WING

PERSONAL MIXING CONSOLE

WING Remote Protocols

OSC remote control, MIDI SYSEX, Binary Interfaces,
and wapi, an AP| for WING

[V3.0.6=4 - Wing FW 3.0.6-4 and above]

@2020-25 - Patrick-Gilles Maillot

Table of Contents

Taluele [V Tot i o] s TR PP PPTUPPRPI 8
ADOUL ThiS dOCUMEBNT L.ttt et e et e e e b e e e e tb b e e e e ta e e e e s tbb e e e s s tbaeeesstbaeeesntbeeeenes 8
General features of the WING CONSOIE ...iiiiiiiiiiiiie et e e e e e e 8
AT aT == I =1 411 U 10

R AT LSOO USUPPPNE 10
RAICK 1ttt ettt e et h e bt h e e tb et bt et b e e e tb e e e bt e e etb e e bt e e tbeeerbeeentbeennreas 10
(@] 01 o= ot S SO PPPPPPRPPPPINS 11
SOUICES VS, INMPULS ottttitititittttttttt ettt sttt sttt s s s s s s s s snnnnnnnes 12
WING INEEINAT DAt uiiiiiiieeitie ettt ettt ettt et e ekt e e e ta e e e bt eeetbeeesbee e et eeesbeeetbeessseeesbeennseeans 13
WWING FilB SYSTEM. ittt ettt e e et e e ettt e e et e e e ettt e e e e etb e e e e et ee e e e eaaaaeeeans 13
(O o =Y A1 Te] o PP PP PPPPPPPPPPPPPN 14
D) = I - [) 4T o F OO P TP TR POPPPPPUPPRN 14

Remote communications With WING ..ottt ettt ettt et et e et eestbeeenseeens 15
Keeping CONNECTIONS GlIVE ...iiiiiiiiiiiie e et e e e 15
Number of simultaneously connected appliCatioNS........cccviiiiiiiiiiii e 15
Accessing WING Internal Data and Functions from remote programscooooieeiveeeeeee e 15

(O Ol ST aTo] (=l el o] o Tole] EN PSPPSR PSRRP 18
(O O D= = T Y o 1= PRSPPI 18
WING OSC IMIBSSAZES i eeiieiiitiiie et e ettt e e e e ettt e e e e et et a et e e e e et e e s b s e e e e e et eabt e e eeeeeeesabt s eeeeaeeasstasanaaaaaaes 19

Reading (Get) Parameter and NOAe data........cc.ueiiiiuiiie e 19
Receiving OSC data 0n @ SPECITIC POt . ..eeeiieeeee e 20
Writing (Set) Parameter and NOAE dataccc.ueiiiiiii e, 21
SINEGIE PAr@MEBTEIS ..ot 21
SPECIAI CASE: TOZEIE oo 21

o [0 a1 =) (=T IS (T =P PUUURRRR 21

N[oI D] - F PSPPSR URUPRPPRN 22
Special NOAE TYPE/ATBUMENTS. ...cviii ettt et e e 23
OSC: SPECIAI CASES ettt et e oo e e e e ae e 25
JSON Structure dynNamiC ChaNEES.iiiiiiiii et e e 25
OSC Tag Type DIob" OF DINAIY USE....ciiiiiiiiiiii e et e e 26
SUDSCIIDING 1O OSC Dat@..uiiiiiiiiiiiiiie ettt e e e e e e e et e e e et e e et e e e 29
WING ae_data OSC cOmMMANAS [Touuiiiiiiiiii ettt e e eaaee e 30
1= LU PP PP PP PRSPPI 30
GENETAl CONTIGUIATION. .. .ii ittt ettt e et e et e e e eabe e e e eaanas 32

N T Y=t T 0T A PRSP 36
INPUL/OULPUL SEELINES ..ottt ettt ee e 37

(O T gV Tl IY=T 4T o =4RSP 43
AUX SETEINGS e 48
BT LT =4SPPS 51
VT AT Y= =PRI 54
Y L D Y=L A Y=t 57

DL 07N <Y W o F =SSP 60
VAVt ed g LU T oI <Y [o F =PSRRI 60

o Yot Y=y] o= UUUPUPURRTOt 61

(O T o Y=Lt o= SR 62
USB Play el SETEINES .evtiiiiiiiee ettt e e e et e e et e et e e e e 64
WING ce_data OSC cOMMANGAS LISt ...iiiuiiiiiiiiiie e et e e et e e e eare e 65
CONTIOL SETLINES .ottt e e e e ettt e e e ettt e e e ettt e e e et e e e e etate e e e eaaeas 65

©Patrick-Gilles Maillot 2 WING remote protocols —V 3.0.6-4

GlODAI SEELINES ..ottt ettt 82

WING native / binary data iNterfaCecuui i 85
CoMMUNICATION CRANNEIS ..iiiiiiiiiiie ettt ettt e e bt e et e e sttt e e bt eestbeessneeesabeesnseeens 85
SAMIPIE FECEIVE FOULINE .uviiiiiiii ettt e et e et e e ettt e e e et e e e e s tbe e e e eans 86
SaAMPIE TrANSMIE FOULINE Lo 86
Channel 2: AUAIO ENGINE ... 87
BiNAry STrEAM FOIMIAt oot e e e et e e e e e et e e e e e e e e eeaaa e eeeaeeeareaes 87
(0o T Y oY T T Y/ [=T o V=SS 89
MEtEr REQUEST TOKENS ..., 89
VLT I o 90
Fahugelo [V Toll o=V =Y oM VYT oL PSR 91
VY o o] =T o[- TSR 91
Compiling @ Program USINE WaPi....oocueeeeee et 92
WaAPT RETEIENCE GUITE ...t 94
OPEN AN ClOSE ..ttt ettt e et e e ettt e e et e e e et e e e et e e e e e e e eare e 94
INT WOPEN{CNAI™ WD) 1ottt et ettt 94

(Vo] e VY@ [o 3] | ISRt 94
UNSIZNEA INT WVEI() ittt e et e et e e e et e e e ettt e e e e eaare e e e, 94
SEEEINE VAIUBS .ot e et e e e e e et e e e et e e e et e e e e eare e 95
int wSetTokenFloat(wtoken token, float fVal)cooiiiiiie e 95

int wSetTokenInt(wtoken token, iINtiVal)coouriiiii e 95

int wSetTokenString(wtoken token, Char® STr) ..., 95

int wToggleTokenINt(WtoKEN tOKEN)iiiiii e 96

int wClickTokenByte(wtoken token, char iVal) ..o 96
(CTud Lo F=a Y1 (U] UP 97
Wtype WGEtTYPE(WEOKEN TOKEN) . ..veiiieee e 97
char® WGetName(WLoKEN tOKEN)o 97
whash WGetHash(WEOKEN TOKEN)coii e 98

int wGetToken(wtoken token, wtype *type, wvalue *value).........cooiiiiiiii e 98

int wGetTokenFloat(wtoken token, float™® fval) ..o, 99

int wGetTokenInt(wtoken token, int™ ival) ..., 99

int wGetTokenString(wtoken token, Char® Str). ..o 100

int wGetTokenDef(wtoken token, int *num, unsigned char® str)..........ccoooiiiii i, 100

int wGetTokenTimed(wtoken token, wtype *type, wvalue *value, int timeout).............ccccceeieiie, 101

int wGetTokenFloatTimed(wtoken token, float *fval, int timeout)coocvvvvviiiiiiiiii e 101

int wGetTokenIntTimed(wtoken token, int *ival, int tiMeout)c.oooviiiiiiii 101

int wGetTokenStringTimed(wtoken token, char® str, int timeout)c.cooveiiiiiii i, 102

A SMall Program EXAMPIEo.vviiiiiie e 103
EVENT-AIIVEN UPAATES ..ottt e e e e et e e ettt e e e et e e e et e e e e etaree e e, 104
INE WKEEDATIVE ..o et 104

int wGetParsedEvents(WTV *tV, INT MaXEVENTS)coiiiiiiiiiiieee e 104

int wGetParsedEventsTimed(wTV *tv, int maxevents, int tiMeoUL)coovivvviiiiiiiiiiiee e 105
N[o =TT PP U RO UPRURPPRUPPR 107
INE WSEENOTE(CNAT ST) v 108

int wSetNodeFtomTVArray(WTV *array, iNt NTV) . ..o 108

int wSetBinaryNode (unsigned char *array, it 18N)oooiiiiiii e 108

int wGetNode(wtoken node, Char FSTr) ... e 109

int wGetNodeToTVArray (wtoken node, WTV *array)......co.eceoiiiec e, 109

int wGetBinaryNode (wtoken node, unsigned char *array, int maxlen)cccoccooiiiiiiiiiicc e 111

int wGetBinaryData (char *str, unsigned char *array, int maxlen)coooeiiiiii i 112

©Patrick-Gilles Maillot 3 WING remote protocols —V 3.0.6-4

1Y ST] TR 113

LIS AP e 113

iINt WMEterUDPPOIt (INT WPOIT) w.viiiiiiiii ettt ettt e e e e aaae e 113

int wSetMetersRequest(int reqID, unsigned char *WMid)........c..cccooiiiiiiiiiiiii e, 113

iNt WRENEWMETEIS(INT FEAID) . oeeieee e 114

int wGetMeters(unsigned char *buf, int maxlen, int timeout) ..o 114
ST W o]0 =4 = o [UUPUPPTTN 116

(0 aF YoV T I T o T o 1Y PO 120

o ATt Ta Lo o TV =T o LSRRt 121

e LU= TP UOUPTRERTR 121

o R =Tot £ P UPRPTR R 123
Dynamic parameters anonymMization iN WaPDi.....icciiieiiiie et e e e e e e e eaaes 124

WING MIDI (REMOLE-CONTIOI) ..t 127
Y 11D o T) o 1= 0 01PN 127
MIDI REMOTE CONTROL ..uttteitite ettt ettt ettt et et ettt e et e e et e e ssb e e e tbeeenbaeestseestbeeesbeesnseeans 127
WING IMIDESYSEX ..ottt e ekt e et e et e e e tb e ekt e e e sb e e e st e e e tb e e et e e ssbeesnbteenebeeesneeenees 129
SYSEX MESSAEES FOMMAT .eiiiiiiiiii ittt e et e e e e e ettt e e e earae e 129
SYSEX MESSagES, EXPIAINEA.....uiiiiiiiiii e 129
EXAIMIPIES .ottt 130

CMIA = 00 EXAMIDI .1ttt ettt et e ettt e ettt e s 130

CMIA = 02 BXAMIPIES: 1ttt e e et e e et e e e et e e e e e e e et e e earaee e 130

CMIA = 03 BXAMIPIES: 1ttt ettt e et e et e e e e e e e eaaaa e 130

CMIA = 05 BXAMIDIES: 1ttt ettt et e e et e e e ettt e e e et e e e et e e e e e e et e e e earae e 131
Appendix: Buttons (user/gpio, User/user, USEr/daw, USEI/)coeiiieiiie e, 134
ST 4={ o1 oY Al HO PSR RRUUPRPRR 134
USEI USEI Lo e e e 134
USEI AW L. L e e 134
USEI/ L L6/ L0 e e 134
Appendix: Effects and PlUgins’ Parameters liSt 139
o =To £t 139
=T Te T =y =Tt £ SRRt 139
T a1 g I =Y i L= ot P USPUTPRRRR 147

(O T Y=L =Y L=Tor C SRR 154

P U NS e e 159
BT PIUGINS ettt ettt e e e e et e e e et e e e ettt e e e et e e e e et e e e aaaaee s 159
GATE PIUBINS et e 160

O oY [UT={ 0 T PRSPPSO PSR PPPPP 162
COMPIESSOE PIUBINS 1ottt e ettt e e et e e ettt e e e ettt e e e et e e e e tb e e e e e etbee e e e 165
APPENAIX: ROULINE. .viii et e et e et e e ettt e e e e ettt e e e ettt e e e e ettt e e e e eaareeeeas 169
[o0 o2 T 11 =, 170

(O 1U1 o UL 21U o ¥ PP PPPPPPPPPPRE 173
Advanced ROULING OPLIONSuviiiiiiiiie ettt e e e et e e e et e e e e et e e e e eabe e e e 175
USER SIGNAL .ttt ettt ettt ettt ettt e e st e et e e e tb e e e bt e et e e e sbt e e tb e e enbe e et e e rbe e bae e e 175
USER PATCH ..ottt ettt ettt ettt ekt e e et e e e st e et e e e st e e et eeetb e e e bt eeesbeeenbeeeetbeennbeeenees 177
Appendix: Shows, Scenes (Snaps, Snippets, Presets & AUdio ClIPS).....couuvieiiiice e, 179
) 21031 PSP 179
Yol 1= PPSSPPPNt 179
SNAPS (B SCOPES) . et 180
Y11] 0L SSPPPIN 180

©Patrick-Gilles Maillot 4 WING remote protocols —V 3.0.6-4

P S TS it e 180

AUIO ClIDS oot e et e et e et e e et ae e 181
Controlling Scenes and Shows Via CCDUTTONS ...oovviiiiiiiie e 181
Controlling Scenes and SNOWS Via IMIDIccuiiiiiiiiie e 182

=T 0 0 T I PR PPN 182

ATDIEFArY IMIDI Aata oot 183

AppPendixX: SCOPES AN SATES......oiiii e 184
(] o = TV Tole o =Tt 184
CONTENTS SCOPES (OFANEE ICONS) . ..eeiieieee e, 184
CONFIGURATION SCOPES (BIUE ICONS) ... 185
L0101\ = TSP 185

R PP 185

e T PO 185

L, C, R, CC, CMPCT, RCK, EXT, VRT oottt 185

NOT SAVE 1N SNAPSNOTS .. ettt e e et e e et e e e arae e 185
CONSOIE INTT SCOPES ..ottt ettt et e ettt e e et e e e ettt e e e ettt e e e eaaaee s 186
(€[] o =1 IR (=T PRSP P SRR PP 187

AppendiX: WING STartup CONTIOl ... e e 188
Appendix: MIDI DAW mode for REAPER Control SUrface USEccuviiiiiiiiiiiiiie e 189
REAPER AUIO SEEUD «otiiiiiie ettt ettt et e e ettt e et e e e e e tae e e e 190
1 PP U SR PRURPPRRPPRIN 190
WVING VDT SETUD 1ttt ittt etttk eta e e st e ettt e et e e et e e esb e e e e tb e e e abbeeenbeeenbeeeetbeeenseeennes 190
REAPER IMIDI SELUD ..ttt ettt ettt ettt et e et e et e et e e st e e et eeesbeeenbeeeebeeenbeeenees 192
APPENAIX: WING ICONS .ottt e et e et e e e et e e e ettt e e e e et e e e e et e e e e eareeeeens 196
APPENAIX: WING COIOTS ..ot 198
APPENAIX: WING GPIOS: ... et 199
D<ol] o KT] o FO PSP 199

= o n g Tor- T oo Y aTaT=T o a o o[- PRSP PP 199
POWET-0N ABIAY ..o 200
GPIO precedence on USER/LAYER CC GPIO fUNCLION ...c.vviiiviee e 200
Multiple, simultaneous actions, USING GPIOSccouiiiiieeeeee e, 201
APPENTIX: W-LIVE/SD CArd SESSIONS . vveieeiee ettt e ee e eaeeeaee s 202
ReCOrding data formMat.. ..o e 202
SESSION NAME COINE. .ot 202
Naming & SOMtiNgG YOUI EXISTING SESSIONS . ..uvviiiiieiiiiiiiiie et e e et e et e e e e e et e e e e e e s e e e e e e s e e satbbaeeeeaesaeeaens 202
Appendix: MCU [DAW BUTTONS] cOmMMANAS [IST . .uviiiiiiiiiiiiiic e 205
Appendix: MCU [DAW V-POTS] cOMMAaNAS lSt.....c.vviiiiiiiiiiiie e 206
Appendix: MCU [DAW REMOTE MCU] commands liSt.......cooiuiiiiiiiiiieiiiiice et 207
Appendix: WING Snapshot and JSON Data StrUCTUIE:viiiiiiieic e 208
VNG SNAPTIIE et 208

B LST e] o o TSRS 208

SCOPIES ettt s 209

B8 LA it 210

(oI £ 1 - RO T S ST R PSPPSR PP 226

o [o] o F=1 PSSRt 230
IMIOTE JSON FIlBS ..ttt et e et e e e et e e e e tb e e e e b e e e e tb e e e e e tbteeestbeaeesstbeeeeenens 230

©Patrick-Gilles Maillot 5 WING remote protocols —V 3.0.6-4

©Patrick-Gilles Maillot 6 WING remote protocols —V 3.0.6-4

Introduction

©Patrick-Gilles Maillot 7 WING remote protocols —V 3.0.6-4

Introduction

About this document

My name is Patrick-Gilles Maillot and | am authorized by Behringer to publish and maintain this “WING
remote protocols” document; | am not a MusicTribe employee.

Starting with release 2.0 of the WING firmware, OSC and native remote protocols form a single (this)
document under two separate sections, and share the same series of appendix chapters.

Most users will probably find it easier to remote access their WING with 0sC commands while more advance
programing and less restricted control are possible using native commands and the Wing API (wapi) library.

While the main purpose of this document is to offer developers with a reference to programing their WING
console using 0sC or wapi, this document also includes chapters which would qualify more as User Guide
oriented ones, helping novice and advanced users to better use the desk: Dedicated chapters provide
additional details on MIDI, Custom Controls, Effects, Plugins, Shows and Scenes, Routing and more.

| want to thank the Behringer development team for their continuous support in writing this document.

General features of the WING console

|II

In 2019, Behringer has been designing a whole new digital mixing desk they would later call “Personal Mixing
Console”. The WING was unveiled to the public in November 2019 and first shipments took place in
December that year. As to why calling it a “Personal Mixing Console”, here is a perfectly valid answer from
one of the fathers of the console: “A fundamental idea of WING was providing a high level of customization
options to the engineer, allowing to adapt the console surface to his personal preferences and needs”.

The WING console was awaited by several X32 and M32 users as it carried the promise of new features, long
expected since the first release the X32 and M32 family of digital mixing desks. It seems the WING receives a
warm welcome from the community.

The Behringer WING provides 48-channel, 28-bus mixing with 24 motorized faders and a large 10”
capacitive-touch LED screen. The desk is designed for live performance, live and studio recording, touring
sound, A/V, club installs, and more. Three separate fader sections and a custom controls section can be easily
and intuitively tailored to personal requirements.

The 48-channel inputs [in/aux] and 28-channel mixes [bus/matrix/main] can all be in mono/stereo or mid-side
mode, with specific source mutes and metering, and provide dynamics, EQ and FX processing. They too can be
given a color, icon, name and up to 8 console or user defined tags for grouping and filtering purposes.

WING input channels provide low-cut & high-cut filters, tilt-EQs, all-pass or Sound Maxer, in addition to a
6-band parametric EQ. All buses, matrices, and mains feature 8-band parametric EQ. All channels and buses
can also load high-end simulations modeled from hardware devices such as Pultec EQ, SSL Bus Compressor
and Gate/Expander, SPL Transient Designer, Neve EQ, Compressor and Gate, Focusrite ISA and D3, DBX160,
LA-2A, 1176, Elysia mPressor, Empirical Labs Distressor, and more. The built in FX rack supports 8 true stereo
processors including TC VSS3 algorithms, Lexicon, Quantec, and EMT emulations. Other processing includes
modulation, equalization, dynamics, nonlinear effects and four guitar amplifiers with cabinet simulations. A

©Patrick-Gilles Maillot 8 WING remote protocols —V 3.0.6-4

maximum of 16 stereo inserts can be used for applying internal FX or outboard processing to input channels
or buses.

The channel editing section provides instant channel status overview and flow of operation. It allows working
on the selected channel processing, even when the main display is used for something completely unrelated.
Touch-sensitive rotary controls allow you to display the most relevant information, all at your fingertips.

The central Custom Controls section® offers user-assignable controls including 4 rotary encoders and 20
buttons with 2 LCDs that can be set as functions readily available.

A big rotary wheel offers fine-adjustments for up to 8 user parameters or can be used for DAW remote
control via USB MIDI.

The control configuration also includes predefined functionality for USB and SD-card recorder transport, show
control and mute groups.

WING includes 8 (full size console) or 24 (Rack and Compact consoles) original MIDAS PRO microphone
preamps and 8 XLR outputs with professional quality specifications. 8 TRS line auxiliary ins and outs help bring
in signals from media players or computers.

A brand new StageCONNECT? interface allows connecting breakout boxes and delivers up to 32 channels of
low-latency input or output over a single standard XLR cable (DMX).

WING can accommodate 376 inputs® and 374 outputs thanks to 3 AES50 SuperMAC audio networking ports,
which connect to digital stageboxes. In addition, 144 input and 144 output streams can be shared with other
mixing consoles.

There are 48 channels of USB audio and 64 channels of Audio over IP (AolP module optional), plus AES/EBU
stereo I/0. The WING expansion card slot features the LIVE SD recording card with 64x64 channels of audio or
can accommodate option cards for various standards such as ADAT, MADI, DANTE, and WSG.

All digital processing takes place on 40-bit floating point Digital Signal Processors, at 48 or 44.1 kHz, with a
1.3ms round-trip latency®.

WING provides MIDI In/Out and 2x2 GPIO (General Purpose Input Output, 1x2 on the compact console) that
can be used as console event triggers and external show controls, including power-on delays for external gear
that needs sync powering with the console.

Automixing is also implemented, with 2 groups of gain sharing on any 16 input channels. The management of
the respective input channel gains depends on the levels received, reducing the sum gain in the group to
maintain intelligibility and low noise during meetings, ideal when several speakers are collaborating to
corporate events, panels, broadcast applications or house of worship.

1 Not on all WING family devices, the provided description matches the full-size console, unless mentioned otherwise

2 https://www.klarkteknik.com/series.html?category=R-KLARKTEKNIK-STAGECONNECTSERIES

3 Not considering User Signal/Patch, FX send, or Bus send entries which overlap with actual sources and would bring this to a virtual
value of 478 on the WING

4 Typical value for Out-to-In trip without effect or insert.

©Patrick-Gilles Maillot 9 WING remote protocols —V 3.0.6-4

Wing, a family

Starting with FW version 3.0 in fall 2024, WING firmware addresses more devices than the ‘big’ WING which
has been on the market for almost five years. Note these will be disjoint firmware packages.

Compact and Rack are now available and offer the same overall functionality than the initial WING, although
the change in format implies modifications, some more important than others. We list below the
main/obvious elements of WING, Rack and Compact.

WING:

Large control surface with a Left bank of 12 channel strips, a Center bank of 8 channel strips, a n area
with CC encoders and buttons, and a Right Bank of 4 channel strips

Each bank comes with a specific group select set of buttons (IN, AUX, MATRIX, MAIN, BUS, DCA,
USER1, USER2, ...) on its left side

Available in gray or black

Each channel strip is stereo and composed of a motorized fader, a MUTE, SOLO and SELECT button, a
stereo vu-meter with clip, dynamics, and gate indicators, and a 2-line B/W scribble with a color LED
above it

Big Wheel, 4 cursor Buttons, and a DAW control button for enabling some of the fader banks to
control MIDI connected DAWSs

A secondary screen besides the main LCD to control/manage ‘in channel’ settings such as EQ, COMP,
etc.

8 local Inputs, 8 Aux inputs, 8 aux outputs, 8 local outputs

2 headphones jacks on the consoled rear surface sides (left and right), level control is on the top
surface

4-pin, 12V XLR lamp socket on the rear of the console

Main board with Power, 2 Ethernet sockets, a USB port, 3 AES50 ports, 1 StageCONNECT port, AES-BU
In and Out ports and an expansion slot fitted with 2 SD recording/playback expansion card.

4 GPIO (2 TRS)

MIDI IN and OUT

A dedicated section for USB, Monitoring

A large CC section with 2 sets of 8 buttons for CC, transport controls, and other WING dedicated
functions (such as Mute Groups), DAW control and two LCD for displaying active functions

A dedicated section with 4 additional encoders and 4 buttons and LCD, and 8 buttons to select
functions

19”7, 4U rack format

No wheel, no DAW control button(s)

DAW Mode on Rack is limited to CC buttons and one Mackie Control device.

24 Local Inputs (8 on the WING)

No local Aux 10 (8 IN, 8 OUT on the WING)

4 headphones outs mapped to the 8 local OUTs at the rear of the console with their own headphone
amps for [EM applications

1 general headphone out with dedicated level knob on the front

No faders, and a limited set of buttons on the surface.

No encoders below the LCD touch screen (controls are only via the touch screen, and two encoders
on the right side)

©Patrick-Gilles Maillot 10 WING remote protocols —V 3.0.6-4

e 1 LCD +set of 4 encoders and 8 buttons CC section, with Layer level indicator, VIEW and >4 <4
buttons

e 4 GPIO(2TRS)

e MIDIIN and OUT

e No Lamp socket

e A USB socket, and 4 buttons dedicated to selecting INPUT/AUX, BUSES/MAIN, DCA/Mute Groups, and
CUST TRANSP (USB, SD1, SD2) on the CC section above

e Same Main board as on WING, no fan

Compact:

o Smaller (19” rack compatible) surface with 3 sets of 4 faders and 1 main fader, with bank layer
selection available from a vertical set of buttons on the left side of the console.

e 4-pin, 12V XLR lamp socket on the top surface of the console

e Similar channel strips as on WING

e No wheel, no DAW control button(s). Control is possible from the LCD screen.

e 24 local Inputs (8 on the WING)

e Nolocal Aux 10 (8 IN, 8 OUT on the WING)

e Monitor/USB section on the right side of the screen

e 16 buttons in two vertical sets of 8 with a dedicated LCD acts as a CC section between the 12 faders
left and the main fader

e 2 GPIO (1TRS) on the rear of the console (4 GPIO / 2 TRS on the WING)

e MIDIIN and OUT

e 1 headphone lack on the rear of the console (level control is on the top surface)

e Same Main board as on WING

©Patrick-Gilles Maillot 11 WING remote protocols —V 3.0.6-4

Sources vs. Inputs

Unlike many digital or analogue desks, WING makes a clear separation between Sources and Input channels;
Historically, consoles focus on input numbers assigned to Channels and Auxes. WING is offering a different
perspective by focusing on the Source as the reason for any mixing. Sources can be in mono, stereo, or
mid-side mode, own headamp parameters like gain and phantom power, with specific source mute and
metering. They can be given a color, icon, name and up to 8 console or user defined tags for grouping and
filtering purposes. All of this describes the actual Source first, before being patched to Input channels which
focus on processing or mixing.

This patching process (also called “Routing”) is described in a specific “user-guide” like Appendix later in this
document to help new users grasp the basic operations involved in assigning a physical source (local or
remote) to a channel for mixing, as well as assigning WING processed audio data to a physical output (local or
remote).

Sources can be labeled using the WING Co-Pilot app or other means such as OSC protocol described later in
this document or the wapi function calls also presenter in the upcoming chapters®, and no matter if the signal
is patched to a channel, to SD recording or to any other output, it can always be referred to as its assigned
Source label.

Notes
The internal real-time clock (RTC) is powered by a super-capacitor. If the WING is off mains for more about
two weeks, it will most likely lose its clock data.

5 Refer also to https://github.com/pmaillot/wapi

©Patrick-Gilles Maillot 12 WING remote protocols —V 3.0.6-4

WING Internal Data

Like all digital or programmable devices, WING relies on an internal set of parameters that are stored/saved in
non-volatile memory. This enables you to find the console in the same state you left it when powering it OFF.
WING data set is very large, and in line with the many features the console offers. Each button, each attribute,
color setting, effect, parameter, etc. can be found as an internal variable, member of a hierarchical tree
structure.

