into a 
DAW on a PC using a USB connection, as a single stereo pair into USB 1&2.  

To achieve this, we would click on the first entry of USB AUDIO in the OUTPUT GROUP on the left side of the 
ROUTING→OUTPUTS screen. With the unlocked padlock [ ] selected and the +1AUTO button engaged, we select 
USER SIGNAL as a SOURCE GROUP on the right side of the screen and click on the USER 1L and USER 2R entries in 
the displayed table. This completes our output routing with the following screen: 

 

 

We can then hit play on WLIVE sessions on both SD card 1 and 2, and will get our signals available as a single 
stereo pair for recording a 2-track session over USB cable to a connected PC. 
 

  

First track from  
    SD-1 session 

 

 

     
First track from  
    SD-2 session 



 
 
 
 

©Patrick-Gilles Maillot 230 WING remote protocols – V 3.0.6-27 
 
 
 

USER PATCH 
A USER PATCH can be used the same way as a USER SIGNAL but unlike USER SIGNAL, the audio physical SOURCE 
will directly connect to a USER PATCH, thus bypassing the need for using an intermediate channel strip or set of 
channel strips.  

Setting or assigning sources to USER PATCH is done with selecting the ROUTING->SOURCES screen and choosing 
USER SIGNAL in the SOURCE GROUP pull-down menu on the left side of the screen and selecting one of the 32 
USER PATCH entries in the list. As for USER SIGNAL, clicking on a USER PATCH entry will display the SOURCE 
characteristics on the right side of the screen, with SOURCE SETTINGS, ICON, COLOR, POLARITY, and MUTE, and a 
+ASSIGN button that is used for selecting which physical SOURCE will be used. A USER PATCH can accept any of 
LOCAL IN, AUX IN, AES50 A/B/C, ST CONNECT, USB AUDIO, Add-on Card, Internal Module, USB PLAYER or AES/EBU 
IN signal as its routed SOURCE.  

If the selected USER PATCH entry is stereo, it is possible to choose two totally disjoint sources for each of the L 
and R paths of the selected USER PATCH, such as routing for example WLIVE PLAY 1 and WLIVE PLAY 33 to USER 
PATCH stereo entry 26L/26R to use once more our example above, creating a stereo pair that can now be 
assigned/routed to a single Channel strip.  

The screenshots below show routing displays for such a case, with sources WLIVE PLAY 1 & 33 (our installed 
Add-on Card) routed to USER SIGNAL 25L/26R, itself routed as a single stereo pair into channel 9.  

 

     

 

  



 
 
 
 

©Patrick-Gilles Maillot 231 WING remote protocols – V 3.0.6-27 
 
 
 

 

USER PATCH has  the advantage of routing simplicity over USER SIGNAL. On the other hand, USER SIGNAL offers  
more signal processing or mixing capabilities over USER PATCH, to the expense of using intermediate Channels.  

 

  



 
 
 
 

©Patrick-Gilles Maillot 232 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: Shows, Scenes (Snaps, Snippets, Presets & Audio Clips) 

The WING desk has a high level of functionality to manage saving and restoring Shows, Snaps, Snippets and 
Presets, or Scenes. 

Shows 
A key feature in digital consoles is their ability to save and restore state (in different forms) to easily change 
from one set to another, or save work for later use. This helps maximize the use of the desk in situations 
where several bands share the same console, or in recording studios where saving console state is a must 
have for effectively managing recordings and customer data. 
 
For WING, a Show is typically a collection of up to 1000 Scenes. Show files contain references to Scene entities, 
and not a copy of the actual data. 
 
Shows can be managed directly from the WING screen via the LIBRARY button or using MIDI commands (see 
below). One can create a Show, open, or delete it. There can be only a single active Show at any time. 
Snaps, Snippets, FX or Channel Presets or Audio Clips can be added to the current Show, they can also be 
re-organized using the options provided in the LIBRARY section. When added to a Show file, they are 
referenced as Scenes. 
 
Users can ‘navigate’ up and down [i.e. loading Scenes] in the current Show using the Show Control buttons 
dedicated to that effect [GO, NEXT, PREV, GONEXT109, GOPREV110], OSC or MIDI commands, or wapi calls. Some of 
the Show items can also be marked as ‘skip’ for a quick avoiding loading them during navigation. Show items 
can also be marked with a ‘link’ tag to enable simultaneous loading of multiple items during navigation. 
 
Please refer to the Behringer documents on how to use Shows111. When loading a Scene by mistake, the 
RESTORE button can be used to return to previous console state. 

Scenes 
A Scene can represent anything used in a Show. It can refer to a Snap, a Snippet, a Channel or FX Preset or an 
Audio Clip, or a combination thereof. Each single entry in a Show file is a separate Scene that can be loaded 
using the LIBRARY navigation options.  
Scene names can be built in two parts, separated with a ‘~’ character (like in “SnapName~Explanation” and be 
displayed on two lines, with the part left of the ‘~’ char being in large font letters and the part right of the ‘~’ 
char displayed as a second line in smaller characters. This can be handy for adding explanation or use for the 
Scene element to name (see below). 
 

 

 
109 GONEXT means Go to Next item, i.e. the next item is first pointed to and a GO command is then executed. 
110 GOPREV means Go to Previous item, i.e. the previous item is first pointed to and a GO command is then executed 
111 Available at: https://mediadl.musictribe.com/download/software/behringer/WING/WING_Firmware_1.13_GUI-Description.pdf 



 
 
 
 

©Patrick-Gilles Maillot 233 WING remote protocols – V 3.0.6-27 
 
 
 

Snaps (& Scopes) 
A Snap file contains the full set of WING parameters, optionally associated with Scopes that list the set of 
parameters of interest at the time the Snap was created, thus limiting the effect of loading a Snap file to a 
subset of parameters selected with the Scope.  
Scopes can be changed at load time if needed. They can also be modified as needed and saved. Scopes will 
apply at the time the Snap file is loaded.  
Snap files are very important in for WING users as they are the simplest way to save their work (i.e. the full 
state of the console) under a single file.  
 
There may be differences though if saving a Snap file on a WING and then loading it on a different type of 
WING (Standard vs. Compact vs. Rack); Main differences are with the use of USER Layers and CC definitions 
where there are obvious differences between the 3 WING console types. One has to assume USER layers and 
CC definitions are save for a particular type of WING and will not show up on a different one;  
Note that they will be ignored, not erased or overwritten; So for example, a Snap file saved with Standard 
WING layers can be loaded onto a WING Rack where new Layers definitions can be added and saved again as 
a new Snap file which then will be valid on both types of consoles. 

Snippets 
A Snippet file allows recording of any WING parameter changes as well as manually adding/removing of 
parameters using the LIBRARY buttons ADD ITEMS and REMOVE ITEMS.  

 REC FOCUS defines which parameters are observed during REC active. 
 LOAD FOCUS allows loading a parameter set from any existing snippet. 
 When a snippet is saved or updated, the current values of all parameters (in FOCUS) are written to the 

file and cannot be changed once recorded to INT or USB file. 

Presets 
A Preset file allows recording of WING parameters specifically targeting FX or Channel attributes. 

 FX and CHANNEL Presets  
o Presets contain target FX slot(s) and target channel/scope information; When used within a 

Show, the Preset data is instantiated within the Show as a Scene, and the same Preset can be 
used to load different FX engines / channels (with different scope). After adding a Preset to a 
Show, just change settings and click UPDATE SCENE (don't forget to save the show). 

o If you set the target FX slot of a Channel Preset (one of the inserts) to NONE, the insert is 
switched off when loading the Preset. 

o Premium effects can only be loaded into FX engines 1-8. 
 

 CHANNEL Presets 
o Gain and Phantom power status which are part of the source associated to the channel used to 

create the preset are saved with the Presets, but are not loaded by default when applying 
the preset to another channel; You will have to enable/select the “conn” setting box (see red 
arrow below) to ensure Gain and Phantom power are restored; This will also affect the source 
to the destination channel. 



 
 
 
 

©Patrick-Gilles Maillot 234 WING remote protocols – V 3.0.6-27 
 
 
 

  

o If you set the target FX slot of a Channel Preset (one of the inserts) to NONE, the insert is 
switched off when loading the Preset. 

o Presets can contain insert effect data; Care must be taken when loading them, as effect 
engines might be used in other Channels. 

o Channel/Aux/Bus/Main/Matrix Presets can only be loaded into corresponding Channel of 
course. 

o Bus Presets contain Channel feeds into the bus (FEED scope). 
 

 Old ROUTING Presets can be loaded as Snapshots (scope is set accordingly). For new routing Presets, 
just use Snapshots and use Scope to limit loading to routing parameters only. 

Audio Clips 
WING Show control enables using Audio Clips as Scene entities. One can therefore include a reference to a 
.wav file from a USB stick or stored in WING’s internal file system as a Scene that can be part of a Show file. 
Library navigation functions can be used to launch (load) Audio Clips that are part of a Show as they do for any 
other Scene entity. 
 

Controlling Scenes and Shows via CC buttons 
When part of a Show, Scenes can be loaded using CC buttons, rather than using the console Show control 
commands [GO, NEXT, PREV, GONEXT, GOPREV]. To achieve this, one must first assign a tag to Scene elements that 
will be controlled using a CC button, using the EDIT TAG button under the SHOW screen, and assign a tag 
beginning with “#” and followed with a number. When going to the CC controls, navigating to function SCENE 
RECALL, it is possible to select a SCENE TAG corresponding to the tag assigned to the Scene to load. 
Be aware loading a Scene can overwrite CC buttons, and therefore you must protect them from being 
overwritten, either by unselecting CC in the Scene Scope (if applicable) or with using Global Safes to ensure 
the CC area is left untouched when loading Show items. 
Also, jumping to a Scene using a CC will affect the order of your items a Show currently points to as you will 
effectively ‘jump’ to that Scene in the Show. I.e. if you for example have Scenes 1, 2, 3 and 4 in a Show and are 
currently at Scene 1, using the GO button to move from Scene to Scene. Using a CC to load Scene 3 will have the 
same effect as skipping Scene 2 and directly go to Scene 3, and your current Show element will be Scene 3 
with a GO command moving to Scene 4. 

  



 
 
 
 

©Patrick-Gilles Maillot 235 WING remote protocols – V 3.0.6-27 
 
 
 

Controlling Scenes and Shows via MIDI 
As mentioned in the MIDI chapter earlier in this document, Scenes and Show control can be managed using 
MIDI commands sent to MIDI channels 7, 8 and 9 as below: 
 
MIDI Scene Change (on MIDI Ch 7): 

CH7 CC0 (bank MSB), CH7 PC 1..128 → Scene 
number 1..128 on bank MSB 0, number 
129..256 on bank MSB 1, etc. 

B60000..B60008, C600..C67F 
 
 

 
 
MIDI Show Control (on MIDI Ch 8 & Ch 9): 

CH8 CC0 (bank MSB), CH8 PC 1..128 → Scene 
tag #1..#128 on bank MSB 0, tag #129..#256 on 
bank MSB 1, etc. 
 