The WING tree is more than 25000 elements! To organize this large set of internal variables, WING uses a
hierarchical tree of data, stating with a root and dispatching parameters into logical groups (sub-trees or
branches) until the last element (leaves) that represent the actual parameter.

For example, the fader associated to channel 1 is part of the channels sub-tree, and is one of the many
attributes of channel 1. The channel sub-tree is part of the audio-engine, itself at the root level.

A quick representation would be as shown below:

fader
ch1 color
|
— Channels other ...
. . l |
— audioengine — chn
- other
root —
— other
|
— other —

Computers use specific data structures to represent trees. WING uses one of them, based on 3SoN® notation.
It is important to know/understand the list of sub-trees (nodes), and leaves (parameters) WING contains as
this is how you can access to data. More detail on the WING data set is provided in appendix.

WING File System

At the difference of the X32, WING can be directly connected to a computer via USB; There are two ways
WING can be visible to your computer, depending on the setting of the SETUP-GENERAL screen (shown below,
with WING connected as an active data partition):

USB MSD ACCESS

0S PARTITION DATA PARTITION

6 JavaScript Object Notation: an efficient way to represent structured objects. Also used as a data-interchange format.

©Patrick-Gilles Maillot 13 WING remote protocols —V 3.0.6-4

When actively connected to your PC either as an OS partition or a Data partition, the status at the top of the
WING screen will show a red OS or DATA tag.

OS partition
WING can be seen as an 0S PARTITION, a directory where you can deposit the FW release you will use to boot
from at next power up or reboot. Use with caution!

Data Partition

A USB connected WING presents itself as an external disk drive. Therefore, the standard cautions apply when
connecting and more important, disconnecting from the computer; Ensure you unmount the WING file system
to avoid losing data.

If the choice for USB MSD ACCESS in SETUP-GENERAL is set to DATA PARTITION, the WING file system will show as

a standard external USB drive. There may be some folders already there, such as ‘global’ or ‘shows’, with
subfolders, such as ‘global/ch_presets’, ‘global/fx_presets’, ‘global/routing_presets’, ‘global/snapshots’.

©Patrick-Gilles Maillot 14 WING remote protocols —V 3.0.6-4

Remote communications with WING

WING communicates via ports 2223 [UDP], and 2222 [UDP, TCP];
Initiating a communication with WING starts with sending the 5 bytes [UDP] datagram ‘WING?’ to the 1P of
your WING, port 2222.

WING will reply to the requesting IP and port with the following datagram:

‘WING,’ [c_ip] ¢,’ [c_name] ¢,’ [c_model] ¢,’ [c_serial] ¢,’ [firmware]

Where:

[c_ip] e.g., ‘192.168.1.62°

[c_name] ascii characters

[c_model] ‘ngc-full’ (standard Wing console)
[c_serial] serial number (ascii)

[firmware] version string (ascii)

For its native communication format, WING proposes 14 ‘communication channels’ to enable separation
between the different ‘engines’ or main blocks of the console. The following communication channels are
currently in use:

Control-engine (a TCP communication channel) is using channel #1

Audio-engine (main TCP communication channel) is using channel #2

Meters (UDP communication) are using channel #3

OSC uses a single UDP communication port: 2223

Keeping connections alive

Open connections will time out after 10 seconds of inactivity (on the receiving side). One way to keep a
connection active is to request at regular intervals of less than 10 seconds some data from the console. There
are many data that can be collected, as shown later in this document.

Number of simultaneously connected applications

WING can simultaneously communicate with up to 16 connected ‘clients’; The console will reject further
connection requests, if the maximum number of simultaneous connections (16) is reached.

What we call ‘clients” above refer to actual TCP ports that communicate with the console. Some applications
may use several ports and this will reduce the actual number of applications that can simultaneously connect
and communicate with WING.

UDP communications such as used for OSC do not have this limitation, being “connection-less”. On the other
hand, WING’s OSC remote protocol enables only one (1) subscription to data (for receiving event messages) at
any given time.

Subscriptions must be kept alive; they automatically die after 10 seconds.

Accessing WING Internal Data and Functions from remote programs

As mention in the introduction, WING hosts an OSC compliant remote protocol server that offers access to
the full set of features of the desk. This is described in the “WING OSC protocol data interface” chapter below.

©Patrick-Gilles Maillot 15 WING remote protocols —V 3.0.6-4

WING also offers a native, binary protocol with the capability to access (read or write) parameters of its
internal structures and take full advantage of the entire set of features of the digital desk, including remote
control. The protocol is fully described in the “WING native/binary data interface” chapter below.

To help users access the native protocol, a WING APl written in C [wapi] has been developed and is available
as a free resource at https://x32ram/wapi to write programs that directly call wapi functions.

©Patrick-Gilles Maillot 16 WING remote protocols —V 3.0.6-4

WING OSC protocol data interface

©Patrick-Gilles Maillot 17 WING remote protocols —V 3.0.6-4

OSC Remote Protocol

WING includes an OSC Remote Protocol server. This enables easy access to remote features for many
professional, sound applications and extensions offered by third parties.

OSC remote control enables reading and modifying (when possible) all parameters included in the ae_data
and ce_data JSON structures, all part of the main parameter tree.

WING OSC server implementation complies with the OSC standard’ and proposes several ways to access data,
parameters, and features. As all OSC compliant servers, the WING OSC server runs in the console and will
reply to UDP on a specific port: 2223.

When using standard ubP communication, clients will be replied onto their calling port. If needed, a specific
feature enables WING to reply to a UDP port specified by the connected client, as explained later in this
document.

OSC Data Types

In compliance with the OSC standard, WING supports the following types:
e int32 (32bits, bi-endian),
e float32 (32bits, IEEE 754, big endian),
e string (non-null ASCII characters followed by a null, followed by 0-3 additional null characters to
make the total number of bytes a multiple of 4),
e blob (An int32 size count, followed by one or more bytes of arbitrary binary data, followed by 0-3
additional zero bytes to make the total number of bytes a multiple of 4).

As specified in the 0sc standard, the unit of transmission of 0SC is an 0SC Packet. Any application that sends
0SC Packets is an 0sC Client; WING embeds and runs an 0SC Server.

An 0SC Packet consists of its contents, a contiguous block of binary data, and its size, the number of 8-bit
bytes that comprise the contents. The size of an 0SC packet is always a multiple of 4.
In the case of WING, the contents of an 0SC packet is always an 0SC Message, i.e. 0SC Bundles are not
supported. Note that wildcards ‘?* and ‘*” in Address Patterns are reserved for special cases.
An 0SC Message consists of an 0SC Address Pattern followed by an 0SC Type Tag String followed by zero or
more 0SC Arguments. Some older implementations of 0SC may omit the 0SC Type Tag string and WING
supports this.

® 0SC Address Patterns always start with the character /.

e 0SC Type Tagscanbei, f, s, b forint32, float32, string and blob, respectively

e 0SC Arguments consist in a single or a contiguous sequence of the binary representations of each

argument

The maximum UDP packet size is 32k bytes.

7 See http://opensoundcontrol.org/spec-1_0

©Patrick-Gilles Maillot 18 WING remote protocols —V 3.0.6-4

WING OSC Messages

In the following paragraphs, we assume a communication link exists between WING and a client program, and
communications take place with a WING console at a known IP address, using UDP on port 2223.

All along this document, the character “~* will represent a NULL byte (\@). Patterns ->W and W-> represent data
sent to WING and data received from WING followed by the actual number of bytes transmitted or received,
respectively. To generate and test the OSC patterns listed in these pages, we used wosc®, a command-line tool
specifically designed to operate with WING OSC.

Retrieving WING console information can be completed by sending the OSC Address Pattern “/?”
->W, 4 B: /?~~
W->, 80 B: /?~~,s~~WING,192.168.1.71,PGM,ngc-full,NO_SERIAL,1.07.2-40-glb1b292b:develop~rn~

The actual bytes exchanged are displayed below (OSC is a binary protocol)

->W, 4 B: 2f3fooo0

W->, 80 B:
2f3f00002c73000057494e472c3139322e3136382e312e37312c50474d2c6e67632d66756c6c2c4ed4f5f53455249414c2¢
312e30372e322d34302d6731623162323932623a646576656C617000000000

The line below is using a more compliant OSC format, and will result in the same answer
->W, 8 B: /Prn, e

Reading (Get) Parameter and Node data
There are two main ways to gain access to WING data: using one-parameter-at-a-time or using “nodes”.

WING “nodes” are a great way to access multiple parameters at a time, and therefore maximize
communication bandwidth with the console. Nodes are represented as string OSC Data Type and are zero
terminated (\e byte ending the string).

Nodes are also a good way to discover WING parameters, as they offer easy access to the full map of the JsoN
internal data structures.

We show below WING's first layer of JSON structure, and starting at the root, retrieved using OSC.

-SW, 4 B: [

W->, 116 B:

[~~~y SSSSSSSSSSSSSSSS~mv~$stata~v~cfgr$syscfgrio~~cha~aux~bus~main~~~~mtx~dca~smgrp~~~~fx~~cards~~~pl
ay~~~~pec~$ctloman

Retrieving a WING single parameter is quite easy: You must ensure your OSC request points to a leaf of the
JSON structure (i.e. there is no more hierarchy data after the current one). This is for example the case for the
fader value of a channel strip, or its mute state. Channel Strip 1 fader is represented as follows:

"cfg": {
"io": |
BGHEE
2 nyns g
"in": |
2| Yset®:

? "ae data": {
&

z2] "eonn": {
br

] mETE"™E o
teolMs 17
"hame": "™,
wiceon™: 1;
"led": true,
"mute": false,
"fdr": =144,
"pan": 0,

8wosc can be found as a free tool at https://x32ram.com/downloads

©Patrick-Gilles Maillot 19 WING remote protocols —V 3.0.6-4

Or “ch”/”1”/”fdr”, which translates to OSC Address Pattern /ch/1/fdr:
->W, 12 B: /ch/1/fdr~~~
W->, 32 B: /ch/1/fdr~~~J B ieans-00~[0.0000][-144.0000]

In the example above, the data [@.0000][-144.0000] are ascii representation of two 32bits big-endian float
data values, each coded on 4 bytes as binary. The binary data actually received is as shown below, and in
order to ease the reading of numerical information in this document, we use readable values in brackets

rather than the actual binary data. The color highlights are there to help distinguish data elements.
W->, 32 B: 2f63682f312f6664720000002C756666000000082d6T6T0000000000C 3100000

Depending on the OSC Address Pattern, WING returns ', s' for strings or enums, ', s¥' (ascii, raw, float value)
for floats, ', sfi' (ascii, raw, int value) for ints. In the example above, fader position is a float and WING returns
the ascii representation, the raw [0.0..1.0] data and the actual float value in dB.

Similarly, requesting the mute state of channel strip 1 would return:

->NW, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~jSFinansi~~~[1.0000][1]

W->, 32 B: 2f63682f312f6d75746500002673666900000006 310000003 f80000000000001

It should be noted that WING will accept both OSC path or the native hash data for representing nodes or
parameters; Indeed, all nodes and parameters in the console are assigned a binary address (a hash) as
explained in the chapter on native interface to the console. For example, the channel 1 mute command above
can be sent as OSC Address Patterns /ch/1/mute~~ as shown, or /#f50f69f8~~, and would return the same
data as shown above. exf50f698 is the hash for command “Channel 1 mute”. The full set of WING hash
values can be discovered by recursively traversing the 3soN tree of WING nodes/commands, using the native
binary interface or OSC protocol, but it is generally more convenient to use the more standard OSC node
notation, rather than hexadecimal hash values to address the console features.

Receiving OSC data on a specific port

Some OSC programs will request that data is returned on a specific port rather than being sent back to the
port used by the requesting client for sending data. To enable this capability, WING OSC includes an optional,
special notation for all OSC commands:

Any OSC command can be prefixed with the /%<port>, with <port> in the form “12345” to enable receiving the

expected answer onto the specified port number. For example, the OSC request:
->NW, 20 B: /%10027/ch/1/mute~~~

Will receive the expected reply from WING on port 10027, as shown below, using a sniffer program on said
port. The IP does not change.

/ch/1/mute [sfi] "1" 1.000000 1

©Patrick-Gilles Maillot 20 WING remote protocols —V 3.0.6-4

Writing (Set) Parameter and Node data

Single Parameters

OSC can be used to set or modify WING data. Taking the fader and mute examples above, we can modify their
respective values using OSC commands, sending string, big-endian int32 or big-endian float32 with the
corresponding OSC Type Tag following the OSC Address Pattern respective of the parameter to change.

WING does not echo data sent over UDP by the client application. The client application may nevertheless be
notified with an OSC event in case of an error.

Individual parameters can be strings, integer, or floats; WING OSC server implementation enables to use
several data types and will manage the conversion to ensure proper value setting inside the console. For
example, fader position is a floating-point internal value. It can be set as a string or a float using the following

OSC commands (in this example setting channel 2 fader position to -2 or -3dB):
->NW, 20 B: /ch/2/fdr~a~n~, smvn-2mn

->NW, 12 B: /ch/2/fdr~~~

W->, 36 B: /ch/2/fdr~me, sffammn- 2.0~~~ [0.7000][-2.0000]

->W, 20 B: /ch/2/fdr~~~, fan[-3.0000]
->NW, 12 B: /ch/2/fdr~~~
W->, 36 B: /ch/2/fdr~~~, sffrmmn- 3.0~~~~[0.6750][-3.0000]

o)

Special case: Toggle

Wing OSC implements a specific option for toggling [@..1] OSC integer values for int Type Tags;

This can be quite useful to change a value without first having to read it and test its current value before
sending back @ or 1 accordingly. By sending a -1 to an OSC Command with and integer OSC Type Tag that can
only accept values @ or 1, the value of the parameter will toggle between @ and 1. For example:

->W, 20 B: /ch/1/mute~~,i~~[-1]
Will mute channel 1 it is was unmuted, and unmute channel 1 if it was muted

Enumerated strings

One of the data WING uses is “enumerated strings”, or the choice of one string in a list of elements to
represent a specific state or attribute value. For example, /$ct1/user/1/1/enc/mode can be any of the
following strings: OFF, FDR, PAN, DCA, SSND, FSND, FX, DAWMCU, MON, MIDICC, SD A, or SD B

This can be set via a string OSC tag, as shown below if one wants to set the mode parameter to FX:
/$ctl/user/1/1/enc

->W, 20 B: /$ctl/user/1/1/enc~~

W->, 52 B: /$ctl/user/1/1/enc~~,sss~~~amode~~~~name~~~~$fname~~
->W, 24 B: /$ctl/user/1/1/enc/mode~

W->, 32 B: /$ctl/user/1/1/enc/mode~, s~~OFF~
/$ctl/user/1/1/enc/mode ,s FX

->NW, 32 B: /$ctl/user/1/1/enc/mode~, S~vaF X~
/$ctl/user/1/1/enc/mode

->W, 24 B: /$ctl/user/1/1/enc/mode~

W->, 32 B: /$ctl/user/1/1/enc/mode~, S~~FX~n

But it can also be set as an int OSC tag, using the index of the list corresponding to the targeted value; in the
example above, FX sits at index 6 in the list of 1@ strings; This enables us to use the following OSC command to
set the encoder mode to FX:

/$ctl/user/1/1/enc

->W, 20 B: /$ctl/user/1/1/enc~~

W->, 52 B: /$ctl/user/1/1/enc~~,sss~~~amode~~~~name~~~~$fname~~
->W, 24 B: /$ctl/user/1/1/enc/mode~

W->, 32 B: /$ctl/user/1/1/enc/mode~, s~~OFF~
/$ctl/user/1/1/enc/mode ,i 6

©Patrick-Gilles Maillot 21 WING remote protocols —V 3.0.6-4

->W, 32 B: /$ctl/user/1/1/enc/mode~,i~~[6]
/$ctl/user/1/1/enc/mode

->W, 24 B: /$ctl/user/1/1/enc/mode~

W->, 32 B: /$ctl/user/1/1/enc/mode~, S~~FX~n

One can also note the extendibility character of WING nodes; indeed, after the previous command, the user

1/1 encoder has additional parameters:

/$ctl/user/1/1/enc

->W, 20 B: /$ctl/user/1/1/enc~~

W->, 60 B: /$ctl/user/1/1/enc~~,sssss~~mode~~~~name~~~~$fname~~fx~~par~

Node Data

WING nodes can also be used to set multiple values with using a single OSC “/” command, and offer a simple
yet effective way to navigate within the hierarchical structure of JSoN data. Say you want/need to set fader
and mute values to -1 dB, 0 dB, oFf and oN for channels 1 and 2; This can be achieved in a single OSC request

using the following syntax:
->W, 44 B: [~~~,s~~/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1~

Or setting channel 1 fader and mute values to 10 dB and ON, and setting bus 1 fader to 5 dB:
->NW, 44 B: [~~~,s~~/ch.1.fdr=10,mute=1, /bus.l.fdr=5~~~~

As shown above, each parameter group is separated by a ‘,” character, the ‘/’ character represents the root of
the JSON parameter tree, and “.” characters are used to navigate up and down within the JSON parameter tree.

The console will reply with /*~~, s~~0K~~ if the command was accepted, or one of the following:
/*~~, 5~~wNODE NOT FOUND~~
/¥~y SonVALUE ERROR~~mm
/*~n, s~~BUFFER OVERFLOW~
/*~n~,s~~NODE IS NOT PAR~
/*~n, s~~INCOMPLETE DATA~
/¥, SunSTACK EMPTY~mmimi

if an error occurred during the execution of the command.
Note: Nodes can return large amounts of data; as a result, some nodes cannot be returned using 0SC/UDP as
they would overflow the 32kB UDP buffer limitation; In such situation, WING will return an error OSC message

event.

Some nodes examples are provided below:

->NW, 12 B: /ch/1/fdr~~~

W->, 32 B: /ch/1/fdr~~n, sffannn-00~[0.0000][-144.0000]
->NW, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~,sfi~~nnl~~~n[1.0000][1]
->W, 12 B: /ch/2/fdr~~~

W->, 32 B: /ch/2/fdr~e~~, sffrmmn- 00~[0.0000][-144.0000]
->NW, 12 B: /ch/2/mute~~

W->, 32 B: /ch/2/mute~~,sfi~~~nB~~n[0.0000] [0]
->NW, 44 B: [~~~,s~~/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1~

W->, 12 B: /*~n~,S~nOKnn

->NW, 12 B: /ch/1/fdr~~~

W->, 36 B: /ch/1/fdr~~n, sffammn-1,0~~nn[0.7250][-1.0000]
->NW, 12 B: /ch/1/mute~~

W->, 32 B: /ch/1/mute~~,sfi~~~nB~~~n[0.0000] [0]

->W, 12 B: /ch/2/fdr~~~

W->, 32 B: /ch/2/fdr~~~, sffaann0.0~[0.7500][0.0000]

->NW, 12 B: /ch/2/mute~~

©Patrick-Gilles Maillot 22 WING remote protocols —V 3.0.6-4

W->, 32 B: /ch/2/mute~~,sfi~~nnl~~n[1.0000][1]

Nodes can also be located deeper in the 3SON structure tree. For example, changing a single parameter in the

node channel 1 ["/ch/1”] can be done as shown below:
->NW, 20 B: /ch/l~~~, sanfdr=3mm~
W->, 16 B: /ch/1*~~, s~nQKnn

->NW, 12 B: /ch/1/fdr~~~
W->, 32 B: /ch/1/fdr~~n, sffannn3.0~[0.8250][3.0000]
->NW, 12 B: /ch/1/mute~~
W->, 32 B: /ch/1/mute~~,sfi~~~nB~~n[0.0000] [0]

The OSC command is replied to with an OK status if execution went well; error messages can be returned too,
as explained earlier.

The same type of command can be used to set/change several parameters at once; For example, fader and

mute values of channel 1 can be done as follows:
->W, 28 B: /ch/l~~~,s~nfdr=4,mute=l~r~nn~
W->, 16 B: /ch/1*~~, s~nQKnn

->NW, 12 B: /ch/1/fdr~~~
W->, 32 B: /ch/1/fdr~~n, sffannnd . 0~[0.8500][4.0000]
->NW, 12 B: /ch/1/mute~~
W->, 32 B: /ch/1/mute~~,sfirmmnlan~n[1.0000]] 1]

Special Node Type/Arguments

There are three special tag/argument that are specifically implemented for nodes. They enable listing the
complete set of data, parameter description, and description including values for the node provided as OSC
address pattern. The arguments to use are ‘*’, '?’, and ‘#', respectively. Examples of use are provided below,
applied to OSC address pattern /fx/1 when no effect is loaded to keep the description as short as possible.

Node data dump:
When using this format, the data returned will strictly correspond to what would be saved in a snap file;

Read-only and temporary data are not returned.
/fx/1 ,s *

SW, 16 B: /fX/l~m~, smnFamn

W->, 32 B: /fx/1l~~~,s~~md1=NONE, fxmix=100,~

Node parameter description:

/fx/1 ,s ?
->W, 16 B: /fX/l~~n~, SeomRmmin
W->, 696 B: /fX/l~~~,s~~ mdl list [NONE, EXT, HALL, ROOM, CHAMBER, PLATE, CONCERT,

AMBI, V-ROOM, V-REV, V-PLATE, GATED, REVERSE, DEL/REV, SHIMMER, SPRING, DIMCRS, CHORUS, FLANGER,
ST-DL, TAP-DL, TAPE-DL, OILCAN, BBD-DL, PITCH, D-PITCH, VSS3, BPLATE, GEQ, PIA, DOUBLE, PCORR,
LIMITER, DE-S2, ENHANCE, EXCITER, P-BASS, ROTARY, PHASER, PANNER, TAPE, MOOD, SUB, RACKAMP,
UKROCK, ANGEL, JAZZC, DELUXE, BODY, SOUL, ES88, E84, F110, PULSAR, MACH4, C5-CMB, SUB-M, V-IMG,

SPKMAN, DEQ3, *EVEN*, *SOUL*, *VINTAGE*, *BUS*, *MASTER*]~ fxmix lin [0 .. 100 %], 101
steps~ $esrc int [0 .. 400]~ $emode list [M, ST, M/S]~ $a_chn int [0
. 76]~ $a_pos int [0 .. 1]~~~~

Node description including values:

/Fx/1 ,s #
SSW, 16 B: /X[~ Sendinee
W->, 816 B: /fX/l~~~,s~~ mdl NONE list [NONE, EXT, HALL, ROOM,

CHAMBER, PLATE, CONCERT, AMBI, V-ROOM, V-REV, V-PLATE, GATED, REVERSE, DEL/REV, SHIMMER, SPRING,
DIMCRS, CHORUS, FLANGER, ST-DL, TAP-DL, TAPE-DL, OILCAN, BBD-DL, PITCH, D-PITCH, VSS3, BPLATE,

©Patrick-Gilles Maillot 23 WING remote protocols —V 3.0.6-4

GEQ, PIA, DOUBLE, PCORR, LIMITER, DE-S2, ENHANCE, EXCITER, P-BASS, ROTARY, PHASER, PANNER, TAPE,
MOOD, SUB, RACKAMP, UKROCK, ANGEL, JAZZC, DELUXE, BODY, SOUL, E88, E84, F11@, PULSAR, MACH4,
C5-CMB, SUB-M, V-IMG, SPKMAN, DEQ3, *EVEN*, *SOUL*, *VINTAGE*, *BUS*, *MASTER*]~ fxmix

100 lin [0 .. 100 %], 101 steps~ $esrc %] r/o int [0 ..
400]~ $emode M r/o list [M, ST, M/S]~ $a_chn (%] r/o
int [@ .. 76]~ $a_pos 0 r/o int [0 .. 1]~~~~

As a second example, we give below the node data dump for OSC address pattern /ch/1, when loaded with
default values after init:

/ch/1 ,s *
->W, 16 B: /ch/l~~n,son¥amn
W->, 2156 B:

/ch/l~~~ s~~in,set.srcauto=0,altsrc=0,inv=0,trim=0.0,bal=0.0,dlymode=M,dly=0.1,dlyon=0, .conn.grp=L
CL,in=1,altgrp=0FF,altin=1,..f1t.1c=0,1cf=100.2,1cs=24,hc=0,hcf=10k02,hcs=12,tf=0,md1=TILT,tilt=0.
00, .clink=1,col=1,name=,icon=0,led=1,mute=0, fdr=-00,pan=0,wid=100, solosafe=0,mon=A, proc=GEDI, ptap=
5,peq.on=0,1g=0.0,1f=100,19=1.00,2g=0.0,2f=999,2q9=1.00,3g=0.0,3f=10k0,3gq=1.00, .gate.on=0,md1=GATE,
thr=-40.0,range=40.0,att=10,hl1d=10,rel=199,acc=0,ratio="1:3", .gatesc.type=0FF, f=1k0,q=2.00, src=SEL
F,tap=IN, .eq.on=0,md1=STD,mix=100,1g=0.0,1f=80.2,1q=1.00, leq=SHV,1g=0.0,1f=200.0,1q=1.00,2g=0.0, 2f
=601.4,29=1.00,3g=0.0, 3f=1k50,3q=1.00,4g=0.0,4f=3k99,4q=1.00,hg=0.0,hf=12k00, hq=1.00, heq=SHV, .dyn.
on=0,md1=COMP,mix=100,gain=0.0,thr=-10.0,ratio=3.0,knee=3,det=RMS, att=50,h1d=20,rel=153,env=L0G, au
to=1, .dynxo.depth=6.0,type=0FF,f=1k0, .dynsc.type=0OFF, f=1k0,q=2.00, src=SELF, tap=IN, .preins.on=0,ins
=NONE, .main.1l.on=1,1v1=0.0,pre=0,.2.0n=0,1v1=0.0,pre=0, .3.0n=0,1v1=0.0,pre=0, .4.0n=0,1v1=0.0,pre=0
,..send.1l.0n=0,1lv]l=-00,pon=0,mode=PRE, plink=0,pan=0,.2.0n=0,1lvl=-00,pon=0,mode=PRE, plink=0,pan=0, .
3.0n=0,1lv]l=-00,pon=0,mode=PRE, plink=0,pan=0, .4.0n=0,1v1l=-00,pon=0,mode=PRE, plink=0,pan=0,.5.0n=0,1
vl=-00,pon=0,mode=PRE,plink=0,pan=0, .6.0n=0,1lvl=-00,pon=0,mode=PRE,plink=0, pan=0,.7.0n=0,1lvl=-00,p
on=0,mode=PRE, plink=0,pan=0, .8.0n=0,1vl=-00,pon=0,mode=PRE, plink=0,pan=0,.9.0n=0,1v1l=-00,pon=0,mod
e=GRP, plink=1,pan=0,.10.0n=0,1lvl=-00, pon=0,mode=GRP,plink=1,pan=0, .11.0n=0,1vl=-00,pon=0,mode=POST
,plink=1,pan=0,.12.0n=0,1lvl=-00,pon=0,mode=POST, plink=1,pan=0, .13.0n=0, 1lvl=-00,pon=0,mode=POST, pli
nk=1,pan=0, .14.0n=0,lvl=-00,pon=0,mode=POST, plink=1,pan=0, .15.0n=0, 1lvl=-00, pon=0,mode=POST, plink=1
,pan=0, .16.0n=0,1lv1l=-00, pon=0,mode=POST, plink=1,pan=0, .MX1.0n=0,1lv1l=-00, pon=0,mode=PRE, plink=0, pan
=0, .MX2.0n=0, 1lvl=-00,pon=0,mode=PRE, plink=0,pan=0, .MX3.0n=0,1v1=-00,pon=0,mode=PRE, plink=0,pan=0, .
MX4.0on=0,1vl=-00,pon=0,mode=PRE,plink=0,pan=0, .MX5.0n=0,1v1=-00,pon=0,mode=PRE,plink=0,pan=0, .MX6.
on=0, 1lvl=-00,pon=0,mode=PRE, plink=0,pan=0, .MX7.0n=0,1lv1l=-00,pon=0,mode=PRE, plink=0,pan=0, .MX8.0n=0
,1lvl=-00,pon=0,mode=PRE, plink=0,pan=0, ..tapwid=100,postins.on=0,mode=FX, ins=NONE,w=0.0, .tags=,~~~~

©Patrick-Gilles Maillot 24 WING remote protocols —V 3.0.6-4

OSC: Special Cases

JSON Structure dynamic changes

As parameters get changed on the WING console, its 3JSON structure tree evolves to reflect the changes; This
can be a specific parameter that when changing to an oN state, offers new capabilities in the audio chain, or in
the way the console will react.

Itis also typical of effects and plugins: WING consoles support dynamic allocation of effect or plugins that can
generate large changes within the default JsoN tree. As already mentioned, WING nodes are a great way to list
the parameters available for a given effect and therefore a way to get and possibly set effect parameter
values.

The WING effects and plugins, and their respective parameters are listed later in this document®.

The OSC commands below show how you can access effects slots, allocate an effect, and list parameters and
later modify effect parameter values.

Accessing effects with currently no effect loaded in effect slot 1, listing the effect node:

->W, 4 B: /fx~

W->, 88 B:

/fX~,555555555555555 Smmnlnunn2nmn3nnnbrnnEnnnGrunn] mnnBrnnGannl@nnllnvnl2nn]3mn 1415 nnl G

-5W, 8 B: /fx/l~~n~

W->, 60 B: /fx/l~~~,ssssss~mdl~fxmix~~~$esrc~~~$emode~~$a_chn~~$a_pos~~
->W, 12 B: /fx/1/mdl~~~

W->, 24 B: /fx/1/mdl~~~, SemNONE~~~n~

Loading a PIA effect in effect slot 1:
->W, 20 B: /fx/1/mdl~~~, s~~pia~
->W, 12 B: /fx/1/mdl~~~

W->, 20 B: /fx/1/mdl~~~, s~~PIA~

PIA effect is now loaded, listing the effect Node gives a different set of parameters:

->W, 8 B: /fx/l~ww

W->, 120 B:

/fX/ 1~~~ SSSSSSSSSSSSSSSSSss~mdl~fxmix~~~$esrc~~~$emode~~$a_chn~~$a_pos~~mix~g~~~3la~63~~125~250~50
O~1knn 2Kk 8kan 16k~

We can now get/set effect 1 PIA parameters, for example the 125Hz band:
->W, 12 B: /fx/1/125~~~
W->, 32 B: /fX/1/125~~n~, sffannn.0~[0.5000][0.0000]

The 125Hz band is at 0dB, change it to 10dB and verify the change:
->W, 20 B: /fx/1/125~~~,f~~[10.000]

->W, 12 B: /fx/1/125~~~

W->, 36 B: /fx/1/125~~~, sFfrnnnl@.0~~~~[0.9233][10.000]

9 Please refer to the “Effects” paragraph

©Patrick-Gilles Maillot 25 WING remote protocols —V 3.0.6-4

OSC Tag Type ‘blob’ or ‘binary” use

WING OSC server implementation supports the ‘blob’/’binary’ OSC Tag type, enabling the use of ‘native’
commands?® within OSC, making it is possible with the proper information at hand to send and receive binary
data.

An alternative to standard node requests (such as the request on root below) is to use binary.

->W, 4 B: [~~~

W->, 116 B:
/~~~,5555555555555SSS~~~$stat~~~cfga$syscfgrio~r~ch~~aux~bus~main~~~~mtx~dca~mgrp~~~~fx~~cards~~~pl
ay~~~~pec~$ctlovman

Binary types typically apply on WING nodes to retrieve the internal binary equivalent of the JsSoN tree level
respective of a WING node.

Shown below is a request at root level using the native commands part of the binary data [all bytes sent
shown as hex data]

/ ,b @

Data actually sent (in hex): ->W, 16 B: 2fe@@eee2c620000B000000RAGe00000

WING’s reply is:

W->, 440 B: /~~~,b~~425 bytes:
dF00180000000097200439000005247374617405535441544500008001100000000edca7af9000003636667000000d 00
1500000000F89818a600000724737973636667000000d00130000000029417794000002696F03492f4f0000df00170000
000070b101390000026368074348414e4e454c0000dF001 000000008 2307800000036175780b415558204348414e4e45
4c0000df00140000000046C18500000036275730342555300000F00160000000004d3232800000464616960044d41494e
0000 001700000000 32252 20000036d7478064d41545249580000dF001400000000e 31326 F F00000364636103444341
0000df00100000000d252398b0000046d6772700a4d5554452047524F55500000dF001700000000473C91340000026678
074546464543545300000002200000000b4296C900000563617264730F45585041453494F4020434152445300008F00
180000000057297228000004706C617906504c415945520000dF001900000000Fab1762Cc00000372656308524543415244
455200008£001900000000Cbb951430000042463746C07434F4e545244C0000de

Lots of information are returned either as string, or more often as blob/binary. In the reply above, after each
‘df’ byte is a data length on two bytes, immediately followed by the binary address (the hash) where a node,
parameter, or subtree data can be found. For example, the subtree entry for channel (/ch) can be found at
address/hash 76b10139

An example on retrieving the DAW node (hash is df17c242, part of the $ctl subtree) is shown below. Sending

the OSC blob:
/$ctl/daw ,b dd
or

/ ,b d7df17c242dd

Respectively translate in the following binary data being sent to the console:
->W, 24 B: 2f2463746c2f6461770000002c62000000000001dd000000

or

->W, 20 B: 2f0000002c62000000000006d7df17c242dd0000

To which the console replies with (it can also reply with one of the errors listed earlier in the OSC chapters):
W->, 876 B: /$ctl/daw~~~,b~~856 bytes:
df0022df17c2423cb129d5000002616€0a44415720454e41424c4500400000000000000001d10028df17c2424e5c713400
0004636T6e6e0a434f4e4e45435449414e005000020344494e000355534200d10027df17c242e5681680000004656d756¢C
09454d554c4154494f4e00500002034d4355000348554900d10071df17c24242701ca9000006636T6e6669670000500004
02434314435553544f4d2043414e54524f4c53204F4e4c59044d5354520a53494e474c45204d4355084d53545231455854
0e4d4355202b20455854454e444552084d53545232455854114d4355202b20327820455854454e444552d1002edf17c242
ae1538a4000004636375701455534520555050455220434320464522044415700400000000000000001d10035df17c242
9fa4e7320000066469736a61671944495341424c4520574845454c20445552494e4720504c415900400000000000000001

10 Detail information on native commands is provided in a separate chapter

©Patrick-Gilles Maillot 26 WING remote protocols —V 3.0.6-4

df0097df17c242892e512d000006707265736574124c415354204c41414445442050524553455400500008012d012d0663
756261736506435542415345046c697665044c495645066C6T67696378074c414749432058066e75656e6461064e55454¢e
444108707261746T616c730950524120544F414c5306726561706572065245415045520973747564696F616e650a535455
444941204F4e45df001fdf17c242beefaecab00000324616e064441572041402400000000000000001d10027dT17c24296
3155910000062462706167650b42555454414e205041474500400000000000000004dF0031df17c242012dc54600000924
62746e74617563681242544e53454c20464144455220544155434800400000000000000001df002adf17c242775¢c19c200
00082462746e767061740c42544e53454¢20562d50415400400000000000000001df002ddf17c24242aeb92800000a2462
746e7265637264790d42544e53454c2052454352445900400000000000000001d10029df17c242fccfbe@7000008246274
6e6175746T0b42544e53454c204155544100400000000000000001df002adf17c24285cdce3f0000082462746e7673656¢C
0c42544e53454c20562d53454c00400000000000000001d1002ddf17c24215abd96800000a2462746€696e736572740d42
544e53454c20494e5345525400400000000000000001de

The above is more difficult to read than the more standard way of retrieving the node, but contains more

information:

->W, 12 B: /$ctl/daw~~~

W->, 156 B:

/$ctl/daw~~~, SSSSSSSSSSSSSS~ON~~CONN~~~~emul~~~~configa~ccup~~~~preset~~$on~$bpage~~$btntouch~~~$b
tnvpot~~~~$btnrecrdy~~$btnauto~~~~$btnvsel~~~~$btninsert~~

Matching the two representations tell us that:
daw/on is at binary address 3cb129ds5,
daw/conn at 4e5c7f34,

daw/emul at e5681689,

daw/config at 42701ca9,

daw/ccup at ael538a4,

daw/preset at 892e512d,

daw/$on at beefaeab,

and so on (highlighted values above).

The blob /binary Type Tag can also be used to execute native/binary commands. Using for example the
daw/$on hash/binary address value of beefaeab, we can set the console in and out of DAW mode, as if one
would have pressed the DAW button.

For example, sending any of the following commands will set DAW mode ON:
/ ,b d7beefaeab@l

->NW, 20 B: /~~~,b~~6 bytes: d7beefaeab@l

W->, 12 B: /*~n~,S~nOKne~

/$ctl/daw/$on ,b @1

->W, 28 B: /$ctl/daw/$on~~~,b~~1 bytes: @L~~~

W->, 12 B: /*~~, S~nOKnn

In the binary data sent with the line above, the segment @1 is equivalent to asking the value of the parameter
to be set using a 32bit integer with value 1.

The following lines are requesting to turn OFF DAW mode:
/ ,b d7beefaeab@@

->NW, 20 B: /~~~,b~~6 bytes: d7beefaeab@@

W->, 12 B: /*~~, S~nOKew

/$ctl/daw/$on ,b 00

->W, 28 B: /$ctl/daw/$on~~~,b~~1 bytes: @@~~~

W->, 12 B: /*~~, S~nOKew

In both blob Type Tag commands above, the console replies with a blob. Depending on the cases, it can also
return strings.

As seen above, the Tag Type blob can be used to retrieve the description of WING parameters when using the

native command ‘data description’ a.k.a. ‘.’; In an example below, still using the DAW ON state, we can get
the data using the following command:

©Patrick-Gilles Maillot 27 WING remote protocols —V 3.0.6-4

/$ctl/daw/$on ,b @@
->W, 28 B: /$ctl/daw/$on~~~,b~~1 bytes: .~~~

WING returns the following which includes the hash value for /$ct1/daw/$on and its full description:

W->, 60 B: /$ctl/daw/$on~~~,b~~35 bytes:
df@01Fdf17c242beefacab flBB03246F6e064441572044cP0A000000OEB00000001de
parse 35 bytes node
len: 31, parent: dfl7c242, hash: beefaeab, index: I, flags: -
name: $on longname: DAW ON, type: <int> [I..l]

End node

The blob Tag Type can be used to retrieve the value of WING parameters when using the native command
‘data request’, a.k.a. ‘.’; In an example below, still using the DAW ON state, we can get the data using the
following command:

->NW, 20 B: /~~~,b~~6 bytes: d7bee-Faeab.
W->, 20 B: /~~~,b~~7 bytes: d7beefaeab@lde

With @1 indicating the DAW [Remote control] button is in an ON state.

Detailed information on the native/binary interface to WING and data value coding is provided later in this
document.

©Patrick-Gilles Maillot 28 WING remote protocols —V 3.0.6-4

Subscribing to OSC Data

There are three main types of subscription for receiving binary or OSC messages.

A single OSC subscription is active at any time, provided to the last requestor. Subscriptions must be renewed
every 10 seconds to keep the subscription alive by sending one of the 3 messages shown below.

/*b~ (Or /*b~,~~~) will enable receiving event driven binary messages
Binary messages are formatted exactly as the binary/native interface and therefore can be sent back to the
console with no change.

Example using mutes and faders

->W, 4 B: /*b~

W->, 32 B: /~~~,b~~20 bytes: d738ae75c2d5c3100000d77e463474d5c3100000
W->, 24 B: /~~~,b~~12 bytes: d7f50f691801d726855cd301

/*s~ (Or /*s~,~~~) will enable receiving event OSC messages

OSC messages are received as triplets of data, as previously presented!?, and shown below; Sending back data
to WING will require to select one of the (up to) 3 parameters received, depending on the chosen format. The
‘string” argument will always work for all messages.

Example using mutes and faders
->NW, 4 B: /[*s~

W->, 32 B: /ch/1/fdr~mn, sffammn- 00~[0.0000][-144.0000]
W->, 32 B: /ch/1/$fdr~~, sffrnmn- 00~[0.0000][-144.06000]
W->, 32 B: /ch/1/mute~~,sfin~nnlnn~[1.0000][1]
W->, 32 B: /ch/1/$mute~,sfinmnnlnn~[0.5000][1]

/*S~ (or /*S~,~~~) will enable receiving event OSC messages

OSC messages are received as single tag data, as shown below; WING reports the native format of the OSC
pattern (ex: ‘f for floats, ‘i’ for integers, etc.). Data received with events resulting of a /*S~ subscription can
be sent back to the console with no change.

Example using mutes and faders

->W, 4 B: /*S~

W->, 20 B: /ch/1/fdr~~~, fan]-144.0000]
W->, 20 B: /ch/1/$fdr~~,f~n]-144.0000]
W->, 20 B: /ch/1/mute~~,i~~[1]
W->, 20 B: /ch/1/$mute~,i~~[1]

Using the simple forms of subscription requests will provide data from the console to the requesting IP/port.
It is possible to redirect the data received from WING by prefixing the commands with a port specifier
element as shown below:

/%23456/*b~ will subscribe to binary messages, being sent by WING to port 23456.

/%23456/*s~ will subscribe to OSC messages, being sent by WING to port 23456.

/%23456/*S~ will subscribe to OSC messages, being sent by WING to port 23456.

11 Refer to “Writing (Set) Parameter and Node data”, paragraph “Single Parameters”

©Patrick-Gilles Maillot 29 WING remote protocols —V 3.0.6-4

WING ae_data OSC commands list

The next chapters provide an abridged®? list of all OSC commands available for WING.

All commands and parameters below are part of the ae_data section in 3S0N snapshot files. Other console
control commands part of the ce_data section in 3SON snapshot files are described later in this document.

Status

Command

/Sstat

/Sstat/A
/Sstat/A/stat
/Sstat/A/dev
/Sstat/A/errorsc
/Sstat/A/errorsu
/Sstat/A/clrerr

/Sstat/B
/Sstat/B/stat
/Sstat/B/dev
/Sstat/B/errorsc
/Sstat/B/errorsu
/Sstat/B/clrerr

/Sstat/C
/Sstat/C/stat
/Sstat/C/dev
/Sstat/C/errorsc
/Sstat/C/errorsu
/Sstat/C/clrerr

/Sstat/lock
/$stat/ppm
/Sstat/solo
/Sstat/sip
/Sstat/rtcerr
/Sstat/time

/Sstat/date

/Sstat/usbstate
/Sstat/usbvolname
/Sstat/sc_stat
/Sstat/sc_devices
/Sstat/sc_upcnt
/Sstat/sc_dncnt
/Sstat/sc_uprout
/Sstat/rmt_a

Type

— - n un =2 —— — — n un Z2 2

—_— = — n n =2

N — — = — | =

wn

nuun —— un unu unuunmn

Range

0.1
-200..200
0.1
0.1
0.1

0..32
0..32

Text

-, OK, ERR, UPD
128 chars max
0..9999
0..9999

0.1

-, OK, ERR, UPD
128 chars max
0..9999
0..9999

0.1

-, OK, ERR, UPD
128 chars max
0..9999
0..9999

0.1

12 chars max

12 chars max

-, ERR, IDLE, BUSY
20 chars max

OK, ERR

128 chars max

32 char max
16 chars max

Description

Status node

AES50 A node

AES50 A state [RO]

AES50 A Device [RO]
Corrected error count [RO]
Uncorrected error count [RO]
Reset error counters

AES50 B node

AES50 B state [RO]

AES50 B Device [RO]
Corrected error count [RO]
Uncorrected error count [RO]
Reset error counters

AES50 C node

AES50 C state [RO]

AES50 C Device [RO]
Corrected error count RO]
Uncorrected error count [RO]
Reset error counters

Clock lock [RO]

Clock ppm [RO]

Solo [RO]

Solo In Place [RO]

Real Time Clock Error [RO]

Clock time (depending on time
format) [RO]

Clock date (depending on date
format) [RO]

USB Player state [RO]

USB Player volume name [RO]
StageConnect status [RO]
StageConnect devices [RO]
StageConnect upstreams [RO]
StageConnect downstreams [RO]
StageConnect upstream routing [RO]
Name of the console connected on
AES50 port A [RO]

12|t includes the set of commands for the first element of a series. For example, /ch/1 set of OSC commands are listed, but not

/ch/2to /ch/4e.

©Patrick-Gilles Maillot

30

WING remote protocols —V 3.0.6-4

Name of the console connected on
AES50 port A [RO]
Name of the console connected on
AES50 port A [RO]

/Sstat/rmt_b S 16 chars max

/Sstat/rmt_c S 16 chars max

©Patrick-Gilles Maillot 31 WING remote protocols —V 3.0.6-4

General Configuration
Type

Command
/cfg
/cfg/mainlink
/cfg/dcamgrp

/cfg/mon
/cfg/mon/1
/cfg/mon/1/SIvl
/cfg/mon/1/inv
/cfg/mon/1/pan
/cfg/mon/1/wid

/cfg/mon/1/eq

/cfg/mon/1/eq/on
/cfg/mon/1/eq/lsg
/cfg/mon/1/eq/Isf

/cfg/mon/1/eq/1g
/cfg/mon/1/eq/1f

/cfg/mon/1/eq/1q
/cfg/mon/1/eq/2g
/cfg/mon/1/eq/2f

/cfg/mon/1/eq/2q
/cfg/mon/1/eq/3g
/cfg/mon/1/eq/3f

/cfg/mon/1/eq/3q
/cfg/mon/1/eq/4g
/cfg/mon/1/eq/4f

/cfg/mon/1/eq/4q
/cfg/mon/1/eq/5g
/cfg/mon/1/eq/5f

/cfg/mon/1/eq/5q
/cfg/mon/1/eq/6g
/cfg/mon/1/eq/6f

/cfg/mon/1/eq/6q
/cfg/mon/1/eq/hsg

/cfg/mon/1/eq/hsf
/cfg/mon/1/lim
/cfg/mon/1/dly

/cfg/mon/1/dly/on
/cfg/mon/1/dly/m

N
S
|

m M — M Z 2

Mm ™M

Range

0.1

1.2
-144..10
0.1
-100..100
-150..150

0.1
-15..15
20..2000

-15..15
20..20000

0.44.10
-15..15
20..20000

0.44..10
-15..15
20..20000

0.44.10
-15..15
20..20000

0.44.10
-15..15
20..20000
0.44..10
-15..15
20..20000

0.44..10
-15..15

50..20000

-40..0

0.1
0.1..100

Text

OFF, 2, 2-3, 2-4

-00..10in 1024 steps

201 steps
61 steps

301 steps
641 steps

301 steps
961 steps

181 steps
301 steps
961 steps

181 steps
301 steps
961 steps

181 steps
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
961 steps

181 steps
301 steps

833 steps

41 steps

1000 steps

Description

General Configuration node

Main Link

DCA mutegroups (DCA mute mutes
all channels assigned to DCA)

Monitor buses config node
Monitor bus 1 node

Monitor bus 1 level (dB)*3
Monitor bus 1 invert (polarity)
Monitor bus 1 pan

Monitor bus 1 width (%)

Monitor bus 1 EQ node

Monitor bus 1 EQ off/on

Monitor bus 1 EQ low shelf gain (dB)
Monitor bus 1 EQ low shelf
frequency (Hz)

Monitor bus 1 EQ band 1 gain (dB)
Monitor bus 1 EQ band 1 frequency
(Hz)

Monitor bus 1 EQ band 1 Q
Monitor bus 1 EQ band 2 gain (dB)
Monitor bus 1 EQ band 2 frequency
(Hz)

Monitor bus 1 EQ band 2 Q
Monitor bus 1 EQ band 3 gain (dB)
Monitor bus 1 EQ band 3 frequency
(Hz)

Monitor bus 1 EQ band 3 Q
Monitor bus 1 EQ band 4 gain (dB)
Monitor bus 1 EQ band 4 frequency
(Hz)

Monitor bus 1 EQ band 4 Q
Monitor bus 1 EQ band 5 gain (dB)
Monitor bus 1 EQ band 5 frequency
(Hz)

Monitor bus 1 EQ band 5 Q
Monitor bus 1 EQ band 6 gain (dB)
Monitor bus 1 EQ band 6 frequency
(Hz)

Monitor bus 1 EQ band 6 Q
Monitor bus 1 EQ high shelf gain
(dB)

Monitor bus 1 EQ high shelf
frequency (Hz)

Monitor bus 1 limiter level(dB)

Monitor bus 1 delay node
Monitor bus 1 delay off/on
Monitor bus 1 delay (meters)

13 This command is considered RO on the full-size WING, and can be set for other devices where the actual surface control

potentiometer is not present.

©Patrick-Gilles Maillot

32

WING remote protocols —V 3.0.6-4

/cfg/mon/1/dim F 40..0 41 steps Monitor bus 1 delay dim level (dB)
/cfg/mon/1/pfldim F 40..0 41 steps Monitor bus 1 PFL Dim (dB)
/cfg/mon/1/egbdtrim F 0..24 25 steps Monitor bus 1 band solo trim {dB)
/cfg/mon/1/srclvl F -144..10 -00..10in 1024 steps Monitor bus 1 source level
/cfg/mon/1/srcmix F -144..10 -00..10in 1024 steps Monitor bus 1 source mix (dB)
/cfg/mon/1/src S OFF, MAIN.1..MAIN.4, Monitor bus 1 source

MTX.1..MTX.8, BUS.1..BUS.16,

AUX.1..AUX.8
/cfg/mon/1/Slvlact F -144..10 -00..10in 1024 steps Monitor bus 1 fader level [RO]
/cfg/mon/1/tags S Up to 80 chars Monitor bus 1 tags
/cfg/solo N Solo config node
/cfg/solo/mode S LIVE, STUDIO, SIP Solo mode
/cfg/solo/mon S PH, SPK, PH+SPK Solo monitor
/cfg/solo/mute | 0.1 Solo mute
/cfg/solo/Sdim | 0.1 Solo dim off/on
/cfg/solo/Smono | 0.1 Solo mono off/on
/cfg/solo/Sflip | 0.1 Solo left and right channels flipped
/cfg/solo/chtap S PFL, AFL Solo channel tap
/cfg/solo/bustap S PFL, AFL Solo bus tap
/cfg/solo/maintap S PFL, AFL Solo main tap
/cfg/solo/mtxtap S PFL, AFL Solo matrix tap
/cfg/solo/srcsolo S OFF, CH39, AUX7 Source Solo Enable
/cfg/solo/Ssrcsolo | 0.1 Source Solo
/cfg/solo/Ssresgrp I 1..13 Source Solo Group
/cfg/solo/Ssrcsin I 1..64 Source Solo In
/cfg/rtalt 1 N RTA config node (dsp)
/cfg/rta/Ssrc I 1..76 RTA source [RO]
/cfg/rta/Stap S IN, POST, FILT, PREEQ, POSTEQ, RTA source tap [RO]

PREFDR, GATEK, DYNK, DYNXO,

PRETAP, SOLO, MON.PH,

MON.SPK, FXIN, FXOUT
/cfg/rta/Sdec S SLOW, MED, FAST RTA Decay [RO]
/cfg/rta/Sdet S PEAK, RMS RTA Detector [RO]
/cfg/rta/rtasrc I 0..76 *RTA source (indexed)
/cfg/rta/rtatap S IN, POST, FILT, PREEQ, POSTEQ, *RTA source tap

PREFDR, GATEK, DYNK, DYNXO,

PRETAP, SOLO, MON.PH,

MON.SPK, FXIN, FXOUT
/cfg/rta/rtadecay S SLOW, MED, FAST *RTA decay
/cfg/rta/rtadet S PEAK, RMS, AVG *RTA detector
/cfg/rta/rtarange F 30, 60 *RTA range (dB)
/cfg/rta/rtagain F -5.50 56 steps *RTA gain (dB)
/cfg/rta/rtaauto I 0.1 *RTA autogain
/cfg/rta/eqdecay S SLOW, MED, FAST RTA eq decay
/cfg/rta/eqdet S PEAK, RMS, AVG RTA eq detector
/cfg/rta/eqrange F 30, 60 RTA eq range (dB)
/cfg/rta/eqgain F -5..50 56 steps RTA eq gain (dB)
/cfg/rta/egauto I 0.1 RTA eq autogain
/cfg/mtr N Meter config node

14 Tags (marqued with *) are only used with metering RTA and future RTA screen, as opposed to EQ (on-screen) RTA
15 See also /Sctl/cfg/rta commands

©Patrick-Gilles Maillot 33 WING remote protocols —V 3.0.6-4

/cfg/mtr/Sscopesrc
/cfg/mtr/Sscopetap

/cfg/mtr/scopesrc
/cfg/mtr/scopetap

/cfg/mtr/mtrsfc
/cfg/mtr/mtrsfc/in
/cfg/mtr/mtrsfc/bus
/cfg/mtr/mtrsfc/main
/cfg/mtr/mtrsfc/mtx
/cfg/mtr/mtrsfc/dca

/cfg/mtr/mtrpage
/cfg/mtr/mtrpage/in
/cfg/mtr/mtrpage/bus
/cfg/mtr/mtrpage/main
/cfg/mtr/mtrpage/mtx
/cfg/mtr/mtrpage/dca

/cfg/mtr/mainmtr
/cfg/mtr/mainpos

/cfg/talk
/cfg/talk/assign
/cfg/talk/Slvl

/cfg/talk/A
/cfg/talk/A/Son
/cfg/talk/A/mode
/cfg/talk/A/mondim
/cfg/talk/A/busdim
/cfg/talk/A/indiv

/cfg/talk/A/B1
/cfg/talk/A/B2
/cfg/talk/A/B3
/cfg/talk/A/B4
/cfg/talk/A/B5
/cfg/talk/A/B6
/cfg/talk/A/B7
/cfg/talk/A/BS
/cfg/talk/A/B9
/cfg/talk/A/B10
/cfg/talk/A/B11
/cfg/talk/A/B12
/cfg/talk/A/B13
/cfg/talk/A/B14
/cfg/talk/A/B15

©Patrick-Gilles Maillot

nwv un unvu unu un 2

n unv uvu n un =2

1..76

0..76

-144..10

0..

40..0
40..0
0..