CH9 PC 1→ Scene GO 
CH9 PC 2→ Scene PREV 
CH9 PC 3→ Scene NEXT 
CH9 PC 4→ Scene GO PREV 
CH9 PC 5→ Scene GO NEXT 

B70000..B7007F, C700..C77F 
 
 
 
C800 
C801 
C802 
C803 
C804 

 

LIBRARY items/scenes can be recalled by their number with MIDI Patch Change commands (including Bank MSB 
when > 128) on MIDI Ch7 with SETUP→MIDI REMOTE CONTROL→SCENE CHANGE enabled. As a result, one can 
address 128 Scenes by their number using Patch Change on MIDI Ch7, and all 1000 Scene numbers above 129 
via Bank/Patch Change on MIDI Ch7. 

The use of Ch7 Bank MSB (to select scene numbers > 128) is only valid when more than 128 
scenes are present/included in an active show. When less than 128 scenes are present, any 
combination/value of ch7 Bank MSB will revert to selecting scene numbers 1..128. 

Therefore, and unless using a pure sequential recall of scenes with GONEXT/GOPREV in a Show, scene tags can 
provide a better option for ensuring the right scene/item is selected/recalled. 

Item Tags 
Scenes can be ‘tagged’, providing alternative MIDI or CC button recall options. Tags work as follows: 

 A tag can be added to any Library item (Scene, Snip, Clip, Presets or Audio Clip) from the 
LIBRARY→SWOW screen. 
 

 LIBRARY items/scenes can be recalled by their tag  #1 .. #128 [to match with MIDI data 0…0x7f] with 
MIDI patch change commands on MIDI Ch8 with SETUP→MIDI REMOTE CONTROL→SHOW CONTROL enabled, 
or with custom control buttons [using the SCENE RECALL setting for said buttons]. You can recall tags 
#1..#16384 using the combination BankChange[MSB only],PatchChange; For example, B70000C702 is 
targeting scene tag #3, B70001C700 is targeting scene tag #129, etc. 
 

 Scene tags are not necessarily in the same order scene numbers and offer an alternate and more 
secure method for recalling library items. 
 



 
 
 
 

©Patrick-Gilles Maillot 236 WING remote protocols – V 3.0.6-27 
 
 
 

 A same tag can be assigned to several Library items; In that case, WING doesn’t check for 
exclusiveness of tags and the first one found in the list of Library items wins. 
 

Arbitrary MIDI data  

Additionally, you can add/send arbitrary MIDI data with each Scene recall (use hexadecimal notation, 
separator is optional, i.e. C002 or B0,01,7F). This arbitrary MIDI data can be saved with an empty Snippet, 
enabling a very flexible control of external MIDI devices directly from the console. This is achieved with using 
the SEND MIDI button under the LIBRARY→SHOW screen, and enter arbitrary MIDI data in the EDIT MIDI TEXT 
STRING window that opens on the console screen. 

  



 
 
 
 

©Patrick-Gilles Maillot 237 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: Scopes and Safes 
Scopes are specific indicators that are used to focus (or restrict) an operation on certain parameter sets of the 
console when dealing with Scenes or at INITIALIZE CONSOLE time.  
 
Safes are specific indicators that are used to prevent the modification of selected parameter sets of the 
console when dealing with Scenes 

Library Scopes112 
When editing scopes during a Library action, a list of icons displays on the screen as shown below:  
 

 
 
Most of them are explicit, but some (listed below) regroup several items or parameters under a single icon 
that can be selected or un-selected depending on the scope edit or recall operation the user wants to 
perform. The paragraphs below list the different parameters that are covered by these icons. 

CONTENTS Scopes (orange Icons)  
CUST: Icon / Name / Color / Light on, off  
TAGS: Custom Tags / DCA, Mute, Talk Tags  
CONN: Source A, B / Main, Alt Status / Input Select Status  
             (No source Mute or Mono-Stereo-MS)  
IN: Trim / Balance / Phase flip  
FILTER: LPF / HPF / TILT (Max, AP90, AP180) with all settings  
DELAY: On, Off Status / Delay Time  
GATE: All settings of the gate (Type / Settings / Side chain …)  
DYN: All settings of the dynamic (Type / Settings / Sidechain …)  
PRE: Assignment of the FX Plugin (without FX settings)  
POST: Assignment of the FX Plugin (without settings), Automix Settings (X, Y, Amount)  
EQ: All settings of the EQ (including type of EQ bands), TAP EQ Settings in Bus Sends  
PAN: Pan and Width Settings  
MAIN[1..4]: Levels/ On, Off Settings / Pre, Post Settings  

 
112 Many thanks to Andy Lauer for providing these details. 



 
 
 
 

©Patrick-Gilles Maillot 238 WING remote protocols – V 3.0.6-27 
 
 
 

SEND[Bus 1..16, Mtx 1..8]: Levels / Pan Settings / All status (On, Off / Mode Link / Send Pan / Send Mute / 
Mode)  

FDR: Fader Levels  
MUTE: Channel Mutes (no Source Mute)  
CONFIG: Process Order / Tap Point / Solo Bus Status 
 

CONFIGURATION Scopes (blue icons)  
CONFIG 
Monitor Page - Monitor Control: Mute Status, Output Status  
Monitor Page - Talkback: – Talk Channel Assign, All Talkback Preferences  
Monitor Page – Monitor A and B: All settings and Align options (Delay / EQ / Invert)  
Setup – Audio: Main Link, DCA Mutegroups, Startup Main Mute, Automix X - Y 

(enable status), Solo Mode, Channel Solo, Bus Solo, Main Solo, Matrix Solo, 
Source Solo  

Setup – Surface: Main Meter Dropdown, Main Meter Tap, Show Source On Scribble  
SD Card: All settings except “Link Status”  
RTA: Range, Decay, Detector, Autogain on/off, Fixed gain value  
 

SFC 
Setup – Audio: Mutegroup/SIP Override, Exclusive Solo, Solo Follows Select, Select Follows Solo, BUS/MAIN 

SoF Activates Solo  
Setup – Surface: All The “Lights” settings, Full Fader Paging, Channel Meters, Bus Meters, Main Meters, Matrix 

Meters, DCA Meters, Screen Follows Ch Strip, Ch Autoselect, User Layer Link, Use F1- F3 As Custom 
Controls, Right Section Sends On Fader, SOF Button, Show SOF Frame, Alternative SOF Mode, Sel Dbl 
Click  

 

PREFS 
Setup – General: Show Meter Page When Locked, Use CRSR/WHEEL For Parameters, Touch Fader Select, 

Touch Fader Res, Mouse Disables Touch, Mouse Speed value  
Setup – Surface: Tap Tempo Flash, Fader Speed  
Setup – Remote: Complete Midi Remote Control  
Setup – DAW: All DAW Settings  
 

L, C, R, CC, CMPCT, RCK, EXT, VRT 
Refer to layers in the console. Some are specific to the Compact and Rack models.  
CC refers to the Custom Controls that can be edited in your console. 
 
 

Not Saved in Snapshots: 
Monitor Page – Monitor Control: DIM and MONO Button, TALK A and TALK B Button  
Setup – General: Console Name, Time Date, USB Host Speed, Confirm Library Load, Confirm Library Update  
Setup – Audio: Audio Clock (Rate and Sync Source dropdowns), “INPUT SELECT” switch status, Startup Main 

Mute, Global Input Select Override, USB AUDIO (In/Out dropdown)  



 
 
 
 

©Patrick-Gilles Maillot 239 WING remote protocols – V 3.0.6-27 
 
 
 

Setup-Remote: HA Remote (All settings), Network Settings (dropdown incl. addresses), Remote Lock (OSC / 
TCP)  

4 Track Recorder: Settings (2/4 Ch – 16/24 Bit)  
SD-Card: Link Status  



 
 
 
 

©Patrick-Gilles Maillot 240 WING remote protocols – V 3.0.6-27 
 
 
 

Console Init Scopes113 
In the INIT screen, a screen (like the Library Scopes one) will display the following, along with a large INIT 
button. 

 
 
the following settings/parameters will only be initialized/“recalled” if you initialize the desk with ALL 
parameters/settings selected. If anything is taken out of the initialization scope the settings below won’t be 
initialized. 

Clock rate and (sync) source 
Global input select 
USB Audio channel configuration 
Startup main mute 
Global input select override 
HA Remote settings 
The OSC Setting in Setup -> Remote -> Remote Lock 
The DAW control preset. 
 
 

The following settings will never be initialized/“recalled”. 
Console Name 
USB Host Speed 
Clock 
Everything in Setup -> Remote -> Network (IP Adress etc.) 
The TCP Setting in Setup -> Remote -> Remote Lock 
Talk, Headphone and Monitor level (physical knobs on the surface) 
Monitor Mono and Dim (physical buttons on the surface) 
Talk A and Talk B on/off (physical buttons on the surface) 
Everything in the Library 

 

  

 
113 From @sinste on the https://behringer.world forum 



 
 
 
 

©Patrick-Gilles Maillot 241 WING remote protocols – V 3.0.6-27 
 
 
 

Global Safes 
At the top right of the “LIBRARY” screen, is a sign that can take one of the two following icons/colors: 

 
, or , depending on the contents of the referring page. This is used for Global Safes. 
 

 
 
 
Global Safes are a series of parameter 
indicators that are used to prevent the 
modification of the values of the 
respective console parameters. They are 
listed as a screen of icons as shown on 
the right:  
 
They are grouped under classes such as 
“CHANNEL”, “AUX”, “BUS”, “MAIN”, 
“MATRIX”, “SOURCE”, “OUTPUT”, “DCA”, 
“MUTEGROUP”, “FX”, and “CONFIGURATION” 
 
 
When clicking on a parameter indicator, it will turn red and change the state/color of the Global Safes logo on 
top of the screen, reminding you that at least one Global Safe is engaged. 
 
Each parameter indicator represents all the parameters belonging to a CHANNEL, an AUX, ..., or an FX. Some 
indicators will represent a set of configuration parameters, such as CONFIG, SURFACE, …, CC [Custom Controls]. 
 
When selected [RED], they will prevent the update/modification of their respective section when executing a 
scene LOAD operation (snap or snip), or one of the GO functions. As a result, Global Safes are a great way to 
protect certain sections of your console while running a show and using the Show functions of the console. 
 
Note that the RESTORE (in LIBRARY) and INITIALIZE CONSOLE (in SETUP) functions do not take Global Safes into 
account and will modify/re-initialize them. 

  



 
 
 
 

©Patrick-Gilles Maillot 242 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: WING Startup Control 

During startup, the console will automatically load a Show, Snapshot or Snippet with the following name when 
placed in a folder called STARTUP in the root of the internal data partition. This can be bypassed when holding 
the LIBRARY button during power up. Files have to start with the letters “STARTUP”, such as 

o STARTUP.show, or STARTUP_myfile.show for ex. 
o STARTUP.snap, or STARTUP_myfile.snap for ex. 
o STARTUP.snip, or STARTUP_myfile.snip for ex. 