© 0 0000000000000
FRr R R RRRRRRRRRRR

1

1

IN, POST, FILT, PREEQ, POSTEQ,
PREFDR, GATEK, DYNK, DYNXO,
PRETAP, SOLO, MON.PH,
MON.SPK, FXIN, FXOUT

IN, POST, FILT, PREEQ, POSTEQ,
PREFDR, GATEK, DYNK, DYNXO,
PRETAP, SOLO, MON.PH,
MON.SPK

PRE, POST
PRE, POST
PRE, POST
PRE, POST
PRE, POST

PRE, POST
PRE, POST
PRE, POST
PRE, POST
PRE, POST

Meter scope source [RO]
Meter scope source tap point [RO]

Meter scope source
Meter scope source tap point

Meters fader node [Setup—>Surface]
Meters fader section channel tap
Meters fader section bus tap
Meters fader section main tap
Meters fader section matrix tap
Meters fader section DCA tap

Meters page node (Meters screen)
Meters page channels tap

Meters page bus tap

Meters page mains tap

Meters page matrix tap

Meters page DCA tap

[MAIN.1...4, MTX.1...8, MON.PH, Main meter

MON.SPK, SEL_CH
AUTO, PRE, POST

OFF, CH40, AUX8
-00..10in 1024 steps

AUTO, PUSH, LATCH
41 steps
41 steps

34

Main position

Talkback config node
Talkback assignments
Talkback level (dB) [RO]

Talkback A node
Talkback A off/on
Talkback A mode
Talkback A monitor dim
Talkback A bus dim

Use individual Bus/Main TB send
levels

Talkback A bus 1 assign
Talkback A bus 2 assign
Talkback A bus 3 assign
Talkback A bus 4 assign
Talkback A bus 5 assign
Talkback A bus 6 assign
Talkback A bus 7 assign
Talkback A bus 8 assign
Talkback A bus 9 assign
Talkback A bus 10 assign
Talkback A bus 11 assign
Talkback A bus 12 assign
Talkback A bus 13 assign
Talkback A bus 14 assign
Talkback A bus 15 assign

WING remote protocols —V 3.0.6-4

/cfg/talk/A/B16 I 0.1 Talkback A bus 16 assign
/cfg/talk/A/MX1 | 0.1 Talkback A matrix 1 assign
/cfg/talk/A/MX2 | 0.1 Talkback A matrix 2 assign
/cfg/talk/A/MX3 | 0.1 Talkback A matrix 3 assign
/cfg/talk/A/MX4 | 0.1 Talkback A matrix 4 assign
/cfg/talk/A/MX5 | 0.1 Talkback A matrix 5 assign
/cfg/talk/A/MX6 | 0.1 Talkback A matrix 6 assign
/cfg/talk/A/MX7 | 0.1 Talkback A matrix 7 assign
/cfg/talk/A/MX8 | 0.1 Talkback A matrix 8 assign
/cfg/talk/A/M1 | 0.1 Talkback A main 1 assign
/cfg/talk/A/M?2 | 0.1 Talkback A main 2 assign
/cfg/talk/A/M3 | 0.1 Talkback A main 3 assign
/cfg/talk/A/M4 | 0.1 Talkback A main 4 assign

/cfg/talk/B N Talkback B node
/cfg/talk/B/Son | 0..1 Talkback B off/on
/cfg/talk/B/mode S AUTO, PUSH, LATCH Talkback B mode
/cfg/talk/B/mondim F 40..0 41 steps Talkback B monitor dim
/cfg/talk/B/busdim F 40..0 41 steps Talkback B bus dim
/cfg/talk/B/indiv I 0.1 Use individual Bus/Main TB send
levels
/cfg/talk/B/B1 | 0.1 Talkback B bus 1 assign
/cfg/talk/B/B2 | 0.1 Talkback B bus 2 assign
/cfg/talk/B/B3 | 0.1 Talkback B bus 3 assign
/cfg/talk/B/B4 | 0.1 Talkback B bus 4 assign
/cfg/talk/B/B5 | 0.1 Talkback B bus 5 assign
/cfg/talk/B/B6 | 0.1 Talkback B bus 6 assign
/cfg/talk/B/B7 | 0.1 Talkback B bus 7 assign
/cfg/talk/B/B8 | 0.1 Talkback B bus 8 assign
/cfg/talk/B/B9 | 0.1 Talkback B bus 9 assign
/cfg/talk/B/B10 I 0.1 Talkback B bus 10 assign
/cfg/talk/B/B11 I 0.1 Talkback B bus 11 assign
/cfg/talk/B/B12 I 0.1 Talkback B bus 12 assign
/cfg/talk/B/B13 I 0.1 Talkback B bus 13 assign
/cfg/talk/B/B14 I 0.1 Talkback B bus 14 assign
/cfg/talk/B/B15 I 0.1 Talkback B bus 15 assign
/cfg/talk/B/B16 I 0.1 Talkback B bus 16 assign
/cfg/talk/B/MX1 I 0.1 Talkback B matrix 1 assign
/cfg/talk/B/MX2 I 0.1 Talkback B matrix 2 assign
/cfg/talk/B/MX3 I 0.1 Talkback B matrix 3 assign
/cfg/talk/B/MX4 I 0.1 Talkback B matrix 4 assign
/cfg/talk/B/MX5 I 0.1 Talkback B matrix 5 assign
/cfg/talk/B/MX6 I 0.1 Talkback B matrix 6 assign
/cfg/talk/B/MX7 I 0.1 Talkback B matrix 7 assign
/cfg/talk/B/MX8 I 0.1 Talkback B matrix 8 assign
/cfg/talk/B/M1 | 0.1 Talkback B main 1 assign
/cfg/talk/B/M2 | 0.1 Talkback B main 2 assign
/cfg/talk/B/M3 | 0.1 Talkback B main 3 assign
/cfg/talk/B/M4 | 0.1 Talkback B main 4 assign
/cfg/amix N Automixing node
/cfg/amix/x | 0.. Automix X group enable
/cfg/amix/y | 0.. Automix Y group enable

©Patrick-Gilles Maillot

35

WING remote protocols —V 3.0.6-4

System Settings

Command Type Range Text Description

/Ssyscfg N System configuration node
/Ssyscfg/consolename S 16 chars max Console name
/Ssyscfg/logflags S 256 char max Log flags

/Ssyscfg/ipmode S DHCP, STATIC IP Mode

/Ssyscfg/ip0 | 0..255 IP first number
/Ssyscfg/ipl I 0..255 IP second number
/Ssyscfg/ip2 | 0..255 IP third number
/Ssyscfg/ip3 I 0..255 IP fourth number
/Ssyscfg/mskO | 0..255 IP mask first number
/Ssyscfg/msk1 | 0..255 IP mask second number
/Ssyscfg/msk2 | 0..255 IP mask third number
/Ssyscfg/msk3 | 0..255 IP mask fourth numbe
/Ssyscfg/gw0 I 0..255 IP gateway first number
/Ssyscfg/gwl I 0..255 IP gateway second number
/Ssyscfg/gw?2 I 0..255 IP gateway third number
/Ssyscfg/gw3 I 0..255 IP gateway fourth number
/$syscfg/Sipapply | 0.1 IP applied
/Ssyscfg/Sfirmware S 64 chars max Firmware version number [RO]
/Ssyscfg/Sserial S 32 chars max Serial number [RO]
/Ssyscfg/Scnscfg S 64 chars max Console configuration/build type

string [RO], typically start with
“wing”, “wing-rack”,
“wing-compact”

/Ssyscfg/Scnsmdl S 32 chars max Console Model right to Console
Name in Setup screen [RO], typically
“ngc-full” for the full sized desk, can
also be “wing-bk”, "wing-rack”,
“wing-compact”

/Ssyscfg/Schwversion S 32 chars max Main board HW version [RO]

/Ssyscfg /teplock | 0.1 Prevent modifications from TCP
input

/Ssyscfg/usbh_spd S FS, HS USB driver speed setting Full Speed,
High Speed?®

/Ssyscfg/Susbspd_act = S FS, HS USB driver speed setting Full Speed,
High Speed [RO]

/Ssyscfg/eth/cfg S SEPARATE, SWITCHED Optional module Ethernet mode

/Ssyscfg/opt_mod S NONE, DANTE, WSG Installed optional module [RO]

16 \When in FS, record is limited to 2 tracks/16bits. 4 tracks/24bits playing at once from USB stick may be affected; USB 3.1 capable
memory sticks are recommended.

©Patrick-Gilles Maillot 36 WING remote protocols —V 3.0.6-4

Input/Output Settings
Type

Command

/io

/io/altsw
/io/autoaltovr

/io/in

/io/in/LCL
/io/in/LCL/1
/io/in/LCL/1/mode
/io/in/LCL/1/g
/io/in/LCL/1/vph
/io/in/LCL/1/mute
/io/in/LCL/1/pol
/io/in/LCL/1/col
/io/in/LCL/1/name
/io/in/LCL/1/icon
/io/in/LCL/1/tags
/io/in/LCL/1/Sha
/io/in/LCL/1/rmt
/io/in/LCL/1/Sract
/io/in/LCL/1/Srdest
/io/in/LCL/1/rcvc

/io/in/LCL/1/Smute

/io/in/AUX
/io/in/AUX/1
/io/in/AUX/1/mode
/io/in/AUX/1/mute
/io/in/AUX/1/pol
/io/in/AUX/1/col
/io/in/AUX/1/name
/io/in/AUX/1/icon
/io/in/AUX/1/tags
/io/in/AUX/1/Smute

/io/in/A
/io/in/A/1
/io/in/A/1/mode
/io/in/A/1/g
/io/in/A/1/vph
/io/in/A/1/mute
/io/in/A/1/pol
/io/in/A/1/col
/io/in/A/1/name
/io/in/A/1/icon
/io/in/A/1/tags
/io/in/A/1/Sha
/io/in/A/1/rmt
/io/in/A/1/Sract
/io/in/A/1/Srdest

N
|
|

- - = = —n=zZzz= — - - -0 === —Tun=z==

n—-—um—-—un —-—un == — — T"mun zZz =2

Range Text
0.1
0.1
1..24%7
M, ST, M/S
-3..45.5 98 steps
0.1
0.1
0.1
1..12
16 chars max
0..999
80 chars max
0..5
OFF, AES A, AES B, AES C
0.1
7 chars max
0.1
0.2
1.8
M, ST, M/S
0.1
0.1
1..12
16 chars max
0..999
80 chars max
0.2
1..48
M, ST, M/S
-3..45.5 98 steps
0.1
0.1
0.1
1..12
16 chars max
0..999
80 chars max
0..5
OFF, AES A, AES B, AES C
0.1

7 chars max

17 All 24 local inputs may not be available depending on the console model

©Patrick-Gilles Maillot

37

Description

Input/Output node
Main/Alt switch

Global Input Select Override

Input node

Local Input node

Local Input 1 node

Local Input 1 mode

Local Input 1 gain (dB)

Local Input 1 phantom

Local Input 1 mute

Local Input 1 polarity

Local Input 1 color

Local Input 1 name

Local Input 1 icon (indexed)
Local Input 1 tags

Local input 1 ha type [RO]

Local input 1 remote control
Local input 1 remote active [RO]
Local input 1 remote dest [RO]
Local input 1 remote customizations
sync

Local input 1 mute [RO]

Aux Input node

Aux Input 1 node

Aux Input 1 mode

Aux Input 1 mute

Aux Input 1 polarity

Aux Input 1 color

Aux Input 1 name

Aux Input 1 icon (indexed)
Aux Input 1 tags

Aux input 1 mute [RO]

AES50 A Input node

AES50 A Input 1 node

AES50 A Input 1 mode

AES50 A Input 1 gain (dB)

AES50 A Input 1 phantom power
AES50 A Input 1 mute

AES50 A Input 1 polarity

AES50 A Input 1 color

AES50 A Input 1 name

AES50 A Input 1 icon (indexed)
AES50 A Input 1 tags

AES50 A input 1 ha type [RO]
AES50 A input 1 remote control
AES50 A input 1 remote active [RO]
AES50 A input 1 remote dest [RO]

WING remote protocols —V 3.0.6-4

/io/in/A/1/rcvc
/io/in/A/1/Smute

/io/in/B
/io/in/B/1
/io/in/B/1/mode
/io/in/B/1/g
/io/in/B/1/vph
/io/in/B/1/mute
/io/in/B/1/pol
/io/in/B/1/col
/io/in/B/1/name
/io/in/B/1/icon
/io/in/B/1/tags
/io/in/B/1/Sha
/io/in/B/1/rmt
/io/in/B/1/Sract
/io/in/B/1/Srdest
/io/in/B/1/rcvc

/io/in/B/1/Smute

/io/in/C
/io/in/C/1
/io/in/C/1/mode
/io/in/C/1/g
/io/in/C/1/vph
/io/in/C/1/mute
/io/in/C/1/pol
/io/in/C/1/col
/io/in/C/1/name
/io/in/C/1/icon
/io/in/C/1/tags
/io/in/C/1/Sha
/io/in/C/1/rmt
/io/in/C/1/Sract
/io/in/C/1/Srdest
/io/in/C/1/rcve

/io/in/C/1/Smute

/io/in/SC
/io/in/SC/1
/io/in/SC/1/mode
/io/in/SC/1/mute
/io/in/SC/1/pol
/io/in/SC/1/col
/io/in/SC/1/name
/io/in/SC/1/icon
/io/in/SC/1/tags
/io/in/SC/1/Smute

/io/in/USB
/io/in/USB/1

©Patrick-Gilles Maillot

- n—-—un —-—un—-—un = = = — T unZ=2

- n—-—un —-—un—-—un == = — T unZz2=2

- n - = - - un Z 2

0.2

1..48
-3..45.5
0.1
0.1
0.1
1..12
0..999

0..5

0.2

1..48
-3..45.5
0.1
0.1
0.1
1..12
0..999

0.4

0.1

0.2

1..32
0.1
0.1

1..12

0..999

0.2

1..48

M, ST, M/S
98 steps

16 chars max

80 chars max

OFF, AES A, AES B, AES C

7 chars max

M, ST, M/S
98 steps

16 chars max

80 chars max

OFF, AES A, AES B, AES C

7 chars max

M, ST, M/S

16 chars max

80 chars max

38

AES50 A input 1 remote
customizations sync
AES50 A input 1 mute [RO]

AES50 B Input node

AES50 B Input 1 node

AES50 B Input 1 mode

AES50 B Input 1 gain (dB)

AES50 B Input 1 phantom power
AES50 B Input 1 mute

AES50 B Input 1 polarity

AES50 B Input 1 color

AES50 B Input 1 name

AES50 B Input 1 icon (indexed)
AES50 B Input 1 tags

AES50 B input 1 ha type [RO]
AES50 B input 1 remote control
AES50 B input 1 remote active [RO]
AES50 B input 1 remote dest [RO]
AES50 B input 1 remote
customizations sync

AES50 B input 1 mute [RO]

AES50 C Input node

AES50 C Input 1 node

AES50 C Input 1 mode

AES50 C Input 1 gain (dB)

AES50 C Input 1 phantom power
AES50 C Input 1 mute

AES50 C Input 1 polarity

AES50 C Input 1 color

AES50 C Input 1 name

AES50 C Input 1 icon (indexed)
AES50 C Input 1 tags

AES50 Cinput 1 ha type [RO]
AES50 Cinput 1 remote control
AES50 Cinput 1 remote active [RO]
AES50 C input 1 remote dest [RO]
AES50 Cinput 1 remote
customizations sync

AES50 Cinput 1 mute [RO]

StageConnect Input node
StageConnect Input 1 node
StageConnect Input 1 mode
StageConnect Input 1 mute
StageConnect Input 1 polarity
StageConnect Input 1 color
StageConnect Input 1 name
StageConnect Input 1 icon (indexed)
StageConnect Input 1 tags
StageConnect 1 mute [RO]

USB Input node
USB Input 1 node

WING remote protocols —V 3.0.6-4

/io/in/USB/1/mode
/io/in/USB/1/mute
/io/in/USB/1/pol
/io/in/USB/1/col
/io/in/USB/1/name
/io/in/USB/1/icon
/io/in/USB/1/tags
/io/in/USB/1/Smute

/io/in/CRD
/io/in/CRD/1
/io/in/CRD/1/mode
/io/in/CRD/1/mute
/io/in/CRD/1/pol
/io/in/CRD/1/col
/io/in/CRD/1/name
/io/in/CRD/1/icon
/io/in/CRD/1/tags
/io/in/CRD/1/Smute

/io/in/MOD
/io/in/MOD/1
/io/in/MOD/1/mode
/io/in/MOD/1/mute
/io/in/MOD/1/pol
/io/in/MOD/1/col
/io/in/MOD/1/name
/io/in/MOD/1/icon
/io/in/MOD/1/tags
/io/in/MOD/1/Smute

/io/in/PLAY
/io/in/PLAY/1
/io/in/PLAY/1/mode
/io/in/PLAY/1/mute
/io/in/PLAY/1/pol
/io/in/PLAY/1/col
/io/in/PLAY/1/name
/io/in/PLAY/1/icon
/io/in/PLAY/1/tags
/io/in/PLAY/1/Smute

/io/in/AES
/io/in/AES/1
/io/in/AES/1/mode
/io/in/AES/1/mute
/io/in/AES/1/pol
/io/in/AES/1/col
/io/in/AES/1/name
/io/in/AES/1/icon
/io/in/AES/1/tags
/io/in/AES/1/Smute

/io/in/USR

©Patrick-Gilles Maillot

- —n = - —Wun

— - == —un=zz= — v - = - —un == —n—n= = —un ==

- n—-—un = = - un Z 2

0.1

0.1

1..12
0..999

0.2

1..64
0.1
0.1

1..12

0..999

0.2

1..64
0.1
0.1

1..12

0..999

0.2

1.4
0.1
0.1
1..12
0..999

0..2

1.2
0.1
0.1
1..12
0..999

0..2

M, ST, M/S

16 chars max

80 chars max

M, ST, M/S

16 chars max

80 chars max

M, ST, M/S

16 chars max

80 chars max

M, ST, M/S

16 chars max

80 chars max

M, ST, M/S

16 chars max

80 chars max

39

USB Input 1 mode

USB Input 1 mute

USB Input 1 polarity

USB Input 1 color

USB Input 1 name

USB Input 1 icon (indexed)
USB Input 1 tags

USB Input 1 mute [RO]

Card Input node

Card Input 1 node

Card Input 1 mode

Card Input 1 mute

Card Input 1 polarity

Card Input 1 color

Card Input 1 name

Card Input 1 icon (indexed)
Card Input 1 tags

Card Input 1 mute [RO]

Module Input node

Module Input 1 node

Module Input 1 node

Module Input 1 mute

Module Input 1 polarity
Module Input 1 color

Module Input 1 name

Module Input 1 icon (indexed)
Module Input 1 tags

Module Input 1 mute [RO]

USB Player Input node

USB Player Input 1 node

USB Player Input 1 mode

USB Player Input 1 mute

USB Player Input 1 polarity

USB Player Input 1 color

USB Player Input 1 name

USB Player Input 1 icon (indexed)
USB Player Input 1 tags

USB Player Input 1 mute [RO]

AES/EBU Input node

AES/EBU Input 1 node
AES/EBU Input 1 mode
AES/EBU Input 1 mute
AES/EBU Input 1 polarity
AES/EBU Input 1 color
AES/EBU Input 1 name
AES/EBU Input 1 icon (indexed)
AES/EBU Input 1 tags

AES/EBU Input 1 mute [RO]

User Signal Input node

WING remote protocols —V 3.0.6-4

/io/in/USR/1

/io/in/USR/1/mode
/io/in/USR/1/mute
/io/in/USR/1/pol
/io/in/USR/1/col
/io/in/USR/1/name
/io/in/USR/1/icon
/io/in/USR/1/tags
/io/in/USR/1/Smute

/io/in/USR/1/user

/io/in/USR/1/user/grp

/io/in/USR/1/user/in

/io/in/USR/1/user/tap*®
/io/in/USR/1/user/Ir*®

/io/in/OSC
/io/in/OSC/1
/io/in/OSC/1/mode
/io/in/OSC/1/mute
/io/in/OSC/1/col
/io/in/OSC/1/name
/io/in/OSC/1/icon
/io/in/OSC/1/tags
/io/in/OSC/1/Smute

/io/in/OSC/1/osc
/io/in/OSC/1/osc/Ivl
/io/in/OSC/1/osc/mode
/io/in/OSC/1/osc/f

/io/in/SBUS
/io/in/SBUS/1
/io/in/SBUS/1/mode
/io/in/SBUS/1/col
/io/in/SBUS/1/name
/io/in/SBUS/1/icon
/io/in/$BUS/1/tags

Jio/in/SMAIN
/io/in/SMAIN/1
/io/in/SMAIN/1/mode
/io/in/SMAIN/1/col
/io/in/SMAIN/1/name
/io/in/SMAIN/1/icon
/io/in/SMAIN/1/tags

- n - un - —un =z 2 nwuvn - — - n - n - — — u;»

- wn»w T Z

nl— un - un zZ 2

n - un - un =z 2

1..56

0.1
0.1
1..12
0..999
0.2

1..56

1..40
1..64

1.2

0.1
1.12

0..999

0.2

-40..6

20...20000

1..32

1..12

0..999

1.8

1.12

0..999

18 Only for nodes 1..24 [User Signals]
19 Only for nodes 1..24 [User Signals]

©Patrick-Gilles Maillot

M, ST, M/S

16 chars max

80 chars max

OFF, CH, AUX, BUS, MAIN, MTX
OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES

PRE, POST
L+R, L, R

M, ST, M/S

16 chars max

80 chars max

69 steps
SINE, PINK, WHITE
2323 steps

M, ST, M/S
16 chars max

80 chars max

M, ST, M/S

16 chars max

80 chars max

40

User Signal Input 1 node:

1-24 are User Signals, 25-56 are
User Patches

User Signal Input 1 mode

User Signal Input 1 mute

User Signal Input 1 polarity
User Signal Input 1 color

User Signal Input 1 name

User Signal Input 1 icon (indexed)
User Signal Input 1 tags

User Signal Input 1 mute [RO]

User Signal 1..24 source node
User Patch 25..56 source node
User Signal source group

User Patch source group

User Signal source number
User Patch source number
User Signal source tap point
User Signal source take

Oscillator Input node

Oscillator Input 1 node
Oscillator Input 1 mode [RO]
Oscillator Input 1 mute
Oscillator Input 1 color
Oscillator Input 1 name
Oscillator Input 1 icon (indexed)
Oscillator Input 1 tags
Oscillator Input 1 mute [RO]

Oscillator 1 source node
Oscillator 1 source level
Oscillator 1 source mode
Oscillator 1 source frequency

Bus Input node

Bus Input 1 node

Bus Input 1 mode [RO]
Bus Input 1 color [RO]
Bus Input 1 name [RO]
Bus Input 1 icon [RO]
Bus Input 1 tags [RO]

Main Input node

Main Input 1 node
Main Input 1 mode [RO]
Main Input 1 color [RO]
Main Input 1 name [RO]
Main Input 1 icon [RO]
Main Input 1 tags [RO]

WING remote protocols —V 3.0.6-4

/io/in/SMTX
/io/in/SMTX/1
/io/in/SMTX/1/mode
/io/in/SMTX/1/col
/io/in/SMTX/1/name
/io/in/SMTX/1/icon
/io/in/SMTX/1/tags

/io/in/SSEND
/io/in/SSEND/1
/io/in/SSEND/1/mode
/io/in/SSEND/1/col
/io/in/SSEND/1/name
/io/in/SSEND/1/icon
/io/in/SSEND/1/tags

/io/in/SMON
/io/in/SMON/1
/io/in/SMON/1/mode
/io/in/SMON/1/col
/io/in/SMON/1/name
/io/in/SMON/1/icon
/io/in/SMON/1/tags

/io/out
/io/out/LCL
/io/out/LCL/1
/io/out/LCL/1/grp

/io/out/LCL/1/in
/io/out/AUX
/io/out/AUX/1
/io/out/AUX/1/grp
/io/out/AUX/1/in
/io/out/A
/io/out/A/1
Jio/out/A/1/grp
/io/out/A/1/in
/io/out/B

/io/out/B/1
/io/out/B/1/grp

/io/out/B/1/in

wnw - un - un =z 2

nl—-— un - un zZ 2

=2 wzZz222

=2

=2

1..16

1..12

0..999

1..32

1..12

0..999

1.4

1.12

0..999

1.8

1..64

1..8%°

1..64

1..48

1..64

1..48

1..64

20 Aux 1..6 may be ‘not available’ on some models

©Patrick-Gilles Maillot

M, ST, M/S
16 chars max

80 chars max

M, ST, M/S
16 chars max

80 chars max

M, ST, M/S
16 chars max

80 chars max

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

41

Matrix Input node

Matrix Input 1 node
Matrix Input 1 mode [RO]
Matrix Input 1 color [RO]
Matrix Input 1 name [RO]
Matrix Input 1 icon [RO]
Matrix Input 1 tags [RO]

FX Send Input node

FX Send Input 1 node

FX Send Input 1 mode [RO]
FX Send Input 1 color [RO]
FX Send Input 1 name [RO]
FX Send Input 1 icon [RO]
FX Send Input 1 tags [RO]

Monitor Input node
Monitor Input 1 node
Monitor Input 1 mode [RO]
Monitor Input 1 color [RO]
Monitor Input 1 name [RO]
Monitor Input 1 icon [RO]
Monitor Input 1 tags [RO]

Output node

Local Output node
Local Output 1 node
Local Output 1 group
Local Output 1 input
Aux Output node

Aux Output 1 node

Aux Output 1 group
Aux Output 1 input
AES50 A Output node
AES50 A Output 1 node
AES50 A Output 1 group
AES50 A Output 1 input
AES50 B Output node

AES50 B Output 1 node
AES50 B Output 1 group

AES50 B Output 1 input

WING remote protocols —V 3.0.6-4

/io/out/C
/io/out/C/1
/io/out/C/1/grp
/io/out/C/1/in
/io/out/SC
/io/out/SC/1
/io/out/SC/1/grp
/io/out/SC/1/in
/io/out/USB
/io/out/USB/1
/io/out/USB/1/grp
/io/out/USB/1/in
/io/out/CRD
/io/out/CRD/1
/io/out/CRD/1/grp
/io/out/CRD/1/in
/io/out/MOD
/io/out/MOD/1
/io/out/MOD/1/grp
/io/out/MOD/1/in
/io/out/REC
/io/out/REC/1
/io/out/REC/1/grp
/io/out/REC/1/in
/io/out/AES

/io/out/AES/1
/io/out/AES/1/grp

/io/out/AES/1/in

©Patrick-Gilles Maillot

=2

=2

=2

=2

1.4

1..64

1.2

1..64

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

OFF, LCL, AUX, A, B, C, SC, USB,
CRD, MOD, PLAY, AES, USR, OSC,
BUS, MAIN, MTX, SEND, MON

42

AES50 C Output node
AES50 C Output 1 node
AES50 C Output 1 group

AES50 C Output 1 input
StageConnect Output node
StageConnect Output 1 node
StageConnect Output 1 group
StageConnect Output 1 input
USB Output Audio node

USB Output Audio 1 node
USB Output Audio 1 group
USB Output Audio 1 input
Card Output node

Card Output 1 node

Card Output 1 group

Card Output 1 input

Module Output node
Module Output 1 node
Module Output 1 group
Module Output 1 input

USB Record Output node
USB Record Output 1 node
USB Record Output 1 group
USB Record Output 1 input
AES/EBU Output node

AES/EBU Output 1 node
AES/EBU Output 1 group

AES/EBU Output 1 input

WING remote protocols —V 3.0.6-4

Channel Settings
Command

/ch

/ch/1

/ch/1/in
/ch/1/in/set
/ch/1/in/set/Smode
/ch/1/in/set/srcauto
/ch/1/in/set/altsrc
/ch/1/in/set/inv
/ch/1/in/set/trim
/ch/1/in/set/bal

/ch/1/in/set/Sg
/ch/1/in/set/Svph

/ch/1/in/set/dlymode
/ch/1/in/set/dly

/ch/1/in/set/dlyon

/ch/1/in/conn
/ch/1/in/conn/grp

/ch/1/in/conn/in

/ch/1/in/conn/altgrp

/ch/1/in/conn/altin

/ch/1/flt
/ch/1/flt/Ic
/ch/1/flt/Icf
/ch/1/flt/Ics
/ch/1/flt/hc
/ch/1/flt/hcf
/ch/1/flt/hcs
/ch/1/flt/tf
/ch/1/flt/mdl

/ch/1/flt/tilt?

/ch/1/clink
/ch/1/col

nw —-—umvm - unmn - =

Text

M, ST, M/S

361 steps
181 steps

20 steps (LCL)
98 steps (AES)

M, FT, MS, SMP

0..150 m / 1501 steps /
0.5..500 ft /1000 steps /
0.5..500 ms 4996 steps /

/16..500
smp
0.1

1..64

1..64

0.1
20..2000

0.1
50..20000

0.1

-6..6

0.1
1.12

485 steps

OFF, LCL, AUX, A, B, C, SC,
USB, CRD, MOD, PLAY, AES,
USR, OSC, BUS, MAIN, MTX

OFF, LCL, AUX, A, B, C, SC,
USB, CRD, MOD, PLAY, AES,
USR, OSC, BUS, MAIN, MTX

641 steps
6,12,18, 24

833 steps
6,12

TILT, MAX, AP1, AP2

49 steps

Description

Channel node

Channel 1 node

Channel 1 input node

Channel 1 input set node

Channel 1 input mode [RO]
Channel 1 input auto source switch
Channel 1 input main/alt switch
Channel 1 input phase invert switch
Channel 1 input trim (dB)

Channel 1 input balance (dB)

Channel 1 input gain (dB) — depends on
source type

Channel 1 input phantom power —
depends on source type

Meters, feet, milliseconds, samples
Channel 1 input delay (meters, feet, ms,
samples)

Channel 1 input delay

Channel 1 input connection node
Channel 1 main input connection group

Channel 1 main input connection group
index
Channel 1 alt input connection group

Channel 1 alt input connection group
index

Channel 1 filter node

Channel 1 low cut switch

Channel 1 low cut frequency (Hz)
Channel 1 low cut slope

Channel 1 high cut switch

Channel 1 high cut frequency (Hz)
Channel 1 high cut slope

Channel 1 tool filter switch

Channel 1 filter model (see Appendix on
Filter plugins for parameters details,
OSC patterns in italic below correspond
to TILT)

Channel 1 tilt level (dB)

Channel 1 custom link
Channel 1 color

21 This is for the TILT filter model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

43

WING remote protocols —V 3.0.6-4

/ch/1/name
/ch/1/icon
/ch/1/led
/ch/1/Scol

/ch/1/Sname
/ch/1/Sicon

/ch/1/mute
/ch/1/fdr
/ch/1/pan
/ch/1/wid
/ch/1/Ssolo
/ch/1/Ssololed
/ch/1/solosafe
/ch/1/mon
/ch/1/proc

/ch/1/ptap

/ch/1/Spresolo

/ch/1/peq

/ch/1/peg/on
/ch/1/pea/1g
/ch/1/peq/1f
/ch/1/pea/1q
/ch/1/pea/2g
/ch/1/peq/2f
/ch/1/pea/2q
/ch/1/pea/3g
/ch/1/peq/3f
/ch/1/pea/3q

/ch/1/gate

/ch/1/gate/on
/ch/1/gate/mdl

/ch/1/gate/thr??

/ch/1/gate/range

/ch/1/gate/att
/ch/1/gate/hld
/ch/1/gate/rel
/ch/1/gate/acc
/ch/1/gate/ratio

nwun — = —=mmm —

N
|
F
F
F
F
F
F
F
F
F

O M M T M 7T m

0..999
0.1
1..12

0..999

0.1
-144..10
-100..100
-150..150
0.1
0..2
0.1

0.1
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10

-80..0
3..60
0..120
0..200
4..4000
0..100

16 chars max

16 chars max

-00..10in 1024 steps
201 steps
61 steps

A, B, A+B

GEDI, GEID, GIED, IGED,
GDEI, GDIE, GIDE, IGDE,
EGDI, EGID, EIGD, IEGD,
EDGI, EDIG, EIDG, IEDG,
DEGI, DEIG, DIEG, IDEG,
DGEI, DGIE, DIGE, IDGE
IN, FILT, 3, 4, 5, PFL, AFL,
POST

301 steps
960 steps
181 steps
301 steps
960 steps
181 steps
301 steps
960 steps
181 steps

GATE, DUCK, E88, 9000G,
D241, DS902, WAVE, DEQ,
WARM, 76LA, LA, RIDE, PSE,
CMB

161 steps

115 steps

121 steps

200 steps

130 steps

21 steps

1:1.5,1:2, 1:3, 1:4, gate

Channel 1 name

Channel 1 icon

Channel 1 scribble light

Channel 1 color [RO] reflects linked
source or current strip value
Channel 1 name [RO] reflects linked
source or current strip value
Channel 1 icon [RO] reflects linked
source or current strip value
Channel 1 mute

Channel 1 fader

Channel 1 pan

Channel 1 width (%)

Channel 1 solo switch

Channel 1 solo LED [RO]

Channel 1 solo safe

Channel 1 monitor mode

Channel 1 process order (G: Gate, E: EQ,
D: Dynamics, I: Insert

Channel 1 pretap (to sends)
Channel 1 presolo

Channel 1 PreSend EQ node

Channel 1 PEQ switch

Channel 1 PEQ band 1 gain (dB)
Channel 1 PEQ band 1 frequency (Hz)
Channel 1 PEQ band 1 Q

Channel 1 PEQ band 2 gain 9dB)
Channel 1 PEQ band 2 frequency (Hz)
Channel 1 PEQ band 2 Q

Channel 1 PEQ band 3 gain 9dB)
Channel 1 PEQ band 3 frequency (Hz)
Channel 1 PEQ band 3 Q

Channel 1 gate node

Channel 1 gate switch

Channel 1 gate model (see Appendix on
Gate plugins for parameters details, OSC
patterns in italic below correspond to
GATE)

Channel 1 gate threshold (dB)

Channel 1 gate range (dB)

Channel 1 gate attack (ms)

Channel 1 gate hold (ms)

Channel 1 gate release(ms)

Channel 1 gate accent (5)

Channel 1 gate ratio

22 This is for the GATE gate model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

44

WING remote protocols —V 3.0.6-4

/ch/1/gatesc
/ch/1/gatesc/type
/ch/1/gatesc/f
/ch/1/gatesc/q
/ch/1/gatesc/src
/ch/1/gatesc/tap

/ch/1/gatesc/Ssolo

/ch/1/eq
/ch/1/eq/on
/ch/1/eq/mdl

/ch/1/eq/mix
/ch/1/eq/Ssolo
/ch/1/eq/Ssolobd
/ch/1/eq/Ig?
/ch/1/eq/If
/ch/1/eq/lq
/ch/1/eq/leq
/ch/1/eq/1g
/ch/1/eq/1f
/ch/1/eq/1q
/ch/1/eq/2g
/ch/1/eq/2f
/ch/1/eq/2q
/ch/1/eq/3g
/ch/1/eq/3f
/ch/1/eq/3q
/ch/1/eq/4g
/ch/1/eq/4f
/ch/1/eq/4q
/ch/1/eq/hg
/ch/1/eq/hf
/ch/1/eq/hq
/ch/1/eq/heq

/ch/1/dyn
/ch/1/dyn/on
/ch/1/dyn/mdl

/ch/1/dyn/mix
/ch/1/dyn/gain
/ch/1/dyn/thr®

nw un mmon 2

(O 2 S o e i e o T e e e i T T e e A e M v R R @2 B i e o M o R e |

=2

20..20000
0.44..10

0.1

0.1

0..125
0.1
0..6

-15..15

20..2000
0.44..10

-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
50..20000
0.44..10

0.1

0..100
-6..12
-60..0

Off, LP12, HP12, BP
961 steps
181 steps
SHELF, CH.1..CH.40

IN, FILT, 3, 4, 5, PFL, AFL,

POST

STD, SOUL, E88, E84, F110,

PULSAR, MACH4

126 steps

301 steps
641 steps
181 steps
PEQ, SHV
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
833 steps
181 steps
PEQ, SHV

COMP, EXP, B160, B560,
D241, ECL33, 5000C, SBUS,
RED3, 76LA, LA, F670, BLISS,
NSTR, WAVE, RIDE, 2250,

L100, CMB?*
101 steps
37 steps
121 steps

Channel 1 gate sidechain node

Channel 1 gate sidechain type

Channel 1 gate sidechain frequency (Hz)
Channel 1 gate sidechain Q

Channel 1 gate sidechain source
Channel 1 gate sidechain tap

Channel 1 gate sidechain solo

Channel 1 EQ node

Channel 1 EQ switch

Channel 1 EQ model (see Appendix on
EQ plugins for parameters details, OSC
patterns in italic below correspond to
STD)

Channel 1 EQ mix (%)

Channel 1 EQ solo

Channel 1 EQ solo band

Channel 1 EQ low gain (dB)

Channel 1 EQ low frequency (Hz)
Channel 1 EQ low Q

Channel 1 EQ low type

Channel 1 EQ band 1 gain (dB)
Channel 1 EQ band 1 frequency (Hz)
Channel 1 EQ band 1 Q

Channel 1 EQ band 2 gain (dB)
Channel 1 EQ band 2 frequency (Hz)
Channel 1EQ band 2 Q

Channel 1 EQ band 3 gain (dB)
Channel 1 EQ band 3 frequency (Hz)
Channel 1 EQ band 3 Q

Channel 1 EQ band 4 gain (dB)
Channel 1 EQ band 4 frequency (Hz)
Channel 1 EQ band 4 Q

Channel 1 EQ high gain (dB)

Channel 1 EQ high frequency (Hz)
Channel 1 EQ high Q

Channel 1 EQ high type

Channel 1 dynamic (compressor) node
Channel 1 compressor switch

Channel 1 compressor model (see
Appendix on Compressor plugins for
parameters details, OSC patterns in
italic below correspond to COMP)

Channel 1 compressor mix (%)
Channel 1 compressor gain (dB)
Channel 1 compressor threshold (dB)

23 This is for the STD eq model. Can use more parameters depending on model type

24 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot

%5 This is for the COMP dyn model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

45

WING remote protocols —V 3.0.6-4

/ch/1/dyn/ratio

/ch/1/dyn/knee
/ch/1/dyn/det
/ch/1/dyn/att
/ch/1/dyn/hid
/ch/1/dyn/rel
/ch/1/dyn/env
/ch/1/dyn/auto

/ch/1/dynxo
/ch/1/dynxo/depth

/ch/1/dynxo/type
/ch/1/dynxo/f
/ch/1/dynxo/Ssolo

/ch/1/dynsc
/ch/1/dynsc/type
/ch/1/dynsc/f

/ch/1/dynsc/q
/ch/1/dynsc/src
/ch/1/dynsc/tap

/ch/1/dynsc/Ssolo

/ch/1/preins
/ch/1/preins/on
/ch/1/preins/ins
/ch/1/preins/Sstat

/ch/1/main
/ch/1/main/1
/ch/1/main/1/on
/ch/1/main/1/Ivl
/ch/1/main/pre

/ch/1/send
/ch/1/send/1
/ch/1/send/1/on
/ch/1/send/1/ vl
/ch/1/send/1/pon
/ch/1/send/1/mode
/ch/1/send/1/plink

/ch/1/send/1/pan

/ch/1/send/MX<x>

/ch/1/send/MX<x>/on

- — » M m T »n =

m n =2

-

wnw n — 2

- M - =2 =2

- n =M - 22

0.5
0..120
1..200

4..4000

0.1

0..20

20..20000

0.1

20..20000

0.44..10

0.1

1..4%
0.1
-144..10
0.1

1..16
0.1
-144..10
0.1

0.1

-100..100

<x>:1..8
0.1

1.1,1.2,13,15,1.7, 2.0,
2.5,3.0,35,4.0,5.0,6.0,
8.0, 10, 20, 50, 100

PEAK, RMS
121 steps
200 steps
130 steps
LIN, LOG

41 steps
OFF, LO6, LO12, HI6, HI12,

PC
901 steps

Off, LP12, HP12, BP
901 steps

181 steps
SELF, CH.1..CH.40

IN, FILT, 3, 4, 5, PFL, AFL,
POST

NONE, FX1..FX16
-, OK, N/A

-00..10 in 1024 steps

-00..10 in 1024 steps

PRE, POST, GRP

201 steps

Channel 1 compressor ratio

Channel 1 compressor knee
Channel 1 compressor detect
Channel 1 compressor attack (ms)
Channel 1 compressor hold (ms)
Channel 1 compressor release (ms)
Channel 1 compressor envelope
Channel 1 compressor auto switch

Channel 1 compressor crossover node
Channel 1 compressor crossover depth
(dB)

Channel 1 compressor crossover type

Channel 1 compressor crossover
frequency (Hz)
Channel 1 compressor crossover solo

Channel 1 compressor sidechain node
Channel 1 compressor sidechain type
Channel 1 compressor sidechain
frequency (Hz)

Channel 1 compressor sidechain Q
Channel 1 compressor sidechain source
Channel 1 compressor sidechain tap

Channel 1 compressor sidechain solo

Channel 1 pre-insert node
Channel 1 pre-insert switch
Channel 1 pre-insert FX slot
Channel 1 pre-insert status [RO]

Channel 1 Main node

Channel 1 Main 1 node

Channel 1 Main 1 on switch
Channel 1 Main 1 fader level (dB)
Channel 1 sent pre fader to Main 1

Channel 1 sends node

Channel 1 sends 1 node

Channel 1 sends 1 on switch

Channel 1 sends 1 fader level (dB)
Channel 1 sends 1 pre always on switch
Channel 1 sends 1 mode

Channel 1 sends 1 pan link
(O=individual)

Channel 1 sends 1 pan

Channel 1 sends matrix <x> node
Channel 1 sends mtx on switch

261..8 on WING Rack model, used for the 4 headphones stereo outputs on the back on the rack.

©Patrick-Gilles Maillot

46

WING remote protocols —V 3.0.6-4

/ch/1/send/MX<x>/Ivl
/ch/1/send/MX<x>/pon

/ch/1/send/MX<x>/mode
/ch/1/send/MX<x>/plink

/ch/1/send/MX<x>/pan
/ch/1/tapwid

/ch/1/postins
/ch/1/postins/on
/ch/1/postins/mode
/ch/1/postins/ins
/ch/1/postins/w
/ch/1/postins/Sstat

/ch/1/tags
/ch/1/Sfdr

/ch/1/Smute
/ch/1/Smuteovr

wnw munvw oun -2

wn

-144..10

0.1

0.1

-100..100

-150..150

-12..12

-144..10

0.2
0.1

-00..10 in 1024 steps

PRE, POST, GRP

201 steps

FX, AUTO_X, AUTO_Y
NONE, FX1..FX16
241 steps

-, OK, N/A

80 chars max
-00..10 in 1024 steps

27 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment

©Patrick-Gilles Maillot

47

Channel 1 sends mtx fader level (dB)
Channel 1 sends mtx pre always on
switch

Channel 1 sends mtx mode

Channel 1 sends mtx pan link
(O=individual)

Channel 1 sends mtx pan

Channel 1 width

Channel 1 post insert node

Channel 1 post insert on switch
Channel 1 post insert mode

Channel 1 post insert FX slot

Channel 1 post insert autogain weight
Channel 1 post insert status [RO]

Channel 1 tags?’
Channel 1 fader level as affected by dca
(dB) [RO]

Channel 1 mute [RO]
Channel 1 mute override

WING remote protocols —V 3.0.6-4

Aux Settings
Command

/aux

Jaux/1

Jaux/1/in
Jaux/1/in/set
/aux/1/in/set/Smode
/aux/1/in/set/srcauto
/aux/1/in/set/altsrc
/aux/1/in/set/inv
/aux/1/in/set/trim
/aux/1/in/set/bal
/aux/1/in/set/Sg
/aux/1/in/set/Svph
/aux/1/in/set/dlymode
/aux/1/in/set/dly

/aux/1/in/set/dlyon

/aux/1/in/conn
/aux/1/in/conn/grp

/aux/1/in/conn/in
/aux/1/in/conn/altgrp

/aux/1/in/conn/altin

/aux/1/clink
/aux/1/col
/aux/1/name
/aux/1/icon
/aux/1/led
Jaux/1/Scol

Jaux/1/Sname
/aux/1/Sicon

/aux/1/mute
/aux/1/fdr
/aux/1/pan
/aux/1/wid
Jaux/1/Ssolo
Jaux/1/Ssololed
/aux/1/solosafe
/aux/1/mon

Jaux/1/eq
/aux/1/eq/on

©Patrick-Gilles Maillot

Type

N
N
N
N
S
|
|
|
F
F
F
|
S
F

NV - — — M mm —

=2

Range

1.8

0.1
0.1
0.1
-18..18
-9..9
-3..45
0.1

Text

M, ST, M/S

361 steps
181 steps
98 steps

M, FT, MS, SMP

0..150m / 1501 steps /
0.5..500 ft / 1000 steps /
0.5..500 ms /4996 steps /
16..500 smp 485 steps

0.1

1..64

1..64

0.1
1.12

0..999
0.1
1..12

0..999

0.1
-144..10
-100..100
-150..150
0.1
0.2
0.1

0.1

OFF, LCL, AUX, A, B, C, SC,
USB, CRD, MOD, PLAY, AES,
USR, OSC, BUS, MAIN, MTX
OFF, LCL, AUX, A, B, C, SC,

USB, CRD, MOD, PLAY, AES,
USR, OSC, BUS, MAIN, MTX

16 chars max

16 chars max

-00..10in 1024 steps
201 steps
61 steps

A, B, A+B

48

Description

Aux node

Aux 1 node

Aux 1 input node

Aux 1 input set node

Aux 1 input mode [RO]

Aux 1 input auto source switch

Aux 1 input main/alt switch

Aux 1 input phase invert switch
Aux 1 input trim (dB)

Aux 1 input balance (dB)

Aux 1 input gain (dB)

Aux 1 input phantom power
Meters, feet, milliseconds, samples
Aux 1 input delay (meters, feet, ms,
samples)

Aux 1 input delay

Aux 1 input connection node
Aux 1 input connection group

Aux 1 input connection group index
Aux 1 alt input connection group

Aux 1 alt input connection group
index

Aux 1 custom link

Aux 1 color

Aux 1 name

Aux 1 icon

Aux 1 scribble light

Aux 1 color [RQO] reflects linked
source or current strip value
Aux 1 name [RO] reflects linked
source or current strip value
Aux 1 icon [RO] reflects linked
source or current strip value
Aux 1 mute

Aux 1 fader level (dB)

Aux 1 pan

Aux 1 width (%)

Aux 1 solo

Aux 1 solo LED [RO]

Aux 1 solo safe

Aux 1 monitor mode

Aux 1 EQ node
Aux 1 EQ switch

WING remote protocols —V 3.0.6-4

/aux/1/eq/mdl

/ aux /1/eq/mix
/ aux /1/eq/Ssolo
/ aux /1/eq/Ssolobd
/aux /1/eq/lg*
/ aux /1/eq/If
/aux /1/eq/lq
/ aux /1/eq/leq
/aux/1/eq/1g
/aux /1/eq/1f
/aux/1/eq/1q
/aux /1/eq/2g
/ aux /1/eq/2f
/aux /1/eq/2q
/aux /1/eq/3g
/ aux /1/eq/3f
/aux/1/eq/3q
/ aux /1/eq/4g
/ aux /1/eq/4f
/aux /1/eq/4q
/aux /1/eq/hg
/ aux /1/eq/hf
/aux /1/eq/hq
/ aux /1/eq/heq

/aux/1/dyn
/aux/1/dyn/on
/aux/1/dyn/thr
/aux/1/dyn/depth
/aux/1/dyn/fast
/aux/1/dyn/peak
/aux/1/dyn/ingain
/aux/1/dyn/cpeak
/aux/1/dyn/cmode

/aux/1/preins
/aux/1/preins/on
/aux/1/preins/ins
/aux/1/preins/Sstat

/aux/1/main
/aux/1/main/1
/aux/1/main/1/on
/aux/1/main/1/Ivl
/aux/1/main/1/pre

/aux/1/send
/aux/1/send/1
/aux/1/send/1/on

nwmmm = mm - =2

nw un - =2

0..125
0.1
0..6

-15..15

20..2000
0.44..10

-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
50..20000
0.44..10

0.1
-36..12
0..20
0.1
0.1
0..100
0..100

0.1

1.4
0.1
-144..10
0.1

1..16
0.1

28 This is for the STD eq model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

STD, SOUL, E88, E84, F110,
PULSAR

126 steps

301 steps
641 steps
181 steps
PEQ, SHV, CUT
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
833 steps
181 steps
PEQ, SHV, CUT

97 steps
41 steps

101 steps
101 steps
COMP, LIM

NONE, FX1..FX16

-, OK, N/A

-00..10in 1024 steps

49

Aux 1 EQ model (see Appendix on
EQ plugins for parameters details,
OSC patterns in italic below
correspond to STD)

Aux 1 EQ mix (%)

Aux 1 EQ solo

Aux 1 EQ solo band

Aux 1 EQ low gain (dB)

Aux 1 EQ low frequency (Hz)
Aux 1 EQlow Q

Aux 1 EQ low type

Aux 1 EQ band 1 gain (dB)

Aux 1 EQ band 1 frequency (Hz)
Aux1EQband1Q

Aux 1 EQ band 2 gain (dB)

Aux 1 EQ band 2 frequency (Hz)
Aux1EQband 2 Q

Aux 1 EQ band 3 gain (dB)

Aux 1 EQ band 3 frequency (Hz)
Aux 1 EQband 3 Q

Aux 1 EQ band 4 gain (dB)

Aux 1 EQ band 4 frequency (Hz)
Aux 1 EQband 4 Q

Aux 1 EQ high gain (dB)

Aux 1 EQ high frequency (Hz)
Aux 1 EQ high Q

Aux 1 EQ high type

Aux 1 dynamic (PSE/LA combo) node
Aux 1 compressor switch

Aux 1 compressor threshold (dB)
Aux 1 compressor depth (dB)

Aux 1 compressor fast switch

Aux 1 compressor peak switch

Aux 1 compressor input gain

Aux 1 compressor peak

Aux 1 compressor mode

Aux 1 pre-insert node

Aux 1 pre-insert switch

Aux 1 pre-insert FX slot
Aux 1 pre-insert status [RO]

Aux 1 Main node

Aux 1 Main 1 node

Aux 1 Main 1 on switch

Aux 1 Main 1 fader level (dB)
Aux 1 sent pre fader to Main 1

Aux 1 sends node
Aux 1 sends 1 node
Aux 1 sends 1 on switch

WING remote protocols —V 3.0.6-4

/aux/1/send/1/Ivl
/aux/1/send/1/pon
/aux/1/send/1/mode
/aux/1/send/1/plink
/aux/1/send/1/pan

/aux/1/send/MX<x>
/aux/1/send/MX<x>/on
/aux/1/send/MX<x>/Ivl
/aux/1/send/MX<x>/pon

/aux/1/send/MX<x>/mode
/aux/1/send/MX<x>/plink

/aux/1/send/MX<x>/pan

/aux/1/tags
Jaux/1/Sfdr

Jaux/1/Smute
/aux/1/Smuteovr

m— un — M

- M - =2

-144..10 -00..101in 1024 steps
0.1
PRE, POST, GRP
0..1

-100..100 201 steps

<x>:1..8
0.1
-144..10 -00..10in 1024 steps
0.1
PRE, POST, GRP
0.1

-100..100 201 steps

80 chars max
-144..10 -00..10in 1024 steps

0..2

0.1

29 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment

©Patrick-Gilles Maillot

50

Aux 1 sends 1 fader level (dB)

Aux 1 sends 1 pre always on switch
Aux 1 sends 1 mode

Aux 1 sends 1 pan link (O=individual)
Aux 1 sends 1 pan

Aux 1 sends matrix <x> node
Aux 1 sends mtx on switch

Aux 1 sends mtx fader level (dB)
Aux 1 sends mtx pre always on
switch

Aux 1 sends mtx mode

Aux 1 sends mtx pan link
(O=individual)

Aux 1 sends mtx pan

Aux 1 tags®

Aux 1 fader level as affected by dca
(dB)[RO]

Aux 1 mute {RO]

Aux 1 mute override

WING remote protocols —V 3.0.6-4

Bus Settings
Command

/bus

/bus/1

/bus/1/in
/bus/1/in/set
/bus/1/in/set/inv
/bus/1/in/set/trim
/bus/1/in/set/bal
/bus/1/col
/bus/1/name
/bus/1/icon
/bus/1/led
/bus/1/Scol

/bus/1/Sname
/bus/1/Sicon

/bus/1/busmono
/bus/1/mute
/bus/1/fdr
/bus/1/pan
/bus/1/wid
/bus/1/Ssolo
/bus/1/Ssololed
/bus/1/mon

/bus/1/eq
/bus/1/eq/on
/bus/1/eq/mdl

/bus/1/eq/mix
/bus/1/eq/Ssolo
/bus/1/eq/Ssolobd
/bus/1/eq/Ig*°
/bus/1/eq/If
/bus/1/eq/lq
/bus/1/eq/leq

/bus/1/eq/1g
/bus/1/eq/1f
/bus/1/eq/1q
/bus/1/eq/2g
/bus/1/eq/2f
/bus/1/eq/2q
/bus/1/eq/3g
/bus/1/eq/3f
/bus/1/eq/3q

_|

— v - _—zzzz3

W= — " mm - —

=2

»w mm M = —

(¢}

Range

1..16

0.1
-18..18
9.9
1..12

0..999
0.1
1..12

0..999

0.1
0.1
-144..10
-100..100
-150..150
0.1
0.2

0.1

0..100
0.1
0.1

-15..15

20..2000
0.44..10

-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10

Text

361 steps
181 steps

16 chars max

16 chars max

-00..10in 1024 steps
201 steps
61 steps

A, B, A+B

STD, SOUL, E88, E84, F110,
PULSAR, PIA

126 steps

301 steps

641 steps

181 steps

PEQ, SHV, CUT, BW6, BW12,
BS12, LR12, BW18, BW24, BS24,
LR24, BW48, LR48

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

30 This is for the STD eq model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

51

Description

Bus node

Bus 1 node

Bus 1 input node

Bus 1 input set node

Bus 1 input phase invert

Bus 1 input trim (dB)

Bus 1 input balance (dB)

Bus 1 color

Bus 1 name

Bus 1icon

Bus 1 scribble light

Bus 1 color [RO] reflects linked
source or current strip value
Bus 1 name [RO] reflects linked
source or current strip value
Bus 1 icon [RO] reflects linked
source or current strip value
Bus 1 mono switch

Bus 1 mute

Bus 1 fader level (dB)

Bus 1 pan

Bus 1 width (%)

Bus 1 solo

Bus 1 solo LED {RO]

Bus 1 monitor mode

Bus 1 EQ node

Bus 1 EQ on switch

Bus 1 EQ model (see Appendix on
EQ plugins for parameters details,
OSC patterns in italic below
correspond to STD)

Bus 1 EQ mix

Bus 1 EQ solo

Bus 1 EQ band solo

Bus 1 EQ low gain (dB)

Bus 1 EQ low frequency (Hz)

Bus 1 EQ low Q

Bus 1 EQ low type

Bus 1 EQ band 1 gain (dB)

Bus 1 EQ band 1 frequency (Hz)
Bus 1EQband 1 Q

Bus 1 EQ band 2 gain (dB)

Bus 1 EQ band 2 frequency (Hz)
Bus 1EQband 2 Q

Bus 1 EQ band 3 gain (dB)

Bus 1 EQ band 3 frequency (Hz)
Bus 1EQband 3 Q

WING remote protocols —V 3.0.6-4

/bus/1/eq/4g
/bus/1/eq/4f
/bus/1/eq/4q
/bus/1/eq/5g
/bus/1/eq/5f
/bus/1/eq/5q
/bus/1/eq/6g
/bus/1/eq/6f
/bus/1/eq/6q
/bus/1/eq/hg
/bus/1/eq/hf
/bus/1/eq/hq
/bus/1/eq/heq

/bus/1/eq/tilt

/bus/1/dyn
/bus/1/dyn/on
/bus/1/dyn/mdl

/bus/1/dyn/mix
/bus/1/dyn/gain
/bus/1/dyn/thr*
/bus/1/dyn/ratio
/bus/1/dyn/knee
/bus/1/dyn/det
/bus/1/dyn/att
/bus/1/dyn/hld
/bus/1/dyn/rel
/bus/1/dyn/env
/bus/1/dyn/auto

/bus/1/dynxo
/bus/1/dynxo/depth

/bus/1/dynxo/type
/bus/1/dynxo/f

/bus/1/dynxo/Ssolo
/bus/1/dynsc
/bus/1/dynsc/type
/bus/1/dynsc/f
/bus/1/dynsc/q
/bus/1/dynsc/src

/bus/1/dynsc/tap

—u»mm M n — Mmoo

m n

-

"V m

-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
50..20000
0.44..10

-6..6

0..100
-6..12
-60..0
1.1..100
0.5
0..120
1..200
4..4000

0.1

0..20

20..20000

0.1

20..20000

0.44..10

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

833 steps

181 steps

PEQ, SHV, CUT, BW6, BW12,
BS12, LR12, BW18, BW24, BS24,
LR24, BW48, LR48

49 steps

COMP, EXP, B160, B560, D241,

Bus 1 EQ band 4 gain (dB)

Bus 1 EQ band 4 frequency (Hz)
Bus 1 EQband 4 Q

Bus 1 EQ band 5 gain (dB)

Bus 1 EQ band 5 frequency (Hz)
Bus 1EQband 5 Q

Bus 1 EQ band 6 gain (dB)

Bus 1 EQ band 6 frequency (Hz)
Bus 1 EQband 6 Q

Bus 1 EQ high gain (dB)

Bus 1 EQ high frequency (Hz)
Bus 1 EQ high Q

Bus 1 EQ high type

Bus 1 EQ tilt level

Bus 1 dynamic (compressor) node
Bus 1 compressor switch
Bus 1 compressor model, (see

ECL33, 9000C, SBUS, RED3, 76LA, Appendix on Compressor plugins for

LA, F670, BLISS, NSTR, WAVE,
RIDE, 2250, L100, CMB*!