  



 
 
 
 

©Patrick-Gilles Maillot 243 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: MIDI DAW mode for REAPER Control Surface Use 
 
This section is not directly related to programming, but can prove useful when it comes to using WING in a 
studio, with REAPER™ as a companion DAW software. 
The simplest and most complete way to connect all elements together is to use MIDI over USB, MCU mode. 
This will not only provide a link for REAPER’s audio to be sent to WING for audio processing, but will also 
enable several MIDI channels that can be called for using WING as a control surface and transport controls for 
REAPER. 
To achieve this, you will first make sure you have a USB connection between your WING and PC. 
You can at any time flip between WING controls and MIDI DAW control using the DAW Remote Control button 
circled in red below and situated left of the group of 8 buttons above the Jog Wheel: 
 

 
 
 
Shown above: the DAW Remote Control button, the Jog wheel, and the 4 directional keys mentioned in the 
coming pages.  



 
 
 
 

©Patrick-Gilles Maillot 244 WING remote protocols – V 3.0.6-27 
 
 
 

REAPER Audio Setup 
You then adjust REAPER ASIO interface (and WING setup) to get ASIO channels for audio. The routing on your 
WING must map USB Inputs to your channel strips. Faders for channel strips should be ideally set to 0dB. Main 
strip fader should for the time being be set to -oo. 
The figure below shows an example for a 16 in/16 out ASIO setup (Options→Preferences→Audio→Device). 
 

 

MIDI 
MIDI includes two parts (besides the USB connection mentioned above). The first one is relative to setting 
WING as a DAW control surface, the second one relates to transport controls. 
REAPER DAW control surface is obtained through the SETUP→Remote screen. In the left part of the screen, you 
will choose USB MIDI and MCU+2xExtenders for a full 24 strips DAW control.  

WING MIDI setup 
See below the corresponding WING setup screen which can be set from the SETUP->REMOTE WING screen. We 
show here the setup for using a full 24 WING channel strips for MIDI remote control of REAPER, using the 
MCU + 2 distinct extenders over USB MIDI. You can limit the surface to the controller or controller + 1 
extender. 



 
 
 
 

©Patrick-Gilles Maillot 245 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
Transport controls proposed here include REW, Fast Forward, Stop/Play/Pause, Scrub, Jog Wheel and more, 
directly from the lower section of the WING controls. A simple/classic example of implementation is shown 
below and the setup of these functions is performed after pressing the WING controls’ View button and 
assigning keys one by one using the WING main LCD screen.  
 

 
 
Once modified, the custom transport button layouts can be saved as WING presets. A simple REAPER Control 
Surface preset is available for download at 
https://drive.google.com/file/d/1WpAKkxgASSe-X6bIlRm5-7QDyxriDRuR/view?usp=drive_link, resulting in the 
following “DAW LAYER 2” Control Section assignments114: 
 

 
 

114 The 3 other layers, and the rest of the console settings, are left untouched 



 
 
 
 

©Patrick-Gilles Maillot 246 WING remote protocols – V 3.0.6-27 
 
 
 

 

REAPER MIDI setup 
REAPER needs a few simple MIDI settings to correctly enable WING acting as DAW control surface.  
When USB is connected, 4 WING MIDI devices appear in the REAPER MIDI devices panel, accessible under 
Options→Preferences→Audio→MIDI Devices. The MIDI ID values are managed by REAPER, but can be set as 
needed, making sure active/enabled device numbers don’t duplicate from one active MIDI device to another. 
This is shown below: 
 

 
 
In the case of DAW control use, all WING MIDI devices above must remain <disabled> in the REAPER MIDI 
Devices panel to be used as a control surface communication MIDI device; REAPER will report errors 
otherwise. 
 
Remember we have setup WING as USB/MIDI, MCU+2xExtenders to cover three times 8 faders, so the full set of 
channel strips of WING can be used as surface control strips for REAPER. 
In the REAPER control Surface panel (Options→Preferences→Conrol/OSC/Web), you will need to add three 
separate MCU controllers, the first one is a Mackie Control Universal device. Controllers 2 and 3 are Mackie 
Control Extender devices. Each device will connect to a WING MIDI remote device [1, 2, 3] respectively, 
ensuring the surface offset parameter is set accordingly to its respective WING group of 8 channel strips. 
The 4 figures below show an example of REAPER MIDI setup115. 
 

 
115 Note that you may have more than one set of WING MIDI remote control, 1, 2, and 3 showing depending on your configuration, or 
depending on the system state at last reboot or MIDI drivers enable state. 



 
 
 
 

©Patrick-Gilles Maillot 247 WING remote protocols – V 3.0.6-27 
 
 
 

   
 
Note the “Surface offset” changes as we set MCU, MCE #1 and MCE #2 

 
 

 
 
         : If the “ignore global bank offsets” flags are not checked in the REAPER MIDI surface control setup 

panels above, using the  and  WING buttons will enable you to navigate left and right in the REAPER 
tracks if more than 24 REAPER tracks are available.  
The current global start index is shown at the top left of the DAW transport scribbles (‘01” circled in red 
below) 
 

   



 
 
 
 

©Patrick-Gilles Maillot 248 WING remote protocols – V 3.0.6-27 
 
 
 

 
 

One last setting in REAPER consists in setting the fader scale to values matching WING -144dB→10dB faders. 
This can be done in the Options→Preferences→Track Control Settings panel by setting the min Volume fader 
to -144dB, the max to +10dB and selecting a shape type of Default, as presented below: 
 

 
 
With the settings above, and WING DAW mode setup to USB MIDI, MUC+2xExtenders, you now have a 24 
channel strips DAW surface control to manage REAPER tracks (Volume, Solo, Select, Mute) from your WING, 
and vice-versa (i.e. changes made on a surface (WING or REAPER) will reflect on the other);  
REAPER tracks’ Pan control can be achieved using the 4 rotary knobs in the WING control zone, situated just 
below the “Custom Controls” silkscreened text.  
The UP and DOWN buttons on the left of the control zone can be used to navigate within REAPER strips as they 
are mapped to the WING surface strips. 
 
REAPER tracks Rec/arm is possible using the buttons from the lower row of buttons in the WING control zone. 
The picture below shows Bass and A_Guit being armed for recording: 
 



 
 
 
 

©Patrick-Gilles Maillot 249 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
The 4 directional keys located on the left of the Jog wheel will navigate into the REAPER audio window (i.e. 
identical to moving the audio window elevators).  
The WING Jog wheel will move the REAPER audio cursor left and right (sometimes with a slight lag), and if the 
Play and Scrub buttons are simultaneously active, moving the wheel will scrub through audio after a small 
timeout not moving the wheel. 
 

            
 
Flip to the WING audio standard controls and move the WING Main fader(s) to get some audio out, remember 
all other active USB inputs should be set at 0dB.  
Flipping back to DAW Remote mode and press the Play button. REAPER will start playing audio; the audio signal 
will flow to WING using USB/ASIO drivers, and will be managed by the WING audio engines. The faders on 
WING (in control surface mode) act as remote controls to REAPER track faders (and vice-versa) using USB 
MIDI.  
All set! 
 

Important note on USB & MIDI: Changing the clock rate or number of USB Audio channels on WING causes 
USB to disconnect for a few seconds (including MIDI). On certain operating systems, this may also reset 
already active MIDI connections. This could happen when loading snapshots with different clock rate or USB 
Audio configuration. 

Pan indication 
 
Pan control 
 
 
 
Rec/arm 
 



 
 
 
 

©Patrick-Gilles Maillot 250 WING remote protocols – V 3.0.6-27 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 251 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: WING Icons 
The table below gives the list of icons available with WING. Icon number ranges are listed to the right of the 
icons. 
 

 

General:  
[0…14] 

  

 

Vocals and Mics: 
[100…114] 

  

 

Drums and Percussions: 
[200…224] 

  

 

Strings and Winds: 
[300…319] 

  



 
 
 
 

©Patrick-Gilles Maillot 252 WING remote protocols – V 3.0.6-27 
 
 
 

 

Keys: 
[400…409] 

  

 

Speakers: 
[500…524] 

  

 

Specials: 
[600…614] 

  



 
 
 
 

©Patrick-Gilles Maillot 253 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: WING Colors 
 
WING colors are used in several areas such as channel strip color, scribble color, etc. The known colors are 
shown below and indexed as values 1 to 12: 

 
   1       2       3       4       5       6       7       8       9      10      11     12 
 

1 gray blue 
2 medium blue 
3 dark blue 
4 turquoise 
5 green 
6 olive green 
7 yellow 
8 orange 
9 red 
10 coral 
11 pink 
12 mauve 

 
 
 
 

  



 
 
 
 

©Patrick-Gilles Maillot 254 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: WING GPIOs: 

Description 
The WING digital mixing console is offering 4 GPIOs (General Purpose Input/Output)116 which can be very 
useful in the studio or live situations. This paragraph shows how to use them in different modes. Let’s look at 
what GPIOs can offer. 
 
At the rear of the console, two TRS jack sockets provide connections to 4 GPIOS.  Each of the TRS sockets is 
depicted below. Lug L3 is common to the 2 GPIOs supported by each socket. Lugs L1 and L2 are respectively 
used for GPIO 1 or A, 2 or B or 3 or C, 4 or D, depending on the socket used. 
 
 

 
 
 
WING GPIO ‘mode’ settings can be any of the following: TGLNO, TGLNC, INNO, INNC, OUTNO, OUTNC. These are 
represented by OSC patterns /$ctl/gpio/1..4/mode, and correspond to: 
 

TGLNO Toggle, Normally Opened 
TGLNC Toggle, Normally Closed 
INNO  Input, Normally Opened 
INNC Input, Normally Closed 
OUTNO  Output, Normally Opened 
OUTNC Output, Normally Closed 

 
WING GPIO ‘state’ values can be 0 for open/OFF (light off), or 1 for close/ON (light on). These correspond to 
OSC patterns /$ctl/gpio/1..4/gpstate. 
 
 

Electrical connections 
 

 INNO / INNC: The console provides approx. 5V between A/B/C/D and Common. The application of a 
short, dropping voltage to 0V will change the state of the respective GPIO between open and close, 
depending on the NO/NC mode. 

 
 OUTNO / OUTNC: The console provides approx. 5V between A/B/C/D and Common; The voltage 

presented by the console goes from near 5V to 0V depending on the state (open or close) and the 
NO/NC mode of the respective GPIO. 

 

 
116 2 GPIOs for the Compact model. 

L1 / 1-A / 3-C 

L2 / 2-B / 4-D 
L3 / Common 2 

1 
4 

3 GPIO numbers 



 
 
 
 

©Patrick-Gilles Maillot 255 WING remote protocols – V 3.0.6-27 
 
 
 

 TGLNO / TGLNC: This is to toggle the internal state of the GPIO. The console provides approx.. 5V 
between A/B/C/D and Common; changing the state of the respective GPIO does not change the 
voltage provided by the console. 
 