101 steps

37 steps

121 steps

PEAK, RMS
121 steps
200 steps
130 steps
LIN, LOG

41 steps

OFF, LO6, LO12, HI6, HI12, PC
901 steps

OFF, LP12, HP12, BP
901 steps

181 steps

SELF, BUS.1..BUS.16,
MAIN.1..MAIN.4, MTX.1..MTX.8,
AUX.1..AUX.8

BUS, DYN, PFL, AFL, EQ, INS2

31 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot
32 This is for the COMP dyn model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

52

parameters details, OSC patterns in
italic below correspond to COMP)
Bus 1 compressor mix (%)

Bus 1 compressor gain (dB)

Bus 1 compressor threshold (dB)
Bus 1 compressor ratio

Bus 1 compressor knee

Bus 1 compressor detect

Bus 1 compressor attack (ms)

Bus 1 compressor hold (ms)

Bus 1 compressor release (ms)
Bus 1 compressor envelope

Bus 1 compressor auto switch

Bus 1 compressor crossover node
Bus 1 compressor crossover depth
(dB)

Bus 1 compressor crossover type
Bus 1 compressor crossover
frequency (Hz)

Bus 1 compressor crossover solo

Bus 1 compressor sidechain node
Bus 1 compressor sidechain type
Bus 1 compressor sidechain
frequency (Hz)

Bus 1 compressor sidechain Q

Bus 1 compressor sidechain source

Bus 1 compressor sidechain tap

WING remote protocols —V 3.0.6-4

/bus/1/dynsc/Ssolo

/bus/1/preins
/bus/1/preins/on
/bus/1/preins/ins
/bus/1/preins/Sstat

/bus/1/main
/bus/1/main/1
/bus/1/main/1/on
/bus/1/main/1/Ivl
/bus/1/main/1/pre

/bus/1/send
/bus/1/send/1
/bus/1/send/1/on
/bus/1/send/1/Ivl
/bus/1/send/1/pre

/bus/1/send/MX<x>
/bus/1/send/MX<x>/on
/bus/1/send/MX<x.>/Ivl
/bus/1/send/MX<x>/pre

/bus/1/postins
/bus/1/postins/on
/bus/1/postins/ins
/bus/1/postins/Sstat

/bus/1/dly
/bus/1/dly/on
/bus/1/dly/mode
/bus/1/dly/dly

/bus/1/tags
/bus/1/Sfdr

/bus/1/Smute
/bus/1/Smuteovr

w un — 2 - m - 2 - m - 2 2 - m - 2 2 w un — =2

m wn -2

1.4
0.1
-144..10
0.1

1..16
0.1
-144..10
0.1

<x>:1..8
0.1

-144..10
0.1

0.1

0.1

0..150m/

NONE, FX1..FX16
-, OK, N/A

-00..10in 1024 steps

-00..10in 1024 steps

-00..10in 1024 steps

NONE, FX1..FX16
-, OK, N/A

M, FT, MS, SMP
1501 steps /

0.5..500 ft/ 1000 steps /
0.5..500 ms/ 4996 steps /
16..500 smp 485 steps

-144..10

0.2
0.1

80 chars max
-00..10in 1024 steps

Bus 1 compressor sidechain solo

Bus 1 pre-insert node

Bus 1 pre-insert switch

Bus 1 pre-insert FX slot

Bus 1 pre-insert status [RO]

Bus 1 Main node

Bus 1 Main 1 node

Bus 1 Main 1 on switch

Bus 1 Main 1 fader level (dB)
Bus 1 sent pre fader to Main 1

Bus 1 sends node

Bus 1 sends 1 node

Bus 1 sends 1 on switch?3

Bus 1 sends 1 fader level (dB)
Bus 1 sends 1 pre/post switch

Bus 1 matrix <x> sends node
Bus 1 mtx on switch

Bus 1 mtx fader level (dB)
Bus 1 mtx pre/post switch

Bus 1 post insert node

Bus 1 post insert on switch
Bus 1 post insert mode

Bus 1 post insert status [RO]

Bus 1 delay node
Bus 1 delay on

Meters, feet, milliseconds, samples

Bus 1 delay (meters, feet, ms,
samples)

Bus 1 tags®*

Bus 1 fader level as affected by dca

(dB)[RO]
Bus 1 mute [RO]
Bus 1 mute override

33 Sending bus ‘n’ to bus ‘n’ is not possible. For ex. trying to enable /bus/1/send/1/on will be ignored.
34 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment

©Patrick-Gilles Maillot

53

WING remote protocols —V 3.0.6-4

Mains Settings
Command

/main

/main/1

/main/1/in
/main/1/in/set
/main/1/in/set/inv
/main/1/in/set/trim
/main/1/in/set/bal
/main/1/col
/main/1/name
/main/1/icon
/main/1/led
/main/1/Scol

/main/1/Sname
/main/1/Sicon

/main/1/busmono
/main/1/mute
/main/1/fdr
/main/1/pan
/main/1/wid
/main/1/Ssolo
/main/1/Ssololed
/main/1/mon

/main/1/eq
/main/1/eq/on
/main/1/eq/mdl

/main/1/eq/mix
/main/1/eq/Ssolo
/main/1/eq/Ssolobd
/main/1/eq/lg>
/main/1/eq/If
/main/1/eq/lq
/main/1/eq/leq

/main/1/eq/1g
/main/1/eq/1f
/main/1/eq/1q
/main/1/eq/2g
/main/1/eq/2f
/main/1/eq/2q
/main/1/eq/3g
/main/1/eq/3f
/main/1/eq/3q

-

———u -z zzz3

- — " m - —

=2

O mm m— — m

(0

Range

1.4

0.1
-18..18
-9.9
1..12

0..999
0.1
1.12

0..999

0.1
0.1
-144..10
-100..100
-150..150
0.1
0..2

0.1

0..100
0.1
0.1

-15..15

20..2000
0.44..10

-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10

35 This is for the STD eq model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

Text

361 steps
181 steps

16 chars max

16 chars max

-00..10 in 1024 steps
201 steps
61 steps

A, B, A+B

STD, SOUL, E88, E84, F110,
PULSAR, PIA

126 steps

301 steps

641 steps

181 steps

PEQ, SHV, CUT, BW6, BW12,
BS12, LR12, BW18, BW24,
BS24, LR24, BW48, LR48
301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

54

Description

Main node

Main 1 node

Main 1 input node

Main 1 input set node

Main 1 input phase invert switch
Main 1 input trim

Main 1 input balance

Main 1 color

Main 1 name

Main 1 icon

Main 1 scribble light

Main 1 color [RO] reflects linked
source or current strip value
Main 1 name [RO] reflects linked
source or current strip value
Main 1 icon [RO] reflects linked
source or current strip value
Main 1 mono switch

Main 1 mute

Main 1 fader level (dB)

Main 1 pan

Main 1 width (%)

Main 1 solo switch

Main 1 solo LED [RO]

Main 1 monitor mode

Main 1 EQ node

Main 1 EQ on switch

Main 1 EQ model, (see Appendix on
EQ plugins for parameters details,
OSC patterns in italic below
correspond to STD)

Main 1 EQ mix

Main 1 EQ solo

Main 1 EQ band solo

Main 1 EQ low gain (dB)

Main 1 EQ low frequency (Hz)
Main 1 EQ low Q

Main 1 EQ low type

Main 1 EQ band 1 gain (dB)

Main 1 EQ band 1 frequency (Hz)
Main 1 EQ band 1 Q

Main 1 EQ band 2 gain (dB)

Main 1 EQ band 2 frequency (Hz)
Main 1 EQ band 2 Q

Main 1 EQ band 3 gain (dB)

Main 1 EQ band 3 frequency (Hz)
Main 1 EQ band 3 Q

WING remote protocols —V 3.0.6-4

/main/1/eq/4g
/main/1/eq/4f
/main/1/eq/4q
/main/1/eq/5g
/main/1/eq/5f
/main/1/eq/5q
/main/1/eq/6g
/main/1/eq/6f
/main/1/eq/6q
/main/1/eq/hg
/main/1/eq/hf
/main/1/eq/hq
/main/1/eq/heq

/main/1/eq/tilt

/main/1/dyn
/main/1/dyn/on
/main/1/dyn/mdl

/main/1/dyn/mix
/main/1/dyn/gain
/main/1/dyn/thr’’
/main/1/dyn/ratio
/main/1/dyn/knee
/main/1/dyn/det
/main/1/dyn/att
/main/1/dyn/hld
/main/1/dyn/rel
/main/1/dyn/env
/main/1/dyn/auto

/main/1/dynxo
/main/1/dynxo/depth

/main/1/dynxo/type
/main/1/dynxo/f

/main/1/dynxo/Ssolo
/main/1/dynsc
/main/1/dynsc/type
/main/1/dynsc/f

/main/1/dynsc/q
/main/1/dynsc/src

— v MMM mwn — "M ™ mm

M O»n

-

»w T

-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
50..20000
0.44..10

-6..6

0..100
-6..12
-60..0
1.1..100
0..5
0..120
1..200
4..4000

0.1

0..20

20..20000

0.1

20..20000

0.44..10

301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
961 steps
181 steps
301 steps
833 steps
181 steps

PEQ, SHV, CUT, BW6, BW12,
BS12, LR12, BW18, BW24,
BS24, LR24, BW48, LR48

49 steps

COMP, EXP, B160, B560, D241,
ECL33, 9000C, SBUS, RED3,
76LA, LA, F670, BLISS, NSTR,
WAVE, RIDE, 2250, L100,

CMmB*®
101 steps
37 steps
121 steps

PEAK, RMS
121 steps
200 steps
130 steps
LIN, LOG

41 steps

OFF, LO6, LO12, HI6, HI12, PC

901 steps

OFF, LP12, HP12, BP
901 steps

181 steps
SELF, BUS.1..BUS.16,
MAIN.1..MAIN.4,

MTX.1.MTX.8, AUX.1..AUX.8

36 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot
37 This is for the COMP dyn model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

55

Main 1 EQ band 4 gain (dB)

Main 1 EQ band 4 frequency (Hz)
Main 1 EQ band 4 Q

Main 1 EQ band 5 gain (dB)

Main 1 EQ band 5 frequency (Hz)
Main 1 EQ band 5 Q

Main 1 EQ band 6 gain (dB)

Main 1 EQ band 6 frequency (Hz)
Main 1 EQ band 6 Q

Main 1 EQ high gain (dB)

Main 1 EQ high frequency (Hz)
Main 1 EQ high Q

Main 1 EQ_high type

Main 1 EQ tilt level

Main 1 dynamic (compressor) node
Main 1 compressor switch

Main 1 compressor switch, (see
Appendix on Compressor plugins for
parameters details, OSC patterns in
italic below correspond to COMP)

Main 1 compressor mix (%)
Main 1 compressor gain (dB)
Main 1 compressor threshold (dB)
Main 1 compressor ratio

Main 1 compressor knee

Main 1 compressor detect

Main 1 compressor attack (ms)
Main 1 compressor hold (ms)
Main 1 compressor release (ms)
Main 1 compressor envelope
Main 1 compressor auto switch

Main 1 compressor crossover node
Main 1 compressor crossover depth
(dB)

Main 1 compressor crossover type
Main 1 compressor crossover
frequency (Hz)

Main 1 compressor crossover solo

Main 1 compressor sidechain node
Main 1 compressor sidechain type
Main 1 compressor sidechain
frequency (Hz)

Main 1 compressor sidechain Q
Main 1 compressor sidechain source

WING remote protocols —V 3.0.6-4

/main/1/dynsc/tap S BUS, DYN, PFL, AFL, EQ, INS2 Main 1 compressor sidechain tap

/main/1/dynsc/Ssolo I 0.1 Main 1 compressor sidechain solo
/main/1/preins N Main 1 pre-insert node
/main/1/preins/on | 0.1 Main 1 pre-insert switch
/main/1/preins/ins S NONE, FX1..FX16 Main 1 pre-insert FX slot
/main/1/preins/Sstat S -, OK, N/A Main 1 pre-insert status [RO]
/main/1/send N Main 1 sends node
/main/1/send/MX<x> N <x>:1..8 Main 1 matrix <x> sends node
/main/1/send/MX<x>/on | 0.1 Main 1 mtx on switch
/main/1/send/MX<x>/Ivl F -144..10 -00..10in 1024 steps Main 1 mtx fader level (dB)
/main/1/send/MX<x>/pre | 0.1 Main 1 mtx pre/post switch
/main/1/postins N Main 1 post insert node
/main/1/postins/on I 0.1 Main 1 post insert on switch
/main/1/postins/ins S NONE, FX1..FX16 Main 1 post insert mode
/main/1/postins/Sstat S -, OK, N/A Main 1 post insert status [RO]
/main/1/dly N Main 1 delay node
/main/1/dly/on | 0..1 Main 1 delay on switch
/main/1/dly/mode S M, FT, MS, SMP Meters, feet, milliseconds, samples
/main/1/dly/dly F | 0.150m/ 1501 steps/ Main 1 delay (meters, feet, ms,

0.5..500 ft/ 1000 steps / samples)

0.5..500 ms/ 4996 steps /

16..500 smp 485 steps
/main/1/tags
/main/1/$fdr S 80 chars max Main 1 tags
/main/1/Smute F -144..10 -00..10in 1024 steps Main 1 fader level as affected by dca

(dB)[RO]
/main/1/Smuteovr | 0.2 Main 1 mute [RO]
| 0.1 Main 1 mute override

38 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment

©Patrick-Gilles Maillot 56 WING remote protocols —V 3.0.6-4

Matrix Settings

Command Type Range Text Description
/mtx N Matrix node
/mtx/1 N 1..8 Matrix 1 node
/mtx/1/in N Matrix 1 input node
/mtx/1/in/set N Matrix 1 input set node
/mtx/1/in/set/inv | 0..1 Matrix 1 input phase invert
/mtx/1/in/set/trim F -18..18 361 steps Matrix 1 input trim
/mtx/1/in/set/bal F 9.9 181 steps Matrix 1 input balance
/mtx/1/dir N Matrix 1 direct input signal
/mtx/1/dir/on | 0.1 Matrix 1 direct in on switch
/mtx/1/dir/Ivl F -144.10 -00..10in 1024 steps Matrix 1 direct in fader level (dB)
/mtx/1/dir/inv | 0.1 Matrix 1 direct in invert
/mtx/1/dir/in S OFF, AES, MON.PH, MON.SPK, Matrix 1 direct in input source
MON.BUS
/mtx/1/col | 1..12 Matrix 1 color
/mtx/1/name S 16 chars max Matrix 1 name
/mtx/1/icon | 0..999 Matrix 1 icon
/mtx/1/led | 0.1 Matrix 1 scribble light
/mtx/1/Scol | 1..12 Matrix 1 color [RO] reflects linked
source or current strip value
/mtx/1/Sname S 16 chars max Matrix 1 name [RO] reflects linked
source or current strip value
/mtx/1/Sicon | 0..999 Matrix 1 icon [RO] reflects linked
source or current strip value
/mtx/1/busmono | 0.1 Matrix 1 mono switch
/mtx/1/mute | 0.1 Matrix 1 mute
/mtx/1/fdr F -144.10 -00..10in 1024 steps Matrix 1 fader level (dB)
/mtx/1/pan F -100..100 201 steps Matrix 1 pan
/mtx/1/wid F -150..150 61 steps Matrix 1 width (%)
/mtx/1/Ssolo | 0..1 Matrix 1 solo switch
/mtx/1/Ssololed | 0..2 Matrix 1 solo LED [RO]
/mtx/1/mon S A, B, A+B Matrix 1 monitor mode
/mtx/1/eq N Matrix 1 EQ node
/mtx/1/eqg/on | 0..1 Matrix 1 EQ on switch
/mtx/1/eq/mdl S STD, SOUL, E88, E84, F110, Matrix 1 EQ model, (see Appendix
PULSAR, PIA on EQ plugins for parameters
details, OSC patterns in italic below
correspond to STD)
/mtx/1/eq/mix F 0..125 126 steps Matrix 1 EQ mix (%)
/mtx/1/eq/Ssolo | 0.1 Matrix 1 EQ solo
/mtx/1/eq/Ssolobd | 0.8 Matrix 1 EQ solo band
/mtx/1/eq/lg>° F -15..15 301 steps Matrix 1 EQ low gain (dB)
/mtx/1/eq/If F 20..2000 641 steps Matrix 1 EQ low frequency
/mtx/1/eq/lq F 0.44..10 181 steps Matrix 1 EQ low Q
/mtx/1/eq/leq S PEQ, SHV, CUT, BW6, BW12, Matrix 1 EQ low type
BS12, LR12, BW18, BW24, BS24,
LR24, BW48, LR48
/mtx/1/eq/1g F -15..15 301 steps Matrix 1 EQ band 1 gain (dB)
/mtx/1/eq/1f F 20..20000 961 steps Matrix 1 EQ band 1 frequency (Hz)

39 This is for the STD eq model. Can use more parameters depending on model type

©Patrick-Gilles Maillot 57 WING remote protocols —V 3.0.6-4

/mtx/1/eq/1q
/mtx/1/eq/2g
/mtx/1/eq/2f
/mtx/1/eq/2q
/mtx/1/eq/3g
/mtx/1/eq/3f
/mtx/1/eq/3q
/mtx/1/eq/4g
/mtx/1/eq/4f
/mtx/1/eq/4q
/mtx/1/eq/5g
/mtx/1/eq/5f
/mtx/1/eq/5q
/mtx/1/eq/6g
/mtx/1/eq/6f
/mtx/1/eq/6q
/mtx/1/eq/hg
/mtx/1/eq/hf
/mtx/1/eq/hq
/mtx/1/eq/heq

/mtx/1/eq/tilt

/mtx/1/dyn
/mtx/1/dyn/on
/mtx/1/dyn/mdl

/mtx/1/dyn/mix
/mtx/1/dyn/gain
/mtx/1/dyn/thr*!
/mtx/1/dyn/ratio
/mtx/1/dyn/knee
/mtx/1/dyn/det
/mtx/1/dyn/att
/mtx/1/dyn/hld
/mtx/1/dyn/rel
/mtx/1/dyn/env
/mtx/1/dyn/auto

/mtx/1/dynxo

/mtx/1/dynxo/depth

/mtx/1/dynxo/type
/mtx/1/dynxo/f

/mtx/1/dynxo/Ssolo

/mtx/1/dynsc
/mtx/1/dynsc/type

wn mn = —» MMM wnw — T m o m M

w

0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
20..20000
0.44..10
-15..15
50..20000
0.44..10

-6..6

0.1

0..100
-6..12
-60..0
1.1..100
0.5

0..120
1..200
4..4000

0.1

0..20

20..20000

0.1

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

961 steps

181 steps

301 steps

833 steps

181 steps

PEQ, SHV, CUT, BW6, BW12,
BS12, LR12, BW18, BW24, BS24,
LR24, BW438, LR48
49 steps

COMP, EXP, B160, B560, D241,

Matrix 1 EQ band 1 Q

Matrix 1 EQ band 2 gain (dB)
Matrix 1 EQ band 2 frequency (Hz)
Matrix 1 EQ band 2 Q

Matrix 1 EQ band 3 gain (dB)
Matrix 1 EQ band 3 frequency (Hz)
Matrix 1 EQ band 3 Q

Matrix 1 EQ band 4 gain (dB)
Matrix 1 EQ band 4 frequency (Hz)
Matrix 1 EQ band 4 Q

Matrix 1 EQ band 5 gain (dB)
Matrix 1 EQ band 5 frequency (Hz)
Matrix 1 EQ band 5 Q

Matrix 1 EQ band 6 gain (dB)
Matrix 1 EQ band 6 frequency (Hz)
Matrix 1 EQ band 6 Q

Matrix 1 EQ high gain (dB)

Matrix 1 EQ high frequency (Hz)
Matrix 1 EQ high Q

Matrix 1 EQ high type

Matrix 1 EQ tilt level (dB)

Matrix 1 dynamic (compressor) node
Matrix 1 compressor switch
Matrix 1 compressor model, (see

ECL33, 9000C, SBUS, RED3, 76LA, Appendix on Compressor plugins for

LA, F670, BLISS, NSTR, WAVE,
RIDE, 2250, L100, CMB*

101 steps

37 steps

121 steps

PEAK, RMS
121 steps
200 steps
130 steps
LIN, LOG

41 steps

OFF, LO6, LO12, HI6, HI12, PC
901 steps

OFF, LP12, HP12, BP

40 Side chain EQ is not available when auxcombo [CMB] is used in dyn slot
41 This is for the COMP dyn model. Can use more parameters depending on model type

©Patrick-Gilles Maillot

58

parameters details, OSC patterns in
italic below correspond to COMP)
Matrix 1 compressor mix (%)
Matrix 1 compressor gain (dB)
Matrix 1 compressor threshold (dB)
Matrix 1 compressor ratio

Matrix 1 compressor knee

Matrix 1 compressor detect

Matrix 1 compressor attack (ms)
Matrix 1 compressor hold (ms)
Matrix 1 compressor release (ms)
Matrix 1 compressor envelope
Matrix 1 compressor auto switch

Matrix 1 compressor crossover node
Matrix 1 compressor crossover
depth (dB)

Matrix 1 compressor crossover type
Matrix 1 compressor crossover
frequency (Hz)

Matrix 1 compressor crossover solo

Matrix 1 compressor sidechain node
Matrix 1 compressor sidechain type

WING remote protocols —V 3.0.6-4

/mtx/1/dynsc/f

/mtx/1/dynsc/q
/mtx/1/dynsc/src

/mtx/1/dynsc/tap
/mtx/1/dynsc/Ssolo

/mtx/1/preins
/mtx/1/preins/on
/mtx/1/preins/ins
/mtx/1/preins/Sstat

/mtx/1/postins
/mtx/1/postins/on
/mtx/1/postins/ins
/mtx/1/postins/Sstat

/mtx/1/dly
/mtx/1/dly/on
/mtx/1/dly/mode
/mtx/1/dly/dly

/mtx/1/tags
/mtx/1/Sfdr

/mtx/1/Smute
/mtx/1/Smuteovr

wn un — =2

m n - 2

20..20000

0.44..10

0.1

0.1

0.1

0.1

0..150m/

0.5..500 ft/
0.5..500 ms/
16..500 smp

-144..10

0.2
0.1

901 steps

181 steps
SELF, BUS.1..BUS.16,

MAIN.1..MAIN.4, MTX.1..MTX.8,

AUX.1..AUX.8

BUS, DYN, PFL, AFL, EQ, INS2

NONE, FX1..FX16
-,0K, N/A

NONE, FX1..FX16
-,0K, N/A

M, FT, MS, SMP
1501 steps /
1000 steps /
4996 steps /
485 steps

80 chars max
-00..10in 1024 steps

42 Tags #D1..#D16 are ‘reserved’ for DCA1..16 assignment

©Patrick-Gilles Maillot

59

Matrix 1 compressor sidechain
frequency (Hz)

Matrix 1 compressor sidechain Q
Matrix 1 compressor sidechain
source

Matrix 1 compressor sidechain tap
Matrix 1 compressor sidechain solo

Matrix 1 pre-insert node
Matrix 1 pre-insert switch
Matrix 1 pre-insert FX slot
Matrix 1 pre-insert status [RO]

Matrix 1 post insert node
Matrix 1 post insert on switch
Matrix 1 post insert mode
Matrix 1 post insert status [RO]

Matrix 1 delay node

Matrix 1 delay on switch

Meters, feet, milliseconds, samples
Matrix 1 delay (meters, feet, ms,
samples)

Matrix 1 tags*

Matrix 1 fader level as affected by
dca (dB)[RO]

Matrix 1 mute [RO]

Matrix 1 mute override

WING remote protocols —V 3.0.6-4

DCA Settings
Command

/dca

/dca/1
/dca/1/name
/dca/1/col
/dca/1/icon
/dca/1/led
/dca/1/mute
/dca/1/fdr
/dca/1/Ssolo
/dca/1/Ssololed
/dca/1/mon

<
e

nw - =" - —un =22

(¢}

Mutegroup Settings

Command
/mgrp
/mgrp/1
/mgrp/1/name
/mgrp/1/mute

©Patrick-Gilles Maillot

Typ
N

N
S
|

e

Range Text

1..16
8 chars max
1..12
0..999
0.1
0.1
-144..10 -00..10in 1024 steps
0.1

0.1
A, B, A+B
Range Text
1.8
8 chars max
0.1

60

Description

DCA node

DCA 1 node

DCA 1 name

DCA 1 color

DCA 1icon

DCA 1 scribble light
DCA 1 mute

DCA 1 fader (dB)
DCA 1 solo

DCA 1 solo LED [RO]
DCA 1 monitor mode

Description
Mutegroup node
Mutegroup 1 node
Mutegroup 1 name
Mutegroup 1 mute

WING remote protocols —V 3.0.6-4

Effects Settings
Command

/fx

/fx/1

/fx/1/mdl

/fx/1/fxmix
/fx/1/Sesrc
/fx/1/Semode
/fx/1/Sa_chn
/fx/1/Sa_pos
/fx/1/...

0..100
0..400

0..76
0.1

Text

For /fx/1../fx/8:

NONE, EXT, HALL, ROOM,
CHAMBER, PLATE,
CONCERT, AMBI, V-ROOM,
V-REV, V-PLATE, GATED,
REVERSE, DEL/REV,
SHIMMER, SPRING,
DIMCRS, CHORUS,
FLANGER, ST-DL, TAP-DL,
TAPE-DL, OILCAN, BBD-DL,
PITCH, D-PITCH, VSS3,
BPLATE, GEQ, PIA, DOUBLE,
PCORR, LIMITER, DE-S2,
ENHANCE, EXCITER, P-BASS,
ROTARY, PHASER, PANNER,
TAPE, MOOQOD, SUB,
RACKAMP, UKROCK,
ANGEL, JAZZC, DELUXE,
BODY, SOUL, E88, E&4,
F110, PULSAR, MACH4, C5-
CMB, SUB-M, V-IMG,
SPKMAN, DEQ3, *EVEN¥*,
SOUL, *VINTAGE?*,
BUS, *MASTER*

For /fx/9../fx/16:

NONE, EXT, GEQ, PIA,
DOUBLE, PCORR, LIMITER,
DE-S2, ENHANCE, EXCITER,
P-BASS, ROTARY, PHASER,
PANNER, TAPE, MOOD,
SUB, RACKAMP, UKROCK,
ANGEL, JAZZC, DELUXE,
BODY, SOUL, E88, E&4,
F110, PULSAR, MACH4, C5-
CMB, SUB-M, V-IMG,
SPKMAN, DEQ3, *EVEN*,
SOUL, *VINTAGE*,
BUS, *MASTER*

101 steps

M, ST, M/S

Description

FX node

FX 1 node

FX 1 model (see Appendix for details,

graphics and parameter values)

FX 1 mix % (depends on FX)

FX 1 source [RO]

FX 1 mode [RO]

FX 1 channel assigned to it [RO]

FX 1 channel insert (O=pre, 1=post) [RO]

/fx/1/... contains up to 40* parameters that depend on the selected model (/fx/1/mdl), as
listed in the Appendix section.
For the current version of FW, the highest parameter number used is 33

431..40 are for FX parameters, 41 is for FX Mix

©Patrick-Gilles Maillot

61

WING remote protocols —V 3.0.6-4

Cards Settings

Command Type Range Text Description
/cards N Cards node
/cards/Stype S NONE, WLIVE, Cards type [RO]
WDANTE
/cards/Sver S 32 chars max Cards version [RO]
/cards/wlive N Cards W-Live node
/cards/wlive/sdlink S IND, PAR Cards W-Live SD parallel mode
/cards/wlive/Sactlink S IND, PAR Cards W-Live ACT link [RO]
/cards/wlive/Sbattstate S NONE, GOOD, LOW Cards W-Live battery status [RO]
/cards/wlive/autoin S OFF, 1, 2 Cards W-Live auto input
/cards/wlive/meters | 0.1 Cards show meters
/cards/wlive/auto_stop S KEEP, MAIN, ALT Cards W-Live settings when Stop
/cards/wlive/auto_play S KEEP, MAIN, ALT Cards W-Live settings when Play
/cards/wlive/auto_rec S KEEP, MAIN, ALT Cards W-Live settings when Rec
/cards/wlive/1 N 1.2 Cards W-Live 1 node
/cards/wlive/1/Sctl N Cards W-Live 1 ctl node
/cards/wlive/1/Sctl/control S STOP, PPAUSE, PLAY, Cards W-Live 1 control
REC

/cards/wlive/1/Sctl/opensession | 0..100 Cards W-Live 1 open session #
/cards/wlive/1/Sctl/editmarker | 0..100 Cards W-Live 1 edit marker (set

marker to current PAUSE time or last

start PLAY time)
/cards/wlive/1/5ctl/gotomarker | 0..101 Cards W-Live 1 goto marker #

101 is used to validate stime data
/cards/wlive/1/Sctl/deletemarker | 0..100 Cards W-Live 1 delete marker #
/cards/wlive/1/Sctl/deletesession | 0..100 Cards W-Live 1 delete session #
/cards/wlive/1/Sctl/stime F 0..36000000 36000000 steps Cards W-Live 1 time (ms). Must be

followed by a $ctl/gotomarker
101 to be taken into account

Cards W-Live 1 name session. Works
only in STOP mode.

/cards/wlive/1/Sctl/namesession S 19 chars max

/cards/wlive/1/Sctl/setmarker | 0.1 Cards W-Live 1 set marker
/cards/wlive/1/Sctl/formatsdcard I 0.1 Cards W-Live 1 format SD card
/cards/wlive/1/cfg N Cards W-Live 1 cfg node
/cards/wlive/1/cfg/rectracks S 32,16, 8 Cards W-Live 1 rec tracks
/cards/wlive/1/cfg/playmode S PLAY, A->B, LOOP Cards W-Live 1 play mode
/cards/wlive/1/Sstat N Cards W-Live 1 status node
/cards/wlive/1/Sstat/state S STOP, PPAUSE, PLAY, Cards W-Live 1 state [RO]

REC
/cards/wlive/1/Sstat/etime F 0..36000000 36000000 steps Cards W-Live 1 etime (current time)
/cards/wlive/1/Sstat/sdfree F 0..36000000 36000000 steps Cards W-Live 1 SD free time
/cards/wlive/1/Sstat/sdsize | 0..1024 Cards W-Live 1 SD size (Gb) [RO]
/cards/wlive/1/Sstat/sdstate S NONE, READY, Cards W-Live 1 SD state [RO]

PROTECT, ERASE,

ERROR
/cards/wlive/1/Sstat/sessionlist S Ex: 2020-04-04 Cards W-Live 1 list of session

10:16:36, 2020-01-27 recorded date and time

19:59:02, ...
/cards/wlive/1/Sstat/markerlist S Cards W-Live 1 current marker time
©Patrick-Gilles Maillot 62 WING remote protocols —V 3.0.6-4

/cards/wlive/1/Sstat/snamelist S Ex: CC Hard Candy Fi, Cards W-Live 1 session names list*

CC Mr Jones [RO]
/cards/wlive/1/Sstat/sessions | 0..100 Cards W-Live 1 total number of
sessions [RO]
/cards/wlive/1/Sstat/markers | 0..100 Cards W-Live 1 total number of
markers [RO]
/cards/wlive/1/Sstat/sessionlen F 0..36000000 36000000 steps Cards W-Live 1 session length [RO]
/cards/wlive/1/Sstat/sessionpos | 0..100 Cards W-Live 1 session position
/cards/wlive/1/Sstat/markerpos | 0..100 Cards W-Live 1 marker position
/cards/wlive/1/Sstat/tracks S 32,16, 8 Cards W-Live 1 track number in
current session [RO]
/cards/wlive/1/Sstat/rate S 44.1, 48 Cards W-Live 1 sample rate [RO]
/cards/wlive/1/Sstat/linkedpos | 0..100 Cards W-Live session link position in
the other card (only when a linked
session is active)®
/cards/wlive/1/Sstat/start F 0..36000000 36000000 steps Cards W-Live 1 start
/cards/wlive/1/Sstat/stop F 0..36000000 36000000 steps Cards W-Live 1 stop
/cards/wlive/1/Sstat/errormessage S 32 chars max Cards W-Live 1 error message [RO]
/cards/wlive/1/Sstat/errorcode | 0..34 Cards W-Live 1 error code [RO]

44 Only the first name of the list is returned by std OSC command. You must use the node definition command (OSC or native
interface) to get the full contents.
45> There can be a maximum of 100 sessions per card

©Patrick-Gilles Maillot 63 WING remote protocols —V 3.0.6-4

USB Player Settings
Command Type
/play*® N
/play/$songs S

/play/Sactlist
/play/Sactidx
/play/Sactionidx

/play/Splayfile

nv - — un

w

/play/Saction

/play/Sactstate
/play/Sactfile
/play/$song
/play/Salbum
/play/Sartist
/play/Spos
/play/Stotal
/play/Sresolution
/play/Schannels
/play/Srate
/play/Sformat
/play/repeat

— L LT nnonon

/rec
/rec/Sactstate
/rec/Sactfile
/rec/Saction
/rec/path
/rec/resolution
/rec/channels
/rec/Stime

M wn un ounu ounuounoun 2z

Range

0..35999
0..35999

0.1

Text

List of strings

256 chars max
1.n
1.n
256 chars max

IDLE, STOP, PLAY, PAUSE, NEXT,

PREV, PLAYFILE
STOP, PLAY, PAUSE, ERROR
256 chars max
64 chars max

64 chars max

64 chars max
36000 steps
36000 steps

16, 24

1,2,3,4

44.1, 48

WAV, MP3, FLAC

STOP, REC, PAUSE, ERROR

STOP, REC, PAUSE, NEWFILE

16, 24
2,4

46 These commands are valid only when a playlist is active, and opened.
47 Will provide only the first element of the list. Use the node level request to get the full list of songs in the playlist, for ex:

/play~~n, Smva P

©Patrick-Gilles Maillot

64

Description

USB Player node

List of songs in the current playlist
[Ro]47

Path to USB files [RO]

Current active entry in the playlist
[RO]

Full path to a song to play using
/play/$action ,s PLAYFILE
USB Player action

USB Player active state [RO]
USB Player active file [RO]
USB Player song [RO]

USB Player album [RO]

USB Player artist [RO]

USB Player position

USB Player total time [RO]
USB Player resolution [RO]
USB Player channels [RO]
USB Player sample rate [RO]
USB Player format [RO]
USB Player repeat

USB Recorder node

USB Recorder active state
USB Recorder active filename
USB Recorder action

USB Recorder filename path
USB Recorder resolution

USB Recorder channels

USB Recorder time

WING remote protocols —V 3.0.6-4

WING ce_data OSC commands list

Control Settings, listed below, form a large set of OSC commands and parameters, all*® under the ce_data
section in JSON snapshot files.

Control Settings
Command

/Sctl

/Sctl/Sstat
/Sctl/Sstat/selidx
/Sctl/Sstat/pageidx
/Sctl/Sstat/bandidx
/Sctl/Sstat/sof

/Sctl/Sstat/cnslock

/Sctl/Sstat/sendpage

/Sctl/Sstat/chsetuptab

/Sctl/cfg
/Sctl/cfg/lights
/Sctl/cfg/lights/btns
/Sctl/cfg/lights/leds
/Sctl/cfg/lights/meters
/Sctl/cfg/lights/rgbleds
/Sctl/cfg/lights/chlcds

/Sctl/cfg/lights/chlcdctr
/Sctl/cfg/lights/chedit
/Sctl/cfg/lights/main
/Sctl/cfg/lights/glow
/Sctl/cfg/lights/patch
/Sctl/cfg/lights/lamp

Type Range Text

N
N
|
|
|
|

1..76
0..30

1.8

-1..76

oo wo

©cocouwuuo

1.4

.100
.100
.100
.100
.100

.100
.100
.100
.100
.100
..100

19 chars when locked
0 chars if unlocked

BUS, MATRIX

1: OVERVIEW
2: ICON/COLOR
3: NAME

4: TAGS

Description

Control node

Control status node

Channel strip selected ID*

Channel page ID

Channel EQ band ID

Sends on fader (SoF) status [-1 is the
currently selected channel]

Console lock [RO] —

The console lock string is made of 19
characters @ or 1 depending on which
screen buttons were pressed to lock the
console. Characters 1 to 7 map to the
buttons on the screen left, starting with
HOME [ASSIGN is char #7], and characters
18 & 19 map to the buttons on the right
side of the screen. Other characters are
always 0.

Ex: 1001001000000000000 - buttons
HOME, ROUTING and ASSIGN have been
used to lock the desk.

Bus or matrix Sends being displayed on
screen

HOME page tab being displayed on
screen

Control config node

Lights node

Buttons backlight intensity
Buttons/LED light intensity

Meters intensity

Color LED intensity (scribble lights)
Channel LCD intensity (scribble
backlight)

Channel LCD contrast (scribble contrast)
Channel strip intensity
Touchscreen intensity

Under console light intensity
Patch panel light intensity

Lamp light intensity

48 Except for /Sctl/$Sstat, and parameters /Sctl/cfg/Snoautosave and /Sctl/cfg/savenow
4% The get command reports values between 0 and 75, but index 1 to 76 should be used when setting values.

©Patrick-Gilles Maillot

65

WING remote protocols —V 3.0.6-4

/Sctl/cfg/rta>®
/Sctl/cfg/rta/homedisp
/Sctl/cfg/rta/homecol

/Sctl/cfg/rta/hometap
/Sctl/cfg/rta/eqdisp

/Sctl/cfg/rta/eqcol

/Sctl/cfg/rta/cheqtap
/Sctl/cfg/rta/chflttap
/Sglobals/muteovr
/Sctl/cfg/soloexcl
/Sctl/cfg/selfsolo
/Sctl/cfg/solofsel
/Sctl/cfg/sof2solo
/Sctl/cfg/layerlinkl
/Sctl/cfg/layerlinkr
/Sctl/cfg/autoview
/Sctl/cfg/csctouch
/Sctl/cfg/autosel_L
/Sctl/cfg/autosel_C
/Sctl/cfg/autosel R
/Sctl/cgf/autosel_CMPCT
/Sctl/cgf/autosel_RCK
/Sctl/cgf/autosel _EXT
/Sctl/cgf/autosel_VRT
/Sctl/cfg/fdrbanking
/Sctl/cfg/soffdr
/Sctl/cfg/sofbutton
/Sctl/cfg/sofframe
/Sctl/cfg/sofmode
/Sctl/cfg/seldblclick
/Sctl/cfg/usrmode
/Sctl/cfg/mfdr

/Sctl/cfg/cscmode
/Sctl/cfg/rackmode

/Sctl/cfg/busspill

/Sctl/cfg/mainspill

/Sctl/cfg/mtxspill

wn

wn

50 See also /cfg/rta commands

SLEXT: Reserved in the present FW release

©Patrick-Gilles Maillot

© 000000 o000 ooo0oooo
PRk, RrRrPRrRRrRRRRRRRRR

©
N

0.1

0.1

0.1

OFF, 1/3, FULL

RD25, RD50, RD75, AM25,
AMS50, AM75, BL25, BL50,
BL75

IN, EQ, POST

Off, 1/4,1/3, 1/2, OVL/3,
OvVL

RD25, RD50, RD75, AM25,
AMS50, AM75, BL25, BL50,
BL75

PRE, POST

PRE, POST

L/C, ALL
AUTO, ON, FLASH

OFF, HOME, BUSFX

BUS, CC

OFF, MAIN.1, .., MAIN.4,
MTX.1,.., MTX.8, DCA.L, ..,
DCA.16

BUS, DCA, MAIN, USER

CH, MGRP, CC, USB, SD-A,
SD-B

66

RTA node (view options)
RTA home size/mode
RTA home color

RTA home tap
RTA EQ size/mode

RTA EQ color

RTA EQ tap

RTA Channel filter tap

Chan strip mute overrides mute group
Solo exclusive

Select follows solo

Solo follows select

Bus SOF activates solo

User Layer link left/center

User Layer link center/right

Screen follows channel strip
Channel strip touch select

Channel auto select left

Channel auto select center

Channel auto select right

Compact Layer

Rack Layer

Ext Layer™!

Virtual Layer

Full fader paging

SOF Faders (L/C: left/center)

SOF button mode

SOF frame

Alternative SOF mode

Where Double click select takes you
Use F1-F3 as BUS or Custom Control
What functionality is assigned to the
Compact model fader 13/Main

Operation mode for the 16 buttons of
Compact model

Operation mode for the 4 CC section on
Rack model

Compact model only:

1: push->bus spill, hold->bus send

0: push->bus send, hold->bus spill
Compact model only:

1: push->main spill, hold->main send
0: push->main send, hold->main spill
Compact model only:

1: push->mtx spill, hold->mtx send

0: push->mtx send, hold->mtx spill

WING remote protocols —V 3.0.6-4

/Sctl/cfg/dcaspill
/Sctl/cfg/dcacc
/Sctl/cfg/showfdr
/Sctl/layer

/Sctl/layer/L
/Sctl/layer/L/sel

/Sctl/layer/L/spidx

/Sctl/layer/L/1
/Sctl/layer/L/1/ofs

/Sctl/layer/L/1/name

/Sctl/layer/L/1/1
/Sctl/layer/L/1/1/type

/Sctl/layer/L/1/1/i

0.1

0.1

0.1

1..22

0..63

1..24

1..127

1..7 settable®
8..9 no-op
10..22 fixed/pre-assigned

10 chars max

CH1-12, CH13-24, CH25-36,
CH37-AUX, BUSES, USER1,
USER2

OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

52 Fyll size console has 7 layers whereas Compact console has 9

53 Full-size console layers names

©Patrick-Gilles Maillot

67

1: push->dca spill, hold->dca [un]select
0: push->dca show, hold->dca [un]select
16 User Custom Control buttons on DCA
buttons activated [Compact only]
Temporarily show fader value on
respective scribble when moving faders

Layer node
Left WING [only] layer node

Left WING [only] layer select™
1: Ch 1..Ch 12

2: Ch 13..Ch 24

3: Ch 25..Ch 36

4: Ch 36..Ch 40 / Aux 1..Aux 8
5: Bus 1..Bus 12

6: User 1

7: User 2

8: No-op

9: No-op

10: Ch 1..Ch 8

11: Ch 9..Ch 16

12: Ch 17..Ch 24

13: Ch 25..Ch 32

14: Ch 33..Ch 40

15: Aux 1..Aux 8

16: Bus 1..Bus 8

17: Bus 9..Bus 16

18: Main 1..Main 4

19: Matrix 1..Matrix 8
20: DCA 1..DCA 8

21: DCA 9..DCA 16

22: spilled layer
Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]
61: AUTOX

62: AUTOY

63: SOF

Left WING [only] layer 1 node (see
above)

Left WING [only] layer 1 offset (from <4
or4> keys for ex.)

Left WING [only] layer 1 name

Left WING [only] layer 1, node 1

Left WING [only] layer 1, node 1 type
(OSC patterns in italic below correspond
to MIDI type)

Left WING [only] layer 1, node 1 index

WING remote protocols —V 3.0.6-4

/Sctl/layer/L/1/1/dst
/Sctl/layer/L/1/1/val
/Sctl/layer/L/Sspill
/Sctl/layer/L/Sspill/ofs

/Sctl/layer/L/Sspill/name

/Sctl/layer/L/Sspill/1
/Sctl/layer/L/Sspill/1/type

/Sctl/layer/L/Sspill1/i
/Sctl/layer/L/Sspill/1/dst

/Sctl/layer/L/Sspill/1/val

/Sctl/layer/C
/Sctl/layer/C/sel

/Sctl/layer/C/spidx

1..28

0..127

0..64

1..76

1..127

1..28

0.127

1..22

0..62

10 chars max

OOFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

1..6 settable
7..9 No-op
10..22 fixed/pre-assigned

Left WING [only] layer 1, node 1
destination index (used for type SEND)
Left WING [only] layer 1, node 1 value
(when type MIDI)

Left WING [only] Sspill
Left WING [only] Sspill offset
Left WING [only] layer Sspill name>*

Left WING [only] layer Sspill, node 1
Left WING [only] layer Sspill, node 1
type

(OSC patterns in italic below correspond
to MIDI type)

Left WING [only] layer Sspill, node 1
index

Left WING [only] layer Sspill, node 1
destination index (used for type SEND)
Left WING [only] layer Sspill, node 1
value (when type MIDI)

Center WING [only] layer node

Center WING [only] layer select®:
1: DCA

2: Main/Matrix
3: Aux/FX

4: Bus/Master
5: User 1

6: User 2

7: No-op

8: No-op

9: No-op

10: Ch 1..Ch 8

11: Ch 9..Ch 16

12: Ch 17..Ch 24

13: Ch 25..Ch 32

14: Ch 33..Ch 40

15: Aux 1..Aux 8

16: Bus 1..Bus 8

17: Bus 9..Bus 16

18: Main 1..Main 4

19: Matrix 1..Matrix 8
20: DCA 1..DCA 8

21: DCA 9..DCA 16

22: spilled layer
Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]
61: AUTOX

62: AUTOY

63: SOF

>4 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL

55 Full-size console layers names

©Patrick-Gilles Maillot

68

WING remote protocols —V 3.0.6-4

/Sctl/layer/C/1

/Sctl/layer/C/1/ofs
/Sctl/layer/C/1/name

/Sctl/layer/C/1/1
/Sctl/layer/C/1/1/type
/Sctl/layer/C/1/1/i
/Sctl/layer/C/1/1/dst
/Sctl/layer/C/1/1/val
/Sctl/layer/C/Sspill
/Sctl/layer/C/Sspill/ofs

/Sctl/layer/C/Sspill/name

/Sctl/layer/C/Sspill/1
/Sctl/layer/C/Sspill/1/type

/Sctl/layer/C/Sspill1/i

/Sctl/layer/C/Sspill/1/dst

/Sctl/layer/C/Sspill/1/val

/Sctl/layer/R
/Sctl/layer/R/sel

1.9
0..8
10 chars max

DCA, MAIN, AUX, BUSES,
USER1, USER2

OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

1..127

1..28

0.127

0..64
10 chars max

1..76
OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

1.127

1..28

0..127

1..22 1..7 settable
8, 9 No-op
10..22 fixed/pre-assigned

Center WING [only] layer 1 node (see
above)

Center WING [only] layer 1 offset
Center WING [only] layer 1 name

Center WING [only] layer 1, node 1
Center WING [only] layer 1, node 1 type
(OSC patterns in italic below correspond
to MIDI type)

Center WING [only] layer 1, node 1
index

Center WING [only] layer 1, node 1
destination index (used for type SEND)
Center WING [only] layer 1, node 1
value (when type MIDI)

Center WING [only] Sspill
Center WING [only] Sspill offset
Center WING [only] layer Sspill name>®

Center WING [only] layer Sspill, node 1
Center WING [only] layer Sspill, node 1
type

(OSC patterns in italic below correspond
to MIDI type)

Center WING [only] layer Sspill, node 1
index

Center WING [only] layer Sspill, node 1
destination index (used for type SEND)
Center WING [only] layer Sspill, node 1
value (when type MIDI)

Right WING [only] layer node

Right WING [only] layer select®’:
1: Main

2: DCA

3: Channels
4: Aux/FX

5: Bus/Master
6: User 1

7: User 2

8: No-op

9: No-op

10: Ch 1..Ch 4

11: Ch 9..Ch 12

12: Ch 17..Ch 20

13: Ch 25..Ch 28

14: Ch 33..Ch 36

15: Aux 1..Aux 4

16: Bus 1..Bus 4

17: Bus 9..Bus 12

18: Main 1..Main 4

19: Matrix 1..Matrix 4
20: DCA 1..DCA 4

56 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL

57 Full-size console layers names

©Patrick-Gilles Maillot

69

WING remote protocols —V 3.0.6-4

21: DCA 9..DCA 12
22: spilled layer
/Sctl/layer/R/spidx | 0..63 Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]

61: AUTOX
62: AUTOY
63: SOF
/Sctl/layer/R/1 N 1.9 Right WING [only] layer 1 node (see
above)
/Sctl/layer/R/1/ofs | 0..15 Right WING [only] layer 1 offset
/Sctl/layer/R/1/name S MAIN, DCA, CH1-40, AUX, Right WING [only] layer 1 name
BUSES, USER1, USER2
/Sctl/layer/R/1/1 N 1.16 Right WING [only] layer 1, node 1.
(40 for... 16 nodes except for type CH1-40: 40 nodes
/R/3...)
/Sctl/layer/R/1/1/type S OFF, CH, BUS, DCA, MIDI, Right WING [only] layer 1, node 1 type
SEND, FX, SENDS (OSC patterns in italic below correspond
to MIDI type)
/Sctl/layer/R/1/1/i | | 0.127 Right WING [only] layer 1, node 1 index
/Sctl/layer/R/1/1/dst | 1..28 Right WING [only] layer 1, node 1
destination index (used for type SEND)
/Sctl/layer/R/1/1/val /I 0.127 Right WING [only] layer 1, node 1 value
(when type MIDI)
/Sctl/layer/R/Sspill Right WING [only] Sspill
/Sctl/layer/R/Sspill/ofs | 0..64 Right WING [only] Sspill offset
/Sctl/layer/R/Sspill/name S 10 chars max Right WING [only] layer $spill name®®
/Sctl/layer/R/Sspill/1 N 1.76 Right WING [only] layer Sspill, node 1
/Sctl/layer/R/Sspill/1/type S OFF, CH, BUS, DCA, MIDI, Right WING [only] layer Sspill, node 1
SEND, FX, SENDS type
(OSC patterns in italic below correspond
to MIDI type)
/Sctl/layer/R/Sspill1/i | 1.127 Right WING [only] layer Sspill, node 1
index
/Sctl/layer/R/Sspill/1/dst | 1..28 Right WING [only] layer Sspill, node 1
destination index (used for type SEND)
/Sctl/layer/R/Sspill/1/val | 0.127 Right WING [only] layer Sspill, node 1
value (when type MIDI)
/Sctl/layer/CMPCT
/Sctl/layer/CMPCT/sel 1..22 1.7 settable Compact [only] layer select®®
8..22 [TBV] : Ch 1..Ch 12
Ch 13..Ch 24
Ch 25..Ch 36

Ch 36..Ch 40 / Aux 1..Aux 8
Bus 1..Bus 12
User 1

auhwNneR

58 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL
59 Compact console layers names

©Patrick-Gilles Maillot 70 WING remote protocols —V 3.0.6-4

7: User 2

8..21: [TBV]

22: spilled layer

/Sctl/layer/CMPCT/spidx | 0..63 Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]

61: AUTOX
62: AUTOY
63: SOF
/Sctl/layer/CMPCT/1 N 1.9 Compact [only] layer 1 node (see above)
/Sctl/layer/CMPCT/1/ofs | 0..12 Compact [only] layer 1 offset
/Sctl/layer/CMPCT/1/name S 10 chars max Compact [only] layer 1 name
CH1-12, CH13-24, CH25-36,
CH37-AUX, BUSES, ... [TBV]
/Sctl/layer/CMPCT/1/1 N 1.24 Compact [only] layer 1, node 1
/Sctl/layer/CMPCT/1/1/type S OFF, CH, BUS, DCA, MIDI, Compact [only] layer 1, node 1 type
SEND, FX, SENDS (OSC patterns in italic below correspond
to MIDI type)
/Sctl/layer/CMPCT/1/1/i | 1.127 Compact [only] layer 1, node 1 index
/Sctl/layer/CMPCT/1/1/dst | 1..28 Compact [only] layer 1, node 1
destination index (used for type SEND)
/Sctl/layer/CMPCT/1/1/val I 0.127 Compact [only] layer 1, node 1 value
(when type MIDI)
/Sctl/layer/CMPCT/Sspill Compact WING [only] Sspill
/Sctl/layer/CMPCT/Sspill/ofs | 0..64 Compact WING [only] Sspill offset
/Sctl/layer/CMPCT/Sspill/name S 10 chars max Compact WING [only] layer Sspill
name®
/Sctl/layer/CMPCT/Sspill/1 N 1.76 Compact WING [only] layer Sspill, node
1
/Sctl/layer/CMPCT/Sspill/1/typ = S OFF, CH, BUS, DCA, MIDI, Compact WING [only] layer Sspill, node
e SEND, FX, SENDS 1 type
(OSC patterns in italic below correspond
to MIDI type)
/Sctl/layer/CMPCT/Sspill1/i | 1.127 Compact WING [only] layer Sspill, node
1 index
/Sctl/layer/CMPCT/Sspill/1/dst | | 1..28 Compact WING [only] layer Sspill, node
1 destination index (used for type SEND)
/Sctl/layer/CMPCT/Sspill/1/val = | 0..127 Compact WING [only] layer Sspill, node
1 value (when type MIDI)
/Sctl/layer/RCK
/Sctl/layer/RCK/sel 1..22 1.7 settable Rack [only] layer select®!
8..22 [TBV] 1: Ch 1..Ch 12
2: Ch 13..Ch 24
3: Ch 25..Ch 36
4: Ch 36..Ch 40 / Aux 1..Aux 8
5: Bus 1..Bus 12

60 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL
61 Rack console layers names

©Patrick-Gilles Maillot 71 WING remote protocols —V 3.0.6-4

/Sctl/layer/RCK/spidx

/Sctl/layer/RCK/1
/Sctl/layer/RCK/1/ofs
/Sctl/layer/RCK/1/name

/Sctl/layer/RCK/1/1
/Sctl/layer/RCK/1/1/type

/Sctl/layer/RCK/1/1/i
/Sctl/layer/RCK/1/1/dst
/Sctl/layer/RCK/1/1/val
/Sctl/layer/RCK/Sspill
/Sctl/layer/RCK/Sspill/ofs

/Sctl/layer/RCK/Sspill/name

/Sctl/layer/RCK/Sspill/1
/Sctl/layer/RCK/Sspill/1/type

/Sctl/layer/RCK/Sspill1/i

/Sctl/layer/RCK/Sspill/1/dst

/Sctl/layer/RCK/Sspill/1/val

/Sctl/layer/EXT
/Sctl/layer/EXT/sel

— 2

N

N

0..63

1.5
0..36

1..40

1..127
1..28

0.127

0..64

1..76

1..127

1..28

0.127

1..22

10 chars max
CH1-12, CH13-24, CH25-36,
CH37-AUX, BUSES, ... [TBV]

OOFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

10 chars max

OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

1..7 settable
8..22 [TBV]

User 1

User 2
..21: [TBV]

22: spilled layer
Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]
61: AUTOX

62: AUTOY

63: SOF

00 N O

Rack [only] layer 1 node (see above)
Rack [only] layer 1 offset
Rack [only] layer 1 name

Rack [only] layer 1, node 1

Rack [only] layer 1, node 1 type

(OSC patterns in italic below correspond
to MIDI type)

Rack [only] layer 1, node 1 index

Rack [only] layer 1, node 1 destination
index (used for type SEND)

Rack [only] layer 1, node 1 value (when
type MIDI)

Rack WING [only] Sspill
Rack WING [only] Sspill offset
Rack WING [only] layer Sspill name®?