 
As a general statement, care should be taken when connecting external devices to console. A partial circuit of 
GPIO implementation is shown here for reference: 
 

 
From the schematic above, we can see a 470 Ohm resistor in series with a diode and a 500mA poly-fuse going 
to the GPIO port. A max current of approx. 100mA is therefore available for connecting a small relay or an 
LED. TVS diode D70 protects against electrostatic discharge (ESD). 

Power-on delay 
Wing GPIOs can be set to provide a one-time Power-on delay of up to 30s that can be used with OUTNO / 
OUTNC modes. This can be quite useful when one needs to power sync external gear with the console.  
 
Note nevertheless GPIOs will always turn ON for a short period of time while powering on and booting up, 
before getting to their respective programmed state and a possible delay applies. 
 

GPIO precedence on USER/LAYER CC GPIO function 
The programming of GPIO takes precedence on a possible USER CC GPIO setup; If for example you have set 
GPIO 1/A to MODE OUT-NC and with a FLAG set to DELAY 10S for example, a further USER/LAYER CC button 
programming with FUNCTION set to GPIO will have no effect. If GPIO 1/A is programmed to MODE OUT-NC and 
has a FLAG set to A-TOGGLE or A-PUSH for example, then a further USER/LAYER CC button programming with 
FUNCTION set to GPIO will work when pressing the respective button as toggle or push, as programmed for 
the USER/LAYER CC button (i.e. GPIO 1/A can be FLAG A-TOGGLE and work as A-PUSH if the USER/LAYER CC 
button is set so GPIO 1/A can be FLAG A-PUSH and work as A-TOGGLE if the USER/LAYER CC button is set so). 



 
 
 
 

©Patrick-Gilles Maillot 256 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
 
 
 

Multiple, simultaneous actions, using GPIOs 
Thanks to a clever use of GPIOs, it is possible to manage simultaneous or temporary/fugitive actions on WING 
and without the help from external applications117, by assigning different actions to separate GPIOs, and then 
electrically attach said GPIOs to a single switch. When actioning the switch, the multiple GPIOs will become 
active or unactive (depending on their individual setting) and will carry on with their attached action on WING. 
Using this, it is possible from a single footswitch to load up to 4 separate snippets, or to mute a set of 
channels while unmuting others, or any combination that will help you in your mixing routines.  
There are drawbacks though, such as the limit to the number of simultaneous actions that can be achieved 
and the impossibility to set two actions (one for ON state and a different one for OFF state) per GPIO. 
  

 
117 wcc or wxfade (https://x32ram.com/products) are example of applications that enable multiple simultaneous or 
temporary/fugitive actions, from a CC button/encoder, MIDI command, or GPIO. 



 
 
 
 

©Patrick-Gilles Maillot 257 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: W-Live/SD card Sessions 

Recording data format 
The SD-card recording format is optimized for write speed ensuring long 32 channel recordings of 48 kHz / 32-
bit PCM data, with minimal risk for audio drop-outs on a large variety of SD or SDHC cards. Class-10 cards 
(guaranteed 10MB/s write speed) are recommended. 
 
To achieve optimum write performance, all tracks (8, 16 or 32) are written into a single file. The file format is 
32-bit PCM multi-channel WAV. The supported card file system is FAT32 (royalty free) thus limiting file sizes to 
4GB. 
 
Recording 32 tracks of 48 kHz uncompressed 32-bit audio requires 360MB of memory/storage per minute. 
Hence, a 4GB file will hold less than 11.9 minutes at maximum audio bitrate, taking into account the necessary 
file header. To allow for longer consistent recording time, WING creates a so-called Session (i.e. a folder) 
containing one or more files (or takes), each file being up to 4GB in size. 
 
Separating recorded sessions into individual wave files, or creating individual audio stems for playback require 
the use of external utilities118 or can be managed directly from most DAW software (for separating sessions 
info individual files). 
 

Session name coding 
Recording a session on an SD card with WING will automatically create a subfolder underneath "X-LIVE", 
named by the 32-bit timestamp of the recording start as an 8-character hex-string, e.g. "4ACE72B1". The 
Console will read the folder name and display the corresponding timestamp as the session name, unless it was 
given another name (see below). 
 
Session name (a timestamp) coding is done on 32 bits, and is represented by a string of 8 hexadecimal 
characters. The format “Year-Month-Day-Hour-Minute-Second” is detailed below: 
 

Y Y Y Y Y Y Y M M M M D D D D D h h h h h m m m m m m s s s s s 
               31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

 
Years are counted starting at 1980 
Seconds are divided by 2 
 

 
118 Live Sessions (https://www.behringer.com/product.html?modelCode=0603-AEN) in the software downloads,  
Live2Wav and Wav2Live (https://sites.google.com/site/patrickmaillot/x-m-w-live), 
or Wave Agent (https://www.sounddevices.com/product/wave-agent-software/) are applications that provide both ways conversions. 
Live SD Splitter (https://sites.google.com/view/x32-stuff-here/home) provides splitting capability. 
 



 
 
 
 

©Patrick-Gilles Maillot 258 WING remote protocols – V 3.0.6-27 
 
 
 

Naming  & sorting your existing sessions 
Unless you rename them or give them a user-friendly name, your recorded sessions will only display their 
creation date and the number of channels the recording is made of. 

You can rename or provide a user-friendly name to your recorded sessions with using the  option on the 
WING SD card screen. This information is saved in the SE_LOG.BIN file in the session directory and will not 
change the session name per-se; It is used by WING to correctly display your recording name.  
 
WING sessions are displayed and sorted by their creation date; You can change/set the order in which your 
recorded sessions will display by renaming your sessions using a PC for example, abut you must respect the 
hexadecimal format used for session naming.  
 
The pictures below show the effect of changing the name of WING sessions on the displaying order of these.  
 

 
 
 
By renaming Session 503B9F61 into 54214F4C, we change the timestamp change for “CC Mr Jones”, resulting 
in a change in the songs displaying order: 
 



 
 
 
 

©Patrick-Gilles Maillot 259 WING remote protocols – V 3.0.6-27 
 
 
 

 
 
 
While effective, the above implies recoding timestamps and results in the loss of the original timestamp for 
your SD recordings. It may or may not fit with your needs, and using an external application119 for listing, 
playing or selecting SD sessions may be a better approach. 
  

 
119 Such as wplayer (https://sites.google.com/site/patrickmaillot/wing#h.asfjltealgzl) for example 



 
 
 
 

©Patrick-Gilles Maillot 260 WING remote protocols – V 3.0.6-27 
 
 
 

Working with Dante or WSG 
 
Wing offers the capability to use Dante or WSG for connecting to, routing, and transporting audio. 
 

 Dante is the product name for a combination of software, hardware, and network protocols that 
delivers uncompressed, multi-channel, low-latency digital audio over a standard Ethernet network 
using Layer 3 IP packets. Developed in 2006 by Audinate, Dante builds on previous audio over 
Ethernet and audio over IP technologies.120 

 
 WSG (Wave SoundGrid) is a networking and processing platform audio application made by Waves 

Audio and developed in cooperation with DiGiCo. It consists of a Linux-based server that runs the 
SoundGrid environment, compatible plug-ins, a Mac or Windows control computer, and an audio 
interface for input/output (I/O). It provides a low-latency environment for audio processing on certain 
hardware audio mixing consoles.121 

 
Wing add-on options can be an extension card (W-DANTE) that replaces the standard SD card, or an internal 
module (Dante or WSG) that can be directly installed in a dedicated module slot on the main motherboard of 
the console; While it is recommended to have this operation performed by a trained technician, end-users 
can perform the installation of an internal module if carefully following simple rules and steps shown in a 
Music Tribe video122. 
There is a clear advantage in using internal modules as these offer additional sources and routing options to 
the console without scarifying the SD recording/playing capabilities Wing offers out of the box. 
 
Dante or WSG offer a typical additional 64 INs and 64 OUTs to the console and opens routing and audio 
treatment capabilities to a very large set of devices proposed by many audio devices manufacturers. Please 
refer to the respective manufacturers’ websites for a complete list and audio management capabilities. 
 
Dante modules (card supported or internal) must have a FW that matches with the Wing’s internal FW, so it is 
important to keep your gear up to date. The unofficial Behringer.world123 forum has a wiki section on how to 
perform updates of the Dante modules. 
 
With the module or extension card installed, Wing offers more routing options to digital audio sources or 
destinations on an existing 1Gb/s network as part of its routing options under the DANTE or WSG icon. Please 
note it will likely be necessary to set the SETUP→AUDIO→AUDIO CLOCK Sync Source to the installed module so 
you ensure proper synchronization with other devices on the network. If not doing so, you will likely 
encounter issues in sending or receiving digital audio from and to the network. 
 
 
  

 
120 Source: Wikipedia 
121 Source: Wikipedia 
122 https://www.youtube.com/watch?v=B9z42_4HOp8 
123 https://behringer.world/wiki/doku.php?id=flash_wing_dante 
 



 
 
 
 

©Patrick-Gilles Maillot 261 WING remote protocols – V 3.0.6-27 
 
 
 

 

Appendix: MCU [DAW BUTTONS] commands list 

OSC MCU  action MIDI  
(port 4) 

 OSC MCU  action MIDI 
(port 4) 

T1 
T2 
T3 
T4 
T5 
T6 
T7 
T8 
T9 
T10 
T11 
T12 
T13 
T14 
T15 
T16 
T17 
T18 
T19 
T20 
N1 
N2 
N3 
N4 
N5 
N6 
N7 
N8 
N9 
A1 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
A10 
A11 
A12 
A13 
A14 
A15 
A16 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
V1 
V2 
V3 
V4 
V5 

STOP 
PLAY 
RECORD 
REWIND 
FAST FWD 
MARKER 
NUDGE 
CYCLE 
DROP 
REPLACE 
SCRUB 
SHUTTLE 
RETURN TO ZERO 
GO TO END 
IN 
OUT 
PRE 
POST 
ONLINE 
QUICK PUNCH 
UP (NAV) 
DOWN (NAV) 
LEFT (NAV) 
RIGHT (NAV) 
ZOOM 
BK < 
BK > 
CH < 
CH > 
TRACK (ASSIGN) 
SEND (ASSIGN) 
PAN (ASSIGN) 
PLUG-IN (ASSIGN) 
EQ (ASSIGN) 
INST (ASSIGN) 
SEND A (ASSIGN) 
SEND B (ASSIGN) 
SEND C (ASSIGN) 
SEND D (ASSIGN) 
SEND E (ASSIGN) 
INPUT (ASSIGN) 
OUTPUT (ASSIGN) 
ASSIGN (ASSIGN) 
SHIFT (ASSIGN) 
MUTE (ASSIGN) 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
GLOBAL (VIEW) 
MIDI (VIEW) 
INPUTS (VIEW) 
AUDIO TRACKS (VIEW) 
INSTRUMENT (VIEW) 

90, 5D, 7F/00 
90, 5E, 7F/00 
90, 5F, 7F/00 
90, 5B, 7F/00 
90, 5C, 7F/00 
90, 54, 7F/00 
90, 55, 7F/00 
90, 56, 7F/00 
90, 57, 7F/00 
90, 58, 7F/00 
90, 65, 7F/00 
 
 
 
 
 
 
 
 
 
90, 60, 7F/00 
90, 61, 7F/00 
90, 62, 7F/00 
90, 63, 7F/00 
90, 64, 7F/00 
90, 2E, 7F/00 
90, 2F, 7F/00 
90, 30, 7F/00 
90, 31, 7F/00 
90, 28, 7F/00 
90, 29, 7F/00 
90, 2A, 7F/00 
90, 2B, 7F/00 
90, 2C, 7F/00 
90, 2D, 7F/00 
 
 
 
 
 
 
 
 
 
 
90, 36, 7F/00 
90, 37, 7F/00 
90, 38, 7F/00 
90, 39, 7F/00 
90, 3A, 7F/00 
90, 3B, 7F/00 
90, 3C, 7F/00 
90, 3D, 7F/00 
90, 33, 7F/00 
90, 3E, 7F/00 
90, 3F, 7F/00 
90, 40, 7F/00 
90, 41, 7F/00 

 V7 
V8 
V9 
V10 
V11 
V12 
V13 
V14 
V15 
AU1 
AU2 
AU3 
AU4 
AU5 
AU6 
AU7 
AU8 
AU9 
AU10 
AU11 
AU12 
SY1 
SY2 
SY3 
SY4 
SY5 
SY6 
SY7 
SY8 
SY9 
SY10 
OT1 
OT2 
OT3 
OT4 
OT5 
OT6 
OT7 
OT8 
OT9 
OT10 
OT11 
OT12 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
SP1 
SP2 
SP3 
SP4 
SP5 

BUSES (VIEW) 
OUTPUTS (VIEW) 
USER (VIEW) 
MIX (VIEW) 
EDIT (VIEW) 
TRANSPORT (VIEW) 
MEM/LOC (VIEW) 
STATUS (VIEW) 
ALT (VIEW) 
READ/OFF (AUTOM) 
WRITE (AUTOM) 
TRIM (AUTOM) 
TOUCH (AUTOM) 
LATCH (AUTOM) 
OFF (AUTOM) 
FADER (AUTOM) 
PAN (AUTOM) 
MUTE (AUTOM) 
SEND (AUTOM) 
SEND MUTE (AUTOM) 
PLUG-IN (AUTOM) 
SHIFT 
OPTION 
CTRL 
ALT 
SAVE 
UNDO 
CANCEL 
ENTER 
EDIT MODE 
EDIT TOOL 
FLIP 
GROUP 
NAME/VALUE 
TIME/BEATS 
CLICK 
SOLO 
FOOTSW A 
FOOTSW B 
DEFAULT 
SUSPEND 
BYPASS 
RECRDY ALL 
CUT (EDIT) 
COPY (EDIT) 
PASTE (EDIT) 
SEPARATE (EDIT) 
CAPTURE (EDIT) 
DELETE (EDIT) 
ASSIGN (EDIT) 
COMPARE (EDIT) 
BYPASS (EDIT) 
INS/PARAM (EDIT) 
FADER TOUCH [MUTE] 
V-POT CTRL [SEL/SOLO] 
RECRDY CTRL [SEL] 
AUTO [SEL] 
V-SEL [SEL] 

90, 43, 7F/00 
90, 44, 7F/00 
90, 45, 7F/00 
 
 
 
 
 
 
90, 4A, 7F/00 
90, 4B, 7F/00 
90, 4C, 7F/00 
90, 4D, 7F/00 
90, 4E, 7F/00 
 
 
 
 
 
 
 
90, 46, 7F/00 
90, 47, 7F/00 
90, 48, 7F/00 
90, 49, 7F/00 
90, 50, 7F/00 
90, 51, 7F/00 
90, 52, 7F/00 
90, 53, 7F/00 
 
 
90, 32, 7F/00 
90, 4F, 7F/00 
90, 34, 7F/00 
90, 35, 7F/00 
90, 59, 7F/00 
90, 5A, 7F/00 
90, 66, 7F/00 
90, 67, 7F/00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 262 WING remote protocols – V 3.0.6-27 
 
 
 

V6 AUX (VIEW) 
 

90, 42, 7F/00 SP6 INSERT [SEL]  

 

Appendix: MCU [DAW V-POTS] commands list 

OSC MCU  action MIDI 
(port 4) 

 OSC MCU  action MIDI 
(port 4) 

M1P 
M2P 
M3P 
M4P 
M5P 
M6P 
M7P 
M8P 
E1P 
E2P 
E3P 
E4P 
E5P 
E6P 
E7P 
E8P 
E9P 
E10P 
E11P 
E12P 
E13P 
E14P 
E15P 
E16P 

V-POT M1 Push 
V-POT M2 Push 
V-POT M3 Push 
V-POT M4 Push 
V-POT M5 Push 
V-POT M6 Push 
V-POT M7 Push 
V-POT M8 Push 
V-POT EXT1 Push 
V-POT EXT2 Push 
V-POT EXT3 Push 
V-POT EXT4 Push 
V-POT EXT5 Push 
V-POT EXT6 Push 
V-POT EXT7 Push 
V-POT EXT8 Push 
V-POT EXT9 Push 
V-POT EXT10 Push 
V-POT EXT11 Push 
V-POT EXT12 Push 
V-POT EXT13 Push 
V-POT EXT14 Push 
V-POT EXT15 Push 
V-POT EXT16 Push 

90, 20, 7F/00 
90, 21, 7F/00 
90, 22, 7F/00 
90, 23, 7F/00 
90, 24, 7F/00 
90, 25, 7F/00 
90, 26, 7F/00 
90, 27, 7F/00 

 M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
JOG 

V-POT M1 
V-POT M2 
V-POT M3 
V-POT M4 
V-POT M5 
V-POT M6 
V-POT M7 
V-POT M8 
V-POT EXT1 
V-POT EXT2 
V-POT EXT3 
V-POT EXT4 
V-POT EXT5 
V-POT EXT6 
V-POT EXT7 
V-POT EXT8 
V-POT EXT9 
V-POT EXT10 
V-POT EXT11 
V-POT EXT12 
V-POT EXT13 
V-POT EXT14 
V-POT EXT15 
V-POT EXT16 
JOG WHEEL 

B0, 10, 01/41 
B0, 11, 01/41 
B0, 12, 01/41 
B0, 13, 01/41 
B0, 14, 01/41 
B0, 15, 01/41 
B0, 16, 01/41 
B0, 17, 01/41 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B0, 3C, 01/41 
 

  



 
 
 
 

©Patrick-Gilles Maillot 263 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: MCU [DAW REMOTE MCU] commands list 

OSC MCU  action MIDI (port 4) 
M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
E11 
E12 
E13 
E14 
E15 
E16 
JOG 

V-POT M1 
V-POT M2 
V-POT M3 
V-POT M4 
V-POT M5 
V-POT M6 
V-POT M7 
V-POT M8 
V-POT EXT1 
V-POT EXT2 
V-POT EXT3 
V-POT EXT4 
V-POT EXT5 
V-POT EXT6 
V-POT EXT7 
V-POT EXT8 
V-POT EXT9 
V-POT EXT10 
V-POT EXT11 
V-POT EXT12 
V-POT EXT13 
V-POT EXT14 
V-POT EXT15 
V-POT EXT16 
JOG WHEEL 

B0, 10, 01/41 
B0, 11, 01/41 
B0, 12, 01/41 
B0, 13, 01/41 
B0, 14, 01/41 
B0, 15, 01/41 
B0, 16, 01/41 
B0, 17, 01/41 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B0, 3C, 01/41 
 

 

  



 
 
 
 

©Patrick-Gilles Maillot 264 WING remote protocols – V 3.0.6-27 
 
 
 

Appendix: WING Snapshot and JSON Data Structure: 
A WING snapshot file (also called Snapfile when saved to a file) is organized as a collection of classes, 
sub-classes and objects regrouping attributes and values in logical groups. These can be represented as a 
hierarchical tree. A JSON124 notation is used to describe and store the hierarchical tree. 
A complete WING default snapfile is close to 800000 bytes and 33895 lines, containing a rather complex 
hierarchical list of more than 30000 object identifiers [WING parameters] and their associated values.  
A WING snapfile does not contain read-only objects; i.e. there are more parameters available than the ones 
listed/saved in a snapfile! 

Wing Snapfile 
A snapfile is divided in sections as shown below: 

 

   
 
ae_data and ce-data are representing WING Audio engine and Console Engine data 
ae_globals and ce-globals consist of global data affecting WING Audio and Console Engines 
 

Description 
description: This small section contains (as its name suggest) a description for the snapshot, including name, 
and elements corresponding to the WING that generated the snapshot. “created” lists the date and time of 
the creation of the snapfile, while “updated” will retain the date and time of the most recent update made to 
the file. 
 
 “type”: string, snapshot signature/version 
 “creator_fw”: string, FW used when creating the snapshot 
 “creator_sn”: string, Serial number of the WING the snapshot was created with 
 “creator_model”: string, Model of console 
 “creator_name”: string, Name given to the console 
 “created”: string, date time,  
 “active_show”: string, name of the currently opened show file 
 “active_scene”: string, name of the current, active scene 
 “updated”: string, date time,  
  

 
124 JavaScript Object Notation: an efficient way to represent structured objects. Also used as a data-interchange format. 



 
 
 
 

©Patrick-Gilles Maillot 265 WING remote protocols – V 3.0.6-27 
 
 
 

 

scopes 
scopes:  A large set of Boolean {‘+’,’ ’} values to list what has been ‘marked’ at snapshot time. This can be 
used as a reminder of the initial purpose of the snapshot.  
The scopes class contains the following objects: 
 

ch, aux, bus, main, mtx, dca, mute, fx, source, output, area, custom, setup, contents, mainsend, bussend;  
 
For example: 
 
  "scopes": { 
    "ch": "++++++++++++++++++++++++++++++++++++++++", 
    "aux": "++++++++", 
    "bus": "++++++++++++++++", 
    "main": "++++", 
    "mtx": "++++++++", 
    "dca": "++++++++++++++++", 
    "mute": "++++++++", 
    "fx": "++++++++++++++++", 
    "source": { 
      "LCL": "++++++++++++++++++++++++", 
      "AUX": "++++++++", 
      "A": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "B": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "C": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "SC": "++++++++++++++++++++++++++++++++", 
      "USB": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "CRD": "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", 
      "MOD": "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", 
      "PLAY": "++++", 
      "AES": "++", 
      "USR": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "OSC": "++" 
    }, 
    "output": { 
      "LCL": "++++++++", 
      "AUX": "++++++++", 
      "A": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "B": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "C": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "SC": "++++++++++++++++++++++++++++++++", 
      "USB": "++++++++++++++++++++++++++++++++++++++++++++++++", 
      "CRD": "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", 
      "MOD": "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", 
      "REC": "++++", 
      "AES": "++" 
    }, 
    "area": { 
      "LEFT": "+++++++++", 
      "CENTER": "+++++++++", 
      "RIGHT": "+++++++++" 
    }, 
    "custom": "++++++++++++++++++++++", 
    "setup": "+++", 
    "contents": "+++++++++++++++", 
    "mainsend": "++++", 
    "bussend": "++++++++++++++++++++++++" 
  }  



 
 
 
 

©Patrick-Gilles Maillot 266 WING remote protocols – V 3.0.6-27 
 
 
 

Scopes are not elements that can be programmed/changed. They are only set at snapshot time using the 
console main LCD. As mentioned above, they are optionally saved at save time to notify what was targeted for 
save/update. 



 
 
 
 

©Patrick-Gilles Maillot 267 WING remote protocols – V 3.0.6-27 
 
 
 

ae_data 
 
ae_data stands for “Audio Engine”, and regroups a rather large set of attributes and values aimed at 
registering all main settings of the WING audio engine, such as Routing, Channel EQ settings, FX parameter 
values, etc., as shown in the figure below: 
 

  
 
Expanding one (or any) of the blocks of parameters listed above will provide the respective WING parameters 
of that block, along with their value(s). Understanding what parameters are present in each block is a good 
way to better grasp and understand the vast range of capabilities WING offers. It is also a good way to 
envision the parameter list one can get and set using wapi (described earlier in this document) as the JSON 
structure parameters matches the tokens used by the API for wapi get() and set() functions. 
 
Indeed, all tokens related to the audio engine can be directly coded from the JSON description, for example, 
the C-like token notation for the JSON cfg.mon.1.pan element is named CFG_MON_1_PAN. 
 
We show in the following pages, the contents of the JSON tree structure after a console reset, so only default 
values are listed. In order to reduce the number of pages the JSON structure description would take; the 
following notation is used: 
 
“abc”: {},  means that “abc” uses the same structure definition as the previous  
member in the JSON file, and: 
 

“2”:{}…”n”: {},  means that objects “2” to “n” use the same structure definition as  
the previous member in the JSON file. 
 
"ae_data": { 
    "cfg": { 
      "mainlink": "OFF", 
      "dcamgrp": true, 
      "mon": { 
        "1": { 
          "inv": false, 
          "pan": 0, 
          "wid": 100, 
          "eq": { 
            "on": false, 
            "lsg": 0, 
            "lsf": 60.13883591, 
            "1g": 0, 
            "1f": 129.8763428, 



 
 
 
 

©Patrick-Gilles Maillot 268 WING remote protocols – V 3.0.6-27 
 
 
 

            "1q": 1.995881796, 
            "2g": 0, 
            "2f": 299.2471619, 
            "2q": 1.995881796, 
            "3g": 0, 
            "3f": 699.4875488, 
            "3q": 1.995881796, 
            "4g": 0, 
            "4f": 1499.78833, 
            "4q": 1.995881796, 
            "5g": 0, 
            "5f": 2992.470947, 
            "5q": 1.995881796, 
            "6g": 0, 
            "6f": 6013.883789, 
            "6q": 1.995881796, 
            "hsg": 0, 
            "hsf": 11999.27344 
          }, 
          "lim": 0, 
          "dly": { 
            "on": false, 
            "m": 0.100000001 
          }, 
          "dim": 20, 
          "pfldim": 12, 
          "eqbdtrim": 0, 
          "srclvl": 0, 
          "srcmix": -144, 
          "src": "MAIN.1", 
          "tags": "" 
        }, 
        "2": {}, 
      "solo": { 
        "mode": "LIVE", 
        "mon": "PH", 
        "mute": false, 
        "chtap": "PFL", 
        "bustap": "AFL", 
        "maintap": "PFL", 
        "mtxtap": "PFL", 
        "srcsolo": "OFF" 
      }, 
      "rta": { 
        "rtasrc": 0, 
        "rtatap": "IN", 
        "rtadecay": "MED", 
        "rtadet": "PEAK", 
        "rtarange": 30, 
        "rtagain": 0, 
        "rtaauto": true, 
        "eqdecay": "MED", 
        "eqdet": "PEAK", 
        "eqrange": 30, 
        "eqgain": 0, 
        "eqauto": true 
      }, 
      "mtr": { 
        "scopesrc": 0, 
        "scopetap": "IN", 
        "mtrsfc": { 
          "in": "PRE", 
          "bus": "POST", 



 
 
 
 

©Patrick-Gilles Maillot 269 WING remote protocols – V 3.0.6-27 
 
 
 

          "main": "POST", 
          "mtx": "POST", 
          "dca": "PRE" 
        }, 
        "mtrpage": { 
          "in": "PRE", 
          "bus": "POST", 
          "main": "POST", 
          "mtx": "POST", 
          "dca": "PRE" 
        }, 
        "mainmtr": "MAIN.1", 
        "mainpos": "AUTO" 
      }, 
      "talk": { 
        "assign": "OFF", 
        "A": { 
          "mode": "AUTO", 
          "mondim": 0, 
          "busdim": 0, 
          "indiv": false, 
          "B1": false, 
          "B2": false, 
          "B3": false, 
          "B4": false, 
          "B5": false, 
          "B6": false, 
          "B7": false, 
          "B8": false, 
          "B9": false, 
          "B10": false, 
          "B11": false, 
          "B12": false, 
          "B13": false, 
          "B14": false, 
          "B15": false, 
          "B16": false, 
          "MX1": false, 
          "MX2": false, 
          "MX3": false, 
          "MX4": false, 
          "MX5": false, 
          "MX6": false, 
          "MX7": false, 
          "MX8": false, 
          "M1": false, 
          "M2": false, 
          "M3": false, 
          "M4": false 
        }, 
        "B": {}, 
      "amix": { 
        "x": true, 
        "y": true 
      } 
    }, 
    "io": { 
      "altsw": false, 
      "autoaltovr": true, 
      "in": { 
        "LCL": { 
          "1": { 
            "mode": "M", 



 
 
 
 

©Patrick-Gilles Maillot 270 WING remote protocols – V 3.0.6-27 
 
 
 

            "g": 0, 
            "vph": false, 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 1, 
            "tags": "", 
            "rmt": "OFF", 
            "rcvc": false 
          }, 
          "2".."24": {} 
        }, 
        "AUX": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 2, 
            "tags": "" 
          }, 
          "2".."8": {} 
        }, 
        "A": { 
          "1": { 
            "mode": "M", 
            "g": 0, 
            "vph": false, 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "", 
            "rmt": "OFF", 
            "rcvc": false 
          }, 
          "2".."48": {} 
        }, 
        "B".."C": {} 
        }, 
        "SC": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "" 
          }, 
          "2".."32": {} 
        }, 
        "USB": { 
          "1": { 
            "mode": "ST", 
            "mute": false, 
            "pol": false, 
            "col": 8, 
            "name": "USB 1/2", 
            "icon": 605, 



 
 
 
 

©Patrick-Gilles Maillot 271 WING remote protocols – V 3.0.6-27 
 
 
 

            "tags": "" 
          }, 
          "2": .."48": {} 
        }, 
        "CRD": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "" 
          }, 
          "2".."64": {} 
        }, 
        "MOD": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "" 
          }, 
          "2".."64": {} 
        }, 
        "PLAY": { 
          "1": { 
            "mode": "ST", 
            "mute": false, 
            "pol": false, 
            "col": 8, 
            "name": "2TR", 
            "icon": 608, 
            "tags": "" 
          }, 
          "2".."4": {} 
        }, 
        "AES": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "" 
          }, 
          "2": {} 
        }, 
        "USR": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "pol": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "", 
            "user": { 
              "grp": "OFF", 



 
 
 
 

©Patrick-Gilles Maillot 272 WING remote protocols – V 3.0.6-27 
 
 
 

              "in": 1, 
              "tap": "PRE", 
              "lr": "L+R" 
            } 
          }, 
          "2".. "48": {} 
        }, 
        "OSC": { 
          "1": { 
            "mode": "M", 
            "mute": false, 
            "col": 1, 
            "name": "", 
            "icon": 0, 
            "tags": "", 
            "osc": { 
              "lvl": -6, 
              "mode": "SINE", 
              "f": 999.9920044 
            } 
          }, 
          "2": {} 
          } 
        } 
      }, 
      "out": { 
        "LCL": { 
          "1": { 
            "grp": "BUS", 
            "in": 1 
          }, 
          "2".."8": {} 
        }, 
        "AUX": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."8": {} 
        }, 
        "A": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."48": {} 
        }, 
        "B".."C": {} 
        }, 
        "SC": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."32": {} 
        }, 
        "USB": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."48": {} 
        }, 



 
 
 
 

©Patrick-Gilles Maillot 273 WING remote protocols – V 3.0.6-27 
 
 
 

        "CRD": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."64": {} 
        }, 
        "MOD": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."64": {} 
        }, 
        "REC": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2".."4": {} 
        }, 
        "AES": { 
          "1": { 
            "grp": "OFF", 
            "in": 1 
          }, 
          "2": {} 
        } 
      } 
    }, 
    "ch": { 
      "1": { 
        "in": { 
          "set": { 
            "srcauto": false, 
            "altsrc": false, 
            "inv": false, 
            "trim": 0, 
            "bal": 0, 
            "dlymode": "M", 
            "dly": 0.100000001, 
            "dlyon": false 
          }, 
          "conn": { 
            "grp": "LCL", 
            "in": 1, 
            "altgrp": "OFF", 
            "altin": 1 
          } 
        }, 
        "flt": { 
          "lc": false, 
          "lcf": 100.2374573, 
          "hc": false, 
          "hcf": 10018.26074, 
          "tf": false, 
          "mdl": "TILT", 
          "tilt": 0 
        }, 
        "clink": true, 
        "col": 1, 
        "name": "", 
        "icon": 0, 



 
 
 
 

©Patrick-Gilles Maillot 274 WING remote protocols – V 3.0.6-27 
 
 
 

        "led": true, 
        "mute": false, 
        "fdr": -144, 
        "pan": 0, 
        "wid": 100, 
        "solosafe": false, 
        "mon": "A", 
        "proc": "GEDI", 
        "ptap": "5", 
        "peq": { 
          "on": false, 
          "1g": 0, 
          "1f": 99.68543243, 
          "1q": 0.997970223, 
          "2g": 0, 
          "2f": 999.2504883, 
          "2q": 0.997970223, 
          "3g": 0, 
          "3f": 10016.52734, 
          "3q": 0.997970223 
        }, 
        "gate": { 
          "on": false, 
          "mdl": "GATE", 
          "thr": -40, 
          "range": 40, 
          "att": 10, 
          "hld": 10, 
          "rel": 199.4042816, 
          "acc": 0, 
          "ratio": "1:3" 
        }, 
        "gatesc": { 
          "type": "OFF", 
          "f": 1002.37439, 
          "q": 1.995881796, 
          "src": "SELF", 
          "tap": "IN" 
        }, 
        "eq": { 
          "on": false, 
          "mdl": "STD", 
          "mix": 100, 
          "lg": 0, 
          "lf": 80.19641876, 
          "lq": 0.997970223, 
          "leq": "SHV", 
          "1g": 0, 
          "1f": 200, 
          "1q": 0.997970223, 
          "2g": 0, 
          "2f": 601.3883667, 
          "2q": 0.997970223, 
          "3g": 0, 
          "3f": 1499.78833, 
          "3q": 0.997970223, 
          "4g": 0, 
          "4f": 3990.524414, 
          "4q": 0.997970223, 
          "hg": 0, 
          "hf": 11999.27539, 
          "hq": 0.997970223, 
          "heq": "SHV" 



 
 
 
 

©Patrick-Gilles Maillot 275 WING remote protocols – V 3.0.6-27 
 
 
 

        }, 
        "dyn": { 
          "on": false, 
          "mdl": "COMP", 
          "mix": 100, 
          "gain": 0, 
          "thr": -10, 
          "ratio": 3, 
          "knee": 3, 
          "det": "RMS", 
          "att": 50, 
          "hld": 20, 
          "rel": 152.5651855, 
          "env": "LOG", 
          "auto": true 
        }, 
        "dynxo": { 
          "depth": 6, 
          "type": "OFF", 
          "f": 1002.37439 
        }, 
        "dynsc": { 
          "type": "OFF", 
          "f": 1002.37439, 
          "q": 1.995881796, 
          "src": "SELF", 
          "tap": "IN" 
        }, 
        "preins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "main": { 
          "1": { 
            "on": true, 
            "lvl": 0, 
            "pre": false 
          }, 
          "2".."4": {} 
        }, 
        "send": { 
          "1": { 
            "on": false, 
            "lvl": -144, 
            "pon": false, 
            "ind": false, 
            "mode": "PRE", 
            "plink": false, 
            "pan": 0 
          }, 
          "2".."16": {}, 
          "MX1": { 
            "on": false, 
            "lvl": -144, 
            "pon": false, 
            "ind": false, 
            "mode": "PRE", 
            "plink": false, 
            "pan": 0 
          }, 
          "MX2".."MX8": {} 
        }, 
        "tapwid": 100, 



 
 
 
 

©Patrick-Gilles Maillot 276 WING remote protocols – V 3.0.6-27 
 
 
 

        "postins": { 
          "on": false, 
          "mode": "FX", 
          "ins": "NONE", 
          "w": 0 
        }, 
        "tags": "" 
      }, 
      "2".."40": {} 
    }, 
    "aux": { 
      "1": { 
        "in": { 
          "set": { 
            "srcauto": false, 
            "altsrc": false, 
            "inv": false, 
            "trim": 0, 
            "bal": 0, 
            "dlymode": "M", 
            "dly": 0.100000001, 
            "dlyon": false 
          }, 
          "conn": { 
            "grp": "USB", 
            "in": 1, 
            "altgrp": "OFF", 
            "altin": 1 
          } 
        }, 
        "clink": true, 
        "col": 1, 
        "name": "2TR", 
        "icon": 0, 
        "led": true, 
        "mute": false, 
        "fdr": -144, 
        "pan": 0, 
        "wid": 100, 
        "solosafe": false, 
        "mon": "A", 
        "eq": { 
          "on": false, 
          "mdl": "STD", 
          "mix": 100, 
          "lg": 0, 
          "lf": 80.19641876, 
          "lq": 0.997970223, 
          "leq": "SHV", 
          "1g": 0, 
          "1f": 200, 
          "1q": 0.997970223, 
          "2g": 0, 
          "2f": 601.3883667, 
          "2q": 0.997970223, 
          "3g": 0, 
          "3f": 1499.78833, 
          "3q": 0.997970223, 
          "4g": 0, 
          "4f": 3990.524414, 
          "4q": 0.997970223, 
          "hg": 0, 
          "hf": 11999.27539, 



 
 
 
 

©Patrick-Gilles Maillot 277 WING remote protocols – V 3.0.6-27 
 
 
 

          "hq": 0.997970223, 
          "heq": "SHV" 
        }, 
        "dyn": { 
          "on": false, 
          "thr": -36, 
          "depth": 12, 
          "fast": false, 
          "peak": false, 
          "ingain": 40, 
          "cpeak": 0, 
          "cmode": "COMP" 
        }, 
        "preins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "main": { 
          "1": { 
            "on": true, 
            "lvl": 0, 
            "pre": false 
          }, 
          "2".."4": {} 
        }, 
        "send": { 
          "1": { 
            "on": false, 
            "lvl": -144, 
            "pon": false, 
            "ind": false, 
            "mode": "PRE", 
            "plink": false, 
            "pan": 0 
          }, 
          "2".."16": {}, 
          "MX1": { 
            "on": false, 
            "lvl": -144, 
            "pon": false, 
            "ind": false, 
            "mode": "PRE", 
            "plink": false, 
            "pan": 0 
          }, 
          "MX2".."MX8": {} 
        }, 
        "tags": "" 
      }, 
      "2".."8": {} 
    }, 
    "bus": { 
      "1": { 
        "in": { 
          "set": { 
            "inv": false, 
            "trim": 0, 
            "bal": 0 
          } 
        }, 
        "col": 10, 
        "name": "", 
        "icon": 0, 



 
 
 
 

©Patrick-Gilles Maillot 278 WING remote protocols – V 3.0.6-27 
 
 
 

        "led": true, 
        "busmono": false, 
        "mute": false, 
        "fdr": -144, 
        "pan": 0, 
        "wid": 100, 
        "mon": "A", 
        "busmode": "PRE", 
        "eq": { 
          "on": false, 
          "mdl": "STD", 
          "mix": 100, 
          "lg": 0, 
          "lf": 60.13883591, 
          "lq": 0.997970223, 
          "leq": "SHV", 
          "1g": 0, 
          "1f": 129.8763428, 
          "1q": 0.997970223, 
          "2g": 0, 
          "2f": 299.2471619, 
          "2q": 0.997970223, 
          "3g": 0, 
          "3f": 699.4875488, 
          "3q": 0.997970223, 
          "4g": 0, 
          "4f": 1499.78833, 
          "4q": 0.997970223, 
          "5g": 0, 
          "5f": 2992.470947, 
          "5q": 0.997970223, 
          "6g": 0, 
          "6f": 6013.883789, 
          "6q": 0.997970223, 
          "hg": 0, 
          "hf": 11999.27539, 
          "hq": 0.997970223, 
          "heq": "SHV", 
          "tilt": 0 
        }, 
        "dyn": { 
          "on": false, 
          "mdl": "COMP", 
          "mix": 100, 
          "gain": 0, 
          "thr": -10, 
          "ratio": 3, 
          "knee": 3, 
          "det": "RMS", 
          "att": 50, 
          "hld": 20, 
          "rel": 152.5651855, 
          "env": "LOG", 
          "auto": true 
        }, 
        "dynxo": { 
          "depth": 6, 
          "type": "OFF", 
          "f": 1002.37439 
        }, 
        "dynsc": { 
          "type": "OFF", 
          "f": 1002.37439, 



 
 
 
 

©Patrick-Gilles Maillot 279 WING remote protocols – V 3.0.6-27 
 
 
 

          "q": 1.995881796, 
          "src": "SELF", 
          "tap": "BUS" 
        }, 
        "preins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "main": { 
          "1": { 
            "on": false, 
            "lvl": 0, 
            "pre": false 
          }, 
          "2".."4": {} 
        }, 
        "send": { 
          "1": { 
            "on": false, 
            "lvl": -144, 
            "pre": false 
          }, 
          "2".."16": {}, 
          "MX1": { 
            "on": false, 
            "lvl": -144, 
            "pre": false 
          }, 
          "MX2".."MX8": {} 
        }, 
        "postins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "dly": { 
          "on": false, 
          "mode": "M", 
          "dly": 0.100000001 
        }, 
        "tags": "" 
      }, 
      "2".."16": {} 
    }, 
    "main": { 
      "1": { 
        "in": { 
          "set": { 
            "inv": false, 
            "trim": 0, 
            "bal": 0 
          } 
        }, 
        "col": 1, 
        "name": "", 
        "icon": 0, 
        "led": true, 
        "busmono": false, 
        "mute": false, 
        "fdr": -144, 
        "pan": 0, 
        "wid": 100, 
        "mon": "A", 
        "eq": { 



 
 
 
 

©Patrick-Gilles Maillot 280 WING remote protocols – V 3.0.6-27 
 
 
 

          "on": false, 
          "mdl": "STD", 
          "mix": 100, 
          "lg": 0, 
          "lf": 60.13883591, 
          "lq": 0.997970223, 
          "leq": "SHV", 
          "1g": 0, 
          "1f": 129.8763428, 
          "1q": 0.997970223, 
          "2g": 0, 
          "2f": 299.2471619, 
          "2q": 0.997970223, 
          "3g": 0, 
          "3f": 699.4875488, 
          "3q": 0.997970223, 
          "4g": 0, 
          "4f": 1499.78833, 
          "4q": 0.997970223, 
          "5g": 0, 
          "5f": 2992.470947, 
          "5q": 0.997970223, 
          "6g": 0, 
          "6f": 6013.883789, 
          "6q": 0.997970223, 
          "hg": 0, 
          "hf": 11999.27539, 
          "hq": 0.997970223, 
          "heq": "SHV", 
          "tilt": 0 
        }, 
        "dyn": { 
          "on": false, 
          "mdl": "COMP", 
          "mix": 100, 
          "gain": 0, 
          "thr": -10, 
          "ratio": 3, 
          "knee": 3, 
          "det": "RMS", 
          "att": 50, 
          "hld": 20, 
          "rel": 152.5651855, 
          "env": "LOG", 
          "auto": true 
        }, 
        "dynxo": { 
          "depth": 6, 
          "type": "OFF", 
          "f": 1002.37439 
        }, 
        "dynsc": { 
          "type": "OFF", 
          "f": 1002.37439, 
          "q": 1.995881796, 
          "src": "SELF", 
          "tap": "BUS" 
        }, 
        "preins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "send": { 



 
 
 
 

©Patrick-Gilles Maillot 281 WING remote protocols – V 3.0.6-27 
 
 
 

          "MX1": { 
            "on": false, 
            "lvl": -144, 
            "pre": false 
          }, 
          "MX2".."MX8": {} 
        }, 
        "postins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "dly": { 
          "on": false, 
          "mode": "M", 
          "dly": 0.100000001 
        }, 
        "tags": "" 
      }, 
      "2".."4": {} 
    }, 
    "mtx": { 
      "1": { 
        "in": { 
          "set": { 
            "inv": false, 
            "trim": 0, 
            "bal": 0 
          } 
        }, 
        "dir": { 
          "on": false, 
          "lvl": -144, 
          "inv": false, 
          "in": "OFF" 
        }, 
        "col": 1, 
        "name": "", 
        "icon": 0, 
        "led": true, 
        "busmono": false, 
        "mute": false, 
        "fdr": -144, 
        "pan": 0, 
        "wid": 100, 
        "mon": "A", 
        "busmode": "PRE", 
        "eq": { 
          "on": false, 
          "mdl": "STD", 
          "mix": 100, 
          "lg": 0, 
          "lf": 60.13883591, 
          "lq": 0.997970223, 
          "leq": "SHV", 
          "1g": 0, 
          "1f": 129.8763428, 
          "1q": 0.997970223, 
          "2g": 0, 
          "2f": 299.2471619, 
          "2q": 0.997970223, 
          "3g": 0, 
          "3f": 699.4875488, 
          "3q": 0.997970223, 



 
 
 
 

©Patrick-Gilles Maillot 282 WING remote protocols – V 3.0.6-27 
 
 
 

          "4g": 0, 
          "4f": 1499.78833, 
          "4q": 0.997970223, 
          "5g": 0, 
          "5f": 2992.470947, 
          "5q": 0.997970223, 
          "6g": 0, 
          "6f": 6013.883789, 
          "6q": 0.997970223, 
          "hg": 0, 
          "hf": 11999.27539, 
          "hq": 0.997970223, 
          "heq": "SHV", 
          "tilt": 0 
        }, 
        "dyn": { 
          "on": false, 
          "mdl": "COMP", 
          "mix": 100, 
          "gain": 0, 
          "thr": -10, 
          "ratio": 3, 
          "knee": 3, 
          "det": "RMS", 
          "att": 50, 
          "hld": 20, 
          "rel": 152.5651855, 
          "env": "LOG", 
          "auto": true 
        }, 
        "dynxo": { 
          "depth": 6, 
          "type": "OFF", 
          "f": 1002.37439 
        }, 
        "dynsc": { 
          "type": "OFF", 
          "f": 1002.37439, 
          "q": 1.995881796, 
          "src": "SELF", 
          "tap": "BUS" 
        }, 
        "preins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "postins": { 
          "on": false, 
          "ins": "NONE" 
        }, 
        "dly": { 
          "on": false, 
          "mode": "M", 
          "dly": 0.100000001 
        }, 
        "tags": "" 
      }, 
      "2":.."8": {} 
    }, 
    "dca": { 
      "1": { 
        "name": "", 
        "col": 1, 



 
 
 
 

©Patrick-Gilles Maillot 283 WING remote protocols – V 3.0.6-27 
 
 
 

        "icon": 0, 
        "led": false, 
        "mute": false, 
        "fdr": -144, 
        "mon": "A" 
      }, 
      "2":.."16": {} 
    }, 
    "mgrp": { 
      "1": { 
        "name": "MGRP.1", 
        "mute": false 
      }, 
      "2".."8": {} 
    }, 
    "fx": { 
      "1": { 
        "mdl": "NONE", 
        "fxmix": 100 
      }, 
      "2".."16": {} 
    }, 
    "cards": { 
      "wlive": { 
        "sdlink": "IND", 
        "autoin": "OFF", 
        "meters": true, 
        "auto_stop": "KEEP", 
        "auto_play": "KEEP", 
        "auto_rec": "KEEP", 
        "1": { 
          "cfg": { 
            "rectracks": "32", 
            "playmode": "PLAY" 
          } 
        }, 
        "2": {} 
      } 
    }, 
    "play": { 
      "repeat": true 
    }, 
    "rec": { 
      "resolution": "24", 
      "channels": "2" 
    } 
  }  



 
 
 
 

©Patrick-Gilles Maillot 284 WING remote protocols – V 3.0.6-27 
 
 
 

ce_data 
 
ce_data contains all JSON structure elements representing the “Control Engine” settings for WING. The 
ce_data class contains objects as shown below: 
 

 
 
Note that for ease of access and programming using the native interface or OSC remote protocol, the ce_data 
JSON tree structure is appended to the ae_data tree structure. 
 
"ce_data": { 
    "cfg": { 
      "lights": { 
        "btns": 25, 
        "leds": 90, 
        "meters": 40, 
        "rgbleds": 25, 
        "chlcds": 60, 
        "chlcdctr": 50, 
        "chedit": 80, 
        "main": 80, 
        "glow": 0, 
        "patch": 0, 
        "lamp": 0 
      }, 
      "rta": { 
        "homedisp": "1/3", 
        "homecol": "BL50", 
        "hometap": "IN", 
        "eqdisp": "1/4", 
        "eqcol": "BL75", 
        "cheqtap": "PRE", 
        "chflttap": "PRE" 
      }, 
      "muteovr": true, 
      "soloexcl": true, 
      "selfsolo": true, 
      "solofsel": false, 
      "sof2solo": false, 
      "layerlinkl": false, 
      "layerlinkr": false, 
      "autoview": false, 
      "csctouch": true, 
      "autosel_L": false, 
      "autosel_C": false, 
      "autosel_R": false, 
      "fdrbanking": false, 
      "soffdr": "L/C", 
      "sofbutton": "AUTO", 



 
 
 
 

©Patrick-Gilles Maillot 285 WING remote protocols – V 3.0.6-27 
 
 
 

      "sofframe": true, 
      "sofmode": false, 
      "seldblclick": "BUSFX", 
      "usrmode": "BUS", 
      "mfdr": "MAIN.1", 
      "cscmode": "BUS", 
      "rackmode": "CH", 
      "busspill": false, 
      "mainspill": false, 
      "mtxspill": true, 
      "dcaspill": false, 
      "showfdr": true 
    }, 
    "layer": { 
      "L": { 
        "sel": 1, 
        "1": { 
          "ofs": 0, 
          "name": "CH1-12", 
          "1": { 
            "type": "CH", 
            "i": 1, 
            "dst": 1 
          }, 
          "2".."24": {} 
        }, 
        "2".."9": {} 
        } 
      }, 
      "C": { 
        "sel": 1, 
        "1": { 
          "ofs": 0, 
          "name": "DCA", 
          "1": { 
            "type": "DCA", 
            "i": 1, 
            "dst": 1 
          }, 
          "2".."16": {} 
        }, 
        "2".."9": {} 
      }, 
      "R": { 
        "sel": 1, 
        "1": { 
          "ofs": 0, 
          "name": "MAIN", 
          "1": { 
            "type": "BUS", 
            "i": 17, 
            "dst": 1 
          }, 
          "2".."16": {} 
        }, 
        "2".."9": {} 
      } 
    }, 
    "user": { 
      "sel": 1, 
      "mode": "MGRP", 
      "cmode": "PAN", 
      "gpio": { 



 
 
 
 

©Patrick-Gilles Maillot 286 WING remote protocols – V 3.0.6-27 
 
 
 

        "1": { 
          "bu": { 
            "mode": "OFF", 
            "name": "GPIO 1" 
          } 
        }, 
        "2".."4": {} 
        } 
      }, 
      "user": { 
        "1": { 
          "bu": { 
            "mode": "OFF", 
            "name": "" 
          }, 
          "bd": { 
            "mode": "OFF", 
            "name": "" 
          } 
        }, 
        "2".."4": {} 
      }, 
      "daw1": { 
        "1": { 
          "bu": { 
            "mode": "DAWBTN", 
            "name": "STOP", 
            "btn": "T1" 
          }, 
          "bd": { 
            "mode": "DAWBTN", 
            "name": "REWIND", 
            "btn": "T4" 
          } 
        }, 
        "2".."4": {} 
      }, 
      "daw2".."daw4": {}, 
      "1": { 
        "1": { 
          "led": false, 
          "col": 1, 
          "enc": { 
            "mode": "OFF", 
            "name": "" 
          }, 
          "bu": { 
            "mode": "OFF", 
            "name": "" 
          }, 
          "bd": { 
            "mode": "OFF", 
            "name": "" 
          } 
        }, 
        "2".."4": {} 
      }, 
      "2".."16": {}, 
    "gpio": { 
      "1": { 
        "mode": "TGLNO", 
        "gpstate": false 
      }, 



 
 
 
 

©Patrick-Gilles Maillot 287 WING remote protocols – V 3.0.6-27 
 
 
 

      "2".."4": {} 
    }, 
    "safes": { 
      "ch": "                                        ", 
      "aux": "        ", 
      "bus": "                ", 
      "main": "    ", 
      "mtx": "        ", 
      "dca": "                ", 
      "mute": "        ", 
      "fx": "                ", 
      "source": { 
        "LCL": "        ", 
        "AUX": "        ", 
        "A": "                                                ", 
        "B": "                                                ", 
        "C": "                                                ", 
        "SC": "                                ", 
        "USB": "                                                ", 
        "CRD": "                                                                ", 
        "MOD": "                                                                ", 
        "PLAY": "    ", 
        "AES": "  ", 
        "USR": "                        ", 
        "OSC": "  " 
      }, 
      "output": { 
        "LCL": "        ", 
        "AUX": "        ", 
        "A": "                                                ", 
        "B": "                                                ", 
        "C": "                                                ", 
        "SC": "                                ", 
        "USB": "                                                ", 
        "CRD": "                                                                ", 
        "MOD": "                                                                ", 
        "REC": "    ", 
        "AES": "  " 
      }, 
      "area": { 
        "LEFT": "       ", 
        "CENTER": "      ", 
        "RIGHT": "       " 
      }, 
      "custom": "                      ", 
      "setup": "  " 
    }, 
    "daw": { 
      "on": false, 
      "conn": "USB", 
      "emul": "MCU", 
      "config": "MSTR", 
      "ccup": false, 
      "disjog": true, 
      "preset": "-" 
    }, 
    "midi": { 
      "enchctl": "OFF", 
      "enfxctl": "OFF", 
      "encustctl": "OFF", 
      "ensysex": "OFF", 
      "enmidicc": "OFF", 
      "enscenes": "OFF", 



 
 
 
 

©Patrick-Gilles Maillot 288 WING remote protocols – V 3.0.6-27 
 
 
 

      "enshowctl": "OFF", 
      "enscenetx": "OFF" 
    }, 
    "osc": { 
      "ronly": false 
    }, 
    "lib": {} 
  }, 
 
 
 
 

globals  
 
ae_globals and ce_globals contains JSON elements globally affecting the “audio” and “control” engines 
settings for WING. The objects are shown below: 
 
"ae_globals": { 
    "clkrate": 48000, 
    "clksrc": "INT", 
    "startmute": false, 
    "usbacfg": "48/48", 
    "sccfg": "AUTO", 
    "harmt": { 
      "a": false, 
      "b": false, 
      "c": false 
    }, 
    "custsync": { 
      "a": false, 
      "b": false, 
      "c": false 
    } 
  }, 
 
 
  "ce_globals": { 
    "fdrsel": false, 
    "fdrres": "AUTO", 
    "fdrspd": "MED", 
    "mousetchdis": false, 
    "mousespd": 1.769999981, 
    "tapflash": "ON", 
    "srcdisp": true, 
    "lockmtr": false, 
    "cf_load": true, 
    "cf_upd": true, 
    "usewheel": true, 
    "timefmt": "24H", 
    "datefmt": "YMD" 
  }, 
   
 
 
 



 
 
 
 

©Patrick-Gilles Maillot 289 WING remote protocols – V 3.0.6-27 
 
 
 

More JSON files 
WING desk provides more JSON files. Indeed, JSON format is also used to save/store channel, library, and effect 
presets. These files are created as you save presets and libraries that help you setup your system faster down 
the road. 
 
 
  



 
 
 
 

©Patrick-Gilles Maillot 290 WING remote protocols – V 3.0.6-27 
 
 
 

 