Rack WING [only] layer Sspill, node 1
Rack WING [only] layer Sspill, node 1
type

(OSC patterns in italic below correspond
to MIDI type)

Rack WING [only] layer Sspill, node 1
index

Rack WING [only] layer Sspill, node 1
destination index (used for type SEND)
Rack WING [only] layer Sspill, node 1
value (when type MIDI)

Extern [only] layer select®

: Ch 1..Ch 12

Ch 13..Ch 24

Ch 25..Ch 36

Ch 36..Ch 40 / Aux 1..Aux 8
Bus 1..Bus 12

User 1

auhwNneR

62 Can be set, but will likely be replaced by default names from console layer changes, such as AUTO-X, AUTO-Y, or SPILL

63 Ext console layers names [TBV]

©Patrick-Gilles Maillot

72

WING remote protocols —V 3.0.6-4

/Sctl/layer/EXT/spidx

/Sctl/layer/EXT/1
/Sctl/layer/EXT/1/ofs
/Sctl/layer/EXT/1/name

/Sctl/layer/EXT/1/1
/Sctl/layer/EXT/1/1/type

/Sctl/layer/EXT/1/1/i
/Sctl/layer/EXT/1/1/dst
/Sctl/layer/EXT/1/1/val
/Sctl/layer/EXT/Sspill
/Sctl/layer/EXT/Sspill/ofs

/Sctl/layer/EXT/Sspill/name

/Sctl/layer/EXT/Sspill/1
/Sctl/layer/EXT/Sspill/1/type

/Sctl/layer/EXT/Sspill1/i

/Sctl/layer/EXT/Sspill/1/dst

/Sctl/layer/EXT/Sspill/1/val

/Sctl/layer/VRT
/Sctl/layer/VRT/sel

0..62
1.8
0.8
10 chars max
... [TBV]
1..16
OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS
1..127
1..28
0..127
0..64
10 chars max
1..76
OOFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS
1..127
1..28
0.127

1..22 1..7 settable
8..22 [TBV]

7: User 2

8..21: [TBV]

22: spilled layer
Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]
61: AUTOX

62: AUTOY

Extern [only] layer 1 node (see above)
Extern [only] layer 1 offset
Extern [only] layer 1 name

Extern [only] layer 1, node 1

Extern [only] layer 1, node 1 type

(OSC patterns in italic below correspond
to MIDI type)

Extern [only] layer 1, node 1 index
Extern [only] layer 1, node 1 destination
index (used for type SEND)

Extern [only] layer 1, node 1 value
(when type MIDI)

Extern WING [only] Sspill
Extern WING [only] Sspill offset
Extern WING [only] layer Sspill name®

Extern WING [only] layer Sspill, node 1
Extern WING [only] layer Sspill, node 1
type

(OSC patterns in italic below correspond
to MIDI type)

Extern WING [only] layer Sspill, node 1
index

Extern WING [only] layer Sspill, node 1
destination index (used for type SEND)
Extern WING [only] layer Sspill, node 1
value (when type MIDI)

Virtual [only] layer select®

: Ch 1..Ch 12

Ch 13..Ch 24

Ch 25..Ch 36

Ch 36..Ch 40 / Aux 1..Aux 8
Bus 1..Bus 12

User 1

User 2

.21: [TBV]

spilled layer

NOoONOOTUVUEA WNBR

N

64 Can be set, but will likely be replaced by default names from console layer changes

65 VVRT console layers names [TBV]

©Patrick-Gilles Maillot

73

WING remote protocols —V 3.0.6-4

/Sctl/layer/VRT/spidx

/Sctl/layer/VRT/1
/Sctl/layer/VRT/1/ofs
/Sctl/layer/VRT/1/name

/Sctl/layer/VRT/1/1
/Sctl/layer/VRT/1/1/type

/Sctl/layer/VRT/1/1/i
/Sctl/layer/VRT/1/1/dst
/Sctl/layer/VRT/1/1/val
/Sctl/layer/VRT/Sspill
/Sctl/layer/VRT/Sspill/ofs

/Sctl/layer/VRT/Sspill/name

/Sctl/layer/VRT/Sspill/1
/Sctl/layer/VRT/Sspill/1/type

/Sctl/layer/VRT/Sspill1/i
/Sctl/layer/VRT/Sspill/1/dst
/Sctl/layer/NRT/Sspill/1/val
/Sctl/user

/Sctl/user/sel

/Sctl/user/mode

/Sctl/user/cmode

/Sctl/user/gpio
/Sctl/user/gpio/1
/Sctl/user/gpio/1/bu
/Sctl/user/gpio/1/bu/mode

n z2 22

0..62

1.8
0.8
10 chars max
... [TBV]
1..16
OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

1..127
1..28

0..127

0..64
10 chars max

1..76

OFF, CH, BUS, DCA, MIDI,
SEND, FX, SENDS

1.127

1..28

0..127

1..16

USER, 2TRK, WLIVE, MGRP,

SHOW

HA, GATE, COMP, FLT, U1,

U2, U3, PAN

1.4

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,

Spilled group

0: OFF

1..16: DCA 1..16
17-32: FX 1..16

33-48: BUS 1..16 [TBV]
49..56: MTX 1..16 [TBV]
57..60: MAIN 1..4 [TBV]
61: AUTOX

62: AUTOY

Virtual [only] layer 1 node (see above)
Virtual [only] layer 1 offset
Virtual [only] layer 1 name

Virtual [only] layer 1, node 1

Virtual [only] layer 1, node 1 type

(OSC patterns in italic below correspond
to MIDI type)

Virtual [only] layer 1, node 1 index
Virtual [only] layer 1, node 1 destination
index (used for type SEND)

Virtual [only] layer 1, node 1 value
(when type MIDI)

Virtual WING [only] Sspill
Virtual WING [only] Sspill offset
Virtual WING [only] layer $spill name®®

Virtual WING [only] layer Sspill, node 1
Virtual WING [only] layer Sspill, node 1
type

(OSC patterns in italic below correspond
to MIDI type)

Virtual WING [only] layer Sspill, node 1
index

Virtual WING [only] layer Sspill, node 1
destination index (used for type SEND)
Virtual WING [only] layer Sspill, node 1
value (when type MIDI)

User node

User select®’

User button mode (5 buttons above the
wheel on the full-size console)

User channel mode (8 buttons top right
corner of the full-size console)

User GPIO node

User GPIO 1 node

User GPIO 1 up node

User GPIO 1 up function (see appendix
on buttons)

66 Can be set, but will likely be replaced by default names from console layer changes
67 Setting values using the range 1..16, reported int values are in the range 0..15, string values in the range 1..16

©Patrick-Gilles Maillot

74

WING remote protocols —V 3.0.6-4

/Sctl/user/gpio/1/bu/name
/Sctl/user/gpio/1/bu/Sfname
/Sctl/user/user
/sctl/user/user/1

/Sctl/user/user/1/bu
/Sctl/user/user/1/bu/mode

/Sctl/user/user/1/bu/name

/Sctl/user/user/1/bu/Sfname

/Sctl/user/user/1/bd
/Sctl/user/user/1/bd/mode

/Sctl/user/user/1/bd/name

/Sctl/user/user/1/bd/Sfname

/Sctl/user/daw1l
/Sctl/user/daw1/1
/Sctl/user/daw1/1/bu

©Patrick-Gilles Maillot

2

2

1.4

1.4

SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User GPIO 1 up name (use a leading ’|’
to invert characters)

16 chars max User GPIO 1 up Sfname [RO]

User Layer node (bottom with Link
enabled)

User layer button 1 node

User layer button 1 upper row node
User layer buttonl upper row function
(see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User layer button 1 upper row name
(use a leading ’|’ to invert characters)
User layer button 1 upper row function
name [RO]

16 chars max

User layer button 1 lower row node
User layer button 1 lower row function
(see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User layer button 1 lower row name
(use a leading ’|’ to invert characters)
User layer button 1 lower row function
name [RO]

16 chars max

User DAW1 node
User DAW1 button 1 node
User DAW1 button 1 upper row node

75 WING remote protocols —V 3.0.6-4

/Sctl/user/dawl/1/bu/mode

/Sctl/user/daw1/1/bu/name

/Sctl/user/daw1/1/bu/Sfname

/Sctl/user/daw1/1/bd
/Sctl/user/daw1/1/bd/mode

/Sctl/user/daw1/1/bd/name

/Sctl/user/daw1/1/bd/Sfname

/Sctl/user/daw?2
/Sctl/user/daw2/1
/Sctl/user/daw2/1/bu
/Sctl/user/daw2/1/bu/mode

/Sctl/user/daw2/1/bu/name

/Sctl/user/daw2/1/bu/Sfname

/Sctl/user/daw2/1/bd

©Patrick-Gilles Maillot

wn Zz2 22

1.4

OFF, MUTE, SOLO, INS1, User DAW1 button 1 upper row
INS2, MGRP, DCAMUTE, function (see appendix on buttons)
SOF, SPILL, FXPAR,

DAWBTN, DAWENC,

CHPAGE, PAGE, FDRPAGE,

VIEWPAGE, OTHER, GPIO,

FSTART, SHOWCTL, SCENES,

MIDICCT, MIDICCP, MIDINT,

MIDINP, MIDIPGM, USBPR,

SDRECA, SESSIONA,

MARKERA, SDRECB,

SESSIONB, MARKERB

16 chars max User DAW1 button 1 upper row name
(use a leading ’|’ to invert characters)
16 chars max User DAW1 button 1 upper row

function name [RO] (see Appendix)

User DAW1 button 1 lower row node
OFF, MUTE, SOLO, INS1, User DAW1 button 1 lower row function
INS2, MGRP, DCAMUTE, (see appendix on buttons)
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW1 button 1 lower row name
(use a leading ’|’ to invert characters)
16 chars max User DAW1 button 1 lower row function

name [RO] (see Appendix)

User DAW2 node
User DAW2 button 1 node
User DAW?2 button 1 upper row node
OFF, MUTE, SOLO, INS1, User DAW?2 button 1 upper row
INS2, MGRP, DCAMUTE, function (see appendix on buttons)
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW?2 button 1 upper row name
(use a leading ’|’ to invert characters)
16 chars max User DAW?2 button 1 upper row

function name [RO] (see Appendix)

User DAW2 button 1 lower row node

76 WING remote protocols —V 3.0.6-4

/Sctl/user/daw2/1/bd/mode

/Sctl/user/daw2/1/bd/name

/Sctl/user/daw2/1/bd/Sfname

/Sctl/user/daw3
/Sctl/user/daw3/1
/Sctl/user/daw3/1/bu
/Sctl/user/daw3/1/bu/mode

/Sctl/user/daw3/1/bu/name

/Sctl/user/daw3/1/bu/Sfname

/Sctl/user/daw3/1/bd
/Sctl/user/daw3/1/bd/mode

/Sctl/user/daw3/1/bd/name

/Sctl/user/daw3/1/bd/Sfname

/Sctl/user/daw4

©Patrick-Gilles Maillot

nw zZz 22

1.4

User DAW?2 button 1 lower row function
(see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW?2 button 1 lower row name
(use a leading ’|’ to invert characters)
User DAW?2 button 1 lower row function
name [RO] (see Appendix)

16 chars max

User DAW3 node

User DAW3 button 1 node

User DAW3 button 1 upper row node
User DAW3 button 1 upper row
function (see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW3 button 1 upper row name
(use a leading ’|’ to invert characters)
User DAW3 button 1 upper row
function name [RO]

16 chars max

User DAW3 button 1 lower row node
User DAW3 button 1 lower row function
(see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW3 button 1 lower row name
(use a leading ’|’ to invert characters)
User DAW3 button 1 lower row function
name [RO] (see Appendix)

16 chars max

User DAW4 node

77 WING remote protocols —V 3.0.6-4

/Sctl/user/daw4/1
/Sctl/user/daw4/1/bu
/Sctl/user/daw4/1/bu/mode

/Sctl/user/daw4/1/bu/name

/Sctl/user/daw4/1/bu/Sfname

/Sctl/user/daw4/1/bd
/Sctl/user/daw4/1/bd/mode

/Sctl/user/daw4/1/bd/name

/Sctl/user/daw4/1/bd/Sfname

/Sctl/user/1

/Sctl/user/1/1
/Sctl/user/1/1/led
/Sctl/user/1/1/col

/Sctl/user/1/1/enc
/Sctl/user/1/1/enc/mode

/Sctl/user/1/1/enc/name

2

=2

1.4

1..16,
ul..u4,
MM,
D1..D4
1.4
0.1
1..12

User DAW4 button 1 node

User DAW4 button 1 upper row node
User DAW4 button 1 upper row
function (see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW4 button 1 upper row name
(use a leading ’|’ to invert characters)
User DAW4 button 1 upper row
function name [RO] (see Appendix)

16 chars max

User DAW4 button 1 lower row node
User DAW4 button 1 lower row function
(see appendix on buttons)

OFF, MUTE, SOLO, INS1,
INS2, MGRP, DCAMUTE,
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB

16 chars max User DAW4 button 1 lower row name
(use a leading ’|’ to invert characters)
User DAW4 button 1 lower row function
name [RO] (see Appendix)

16 chars max

User 1 node®®

User 1 button/encoder 1 node
User 1 LED 1 off/on switch
User 1 LED 1 color

User 1 encoder 1 node®
User 1 encoder 1 function (see
appendix on buttons)

OFF, FDR, PAN, DCA, SSND,
FSND, FX, DAWMCU, MON,
OTHER, MIDICC,SD A,SD B
16 chars max User 1 encoder 1 name (use a leading
"|” to invert characters, use a leading ‘*’
to ensure value is displayed, or ‘| *' for

both actions)

68 Some /$ctl/user/xx values [i.e U1..4, MM, D1..4] are specific to Compact (U1..4: User, MM: Main/Matrix, D1..4: DCA)

69 Not valid on Compact models

©Patrick-Gilles Maillot

78 WING remote protocols —V 3.0.6-4

/Sctl/user/1/1/enc/Sfname S 16 chars max User 1 encoder 1 function name [RO]
/Sctl/user/1/1/bu N User 1 button 1 upper row node
/Sctl/user/1/1/bu/mode S OFF, MUTE, SOLO, INS1, User 1 button 1 upper row function (see
INS2, MGRP, DCAMUTE, appendix on buttons)
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB
/Sctl/user/1/1/bu/name S 16 chars max User 1 button 1 upper row name (use a
leading bu/mode’|’ to invert characters)
/Sctl/user/1/1/bu/Sfname S 16 chars max User 1 button 1 upper row function
name [RO]
/Sctl/user/1/1/bd N User 1 button 1 lower row node’®
/Sctl/user/1/1/bd/mode S OFF, MUTE, SOLO, INS1, User 1 button 1 lower row function (see
INS2, MGRP, DCAMUTE, appendix on buttons)
SOF, SPILL, FXPAR,
DAWBTN, DAWENC,
CHPAGE, PAGE, FDRPAGE,
VIEWPAGE, OTHER, GPIO,
FSTART, SHOWCTL, SCENES,
MIDICCT, MIDICCP, MIDINT,
MIDINP, MIDIPGM, USBPR,
SDRECA, SESSIONA,
MARKERA, SDRECB,
SESSIONB, MARKERB
/Sctl/user/1/1/bd/name S 16 chars max User 1 button 1 lower row name (use a
leading ’|’ to invert characters)
/Sctl/user/1/1/bd/Sfname S 16 chars max User 1 button 1 lower row function
name [RO]
/Sctl/user/cuser N 1.3 Cuser node
/Sctl/user/cuser/1 N 1,2,3,..,23,24 Cuser 1 rotary knob position; Keeps the
bus send value assigned to respective
channel for the F1..F3 section. Can be
set/changed by holding the F1..F3 key
and turning the knob.
1..16 mapsto SEND 1..16
17..24 mapsto SENDMX 1..8
/Sctl/gpio N GPIO node
/Sctl/gpio/1 N 1.4 GPIO 1 node
/Sctl/gpio/1/mode S TGLNO, TGLNC, INNO, GPIO 1 mode (TGL: toggle; NO: normally
INNC, OUTNO, OUTNC open; NC: normally closed)
/Sctl/gpio/1/Sstate | 0.1 GPIO 1 state [RO]
/Sctl/gpio/1/gpstate | 0.1 GPIO 1 gpio state
70 Not valid on Compact models
©Patrick-Gilles Maillot 79 WING remote protocols —V 3.0.6-4

/Sctl/safes
/Sctl/safes/ch
/Sctl/safes/aux
/Sctl/safes/bus
/Sctl/safes/main
/Sctl/safes/mtx
/Sctl/safes/dca
/Sctl/safes/mute
/Sctl/safes/fx

/Sctl/safes/source
/Sctl/safes/source/LCL
/Sctl/safes/source/AUX
/Sctl/safes/source/A
/Sctl/safes/source/B
/Sctl/safes/source/C
/Sctl/safes/source/SC
/Sctl/safes/source/USB
/Sctl/safes/source/CRD
/Sctl/safes/source/MOD
/Sctl/safes/source/PLAY
/Sctl/safes/source/AES
/Sctl/safes/source/USR
/Sctl/safes/source/OSC

/Sctl/safes/output
/Sctl/safes/output/LCL
/Sctl/safes/output/AUX
/Sctl/safes/outpu/A
/Sctl/safes/output/B
/Sctl/safes/output/C
/Sctl/safes/output/SC
/Sctl/safes/output/USB
/Sctl/safes/output/CRD
/Sctl/safes/output/MOD
/Sctl/safes/output/REC
/Sctl/safes/output/AES

/Sctl/safes/area
/Sctl/safes/area/LEFT
/Sctl/safes/area/CENTER
/Sctl/safes /area/RIGHT
/Sctl/safes/area/COMPACT

/Sctl/safes/area/RACK
/Sctl/safes /area/EXTERN
/Sctl/safes /area/VIRTUAL

/Sctl/safes/custom
/Sctl/safes/setup

/Sctl/daw

/Sctl/daw/on
/Sctl/daw/conn

©Patrick-Gilles Maillot

nNnumumomouvm un unm n oumvm n ouvu oun$un oun 2 n unm unmu unu unmu unu un oun 2

NV unm unmumomom oumv n nonmvu on 2

nwv n n un 2

w n

0.1

40 chars max
8 chars max
16 chars max
4 chars max
8 chars max
16 chars max
8 chars max
16 chars max

24 chars max
8 chars max
48 chars max
48 chars max
48 chars max
32 chars max
48 chars max
64 chars max
64 chars max
4 chars max
2 chars max
48 chars max
2 chars max

8 chars max
8 chars max
48 chars max
48 chars max
48 chars max
32 chars max
48 chars max
64 chars max
64 chars max
4 chars max
2 chars max

7 chars max
6 chars max
7 chars max
9 chars max

5 chars max
8 chars max

8 chars max

31 chars max
3 chars max

DIN, USB

80

Global Safes node

Ch safes switches (+ or space)
Aux safes switches (+ or space)
Bus safes switches (+ or space)
Main safes switches (+ or space)
Matrix safes switches (+ or space)
DCA safes switches (+ or space)
Mute safes switches (+ or space)
FX safes switches (+ or space)

Source Safes node

LCL source safes switches (+ or space)
AUX source safes switches (+ or space)
A source safes switches (+ or space)

B source safes switches (+ or space)

C source safes switches (+ or space)
SC source safes switches (+ or space)
USB source safes switches (+ or space)
CRD source safes switches (+ or space)
MOQOD source safes switches (+ or space)
REC source safes switches (+ or space)
AES source safes switches (+ or space)
USR source safes switches (+ or space)
Osc source safes switches (+ or space)

Output Safes node

LCL out safes switches (+ or space)
AUX out safes switches (+ or space)
A out safes switches (+ or space)

B out safes switches (+ or space)

C out safes switches (+ or space)
SC out safes switches (+ or space)
USB out safes switches (+ or space)
CRD out safes switches (+ or space)
MOQOD out safes switches (+ or space)
REC out safes switches (+ or space)
AES out safes switches (+ or space)

Area safes node

Left area safes switches (+ or space)
Center area safes switches (+ or space)
Right area safes switches (+ or space)
Compact area safes switches (+ or
space)

Rack area safes switches (+ or space)
Extern area safes switches (+ or space)
Virtual area safes switches (+ or space)

Custom area safes switches (+ or space)
Setup area safes switches (+ or space)

DAW node
DAW enable
DAW connection

WING remote protocols —V 3.0.6-4

/Sctl/daw/emul
/Sctl/daw/config

/Sctl/daw/ccup
/Sctl/daw/disjog
/Sctl/daw/preset

/Sctl/daw /Son
/Sctl/daw/Sbpage
/Sctl/daw/Sbtntouch
/Sctl/daw/Sbtnvpot
/Sctl/daw/Sbtnrecrdy
/Sctl/daw/Sbtnauto
/Sctl/daw/Sbtnvsel
/Sctl/daw/Sbtninsert

/Sctl/midi
/Sctl/midi/enchctl
/Sctl/midi/enfxctl
/Sctl/midi/encustctl
/Sctl/midi/ensysex
/Sctl/midi/enmidicc
/Sctl/midi/enscenes
/Sctl/midi/enshowctl
/Sctl/midi/enscenetx

/Sctl/OSC
/Sctl/OSC/ronly

/Sctl/lib
/Sctl/lib/Sscenes

/Sctl/lib/Sactidx
/Sctl/lib/Sactive

/Sctl/lib/Sactshow

/Sctl/lib/Saction

/Sctl/lib/Sactionidx

n unm unmu unu unu un ounu oun 2

2

© o000 oo o
PRk Rk R R DR

0.1

0..16384

MCU, HUI
CC, MSTR, MSTR1EXT,
MSTR2EXT

-, cubase, live, logicx,

nuendo, protools, reaper,

studioone

OFF, DIN, USB
OFF, DIN, USB
OFF, DIN, USB
OFF, DIN, USB
OFF, DIN, USB
OFF, DIN, USB
OFF, DIN, USB
OFF, DIN, USB

Ex: scene_1, scene_2,

scene_3

256 chars max

256 chars max

IDLE, GOPREV, GONEXT,
GO, PREV, NEXT, GOTAG

DAW emulation
DAW configuration

DAW use upper cc
DAW disable wheel during play
DAW last loaded preset

DAW enable switch

DAW on button page

DAW on button sel fader touch
DAW on button sel vpot

DAW on button sel record ready
DAW on button sel auto

DAW on button sel v-sel

DAW on button sel insert

Midi node

Channel control (FDR, MUTE, PAN)
FX parameter control

Custom control (RX only)

SYSEX control

External MIDI control

Scene change

Show control

Scene MIDI TX

OSC node
Console OSC read only switch

Library node (Shows, Scenes, Snaps, ...)
List of Scene” names [RO] 72 in the
currently opened show

Scene number currently loaded/active
[Ro]73

Name of the active scene [RO], ex:
I:SHOW2/scene_1.snap

Name of the active show [RO], after
having pressed on the “OPEN SHOW”
icon, ex: I:SHOW2

Show control actions, after having
pressed on the “OPEN SHOW” icon”
Scene number user selection, in the list
of Scenes. A show must be opened.

Use /$ctl/lib/$action ,s GO to load
the Scene entity $actionidx points to,
or GOTAG if $actionidx refers to the tag
number of a tagged scene in the show.

71 A Scene is a Snap, a Snippet, a Preset, an Audio clip, or a combination thereof, referenced in a Show file

72 Only the first name of the list is returned by std OSC command. You must use the node definition command (OSC or native
interface). To get the full contents, for ex: /$ctl/lib~~n, san?ann, A show must be opened for the command to be active
73 A show must be opened for the command to be active. 0 means “no show Scene loaded”

74 Make sure /$ctl/1lib/$actionidx is set to @ if you want to use NEXT or PREV followed by a GO.

©Patrick-Gilles Maillot

81

WING remote protocols —V 3.0.6-4

/Sctl/lib/Sactiveid

/Sctl/Sglobals
/Sctl/Sglobals/fdrsel
/Sctl/Sglobals/fdrres
/Sctl/Sglobals/fdrspd
/Sctl/Sglobals/mousetchdis
/Sctl/Sglobals/mousespd
/Sctl/Sglobals/tapflash
/Sctl/Sglobals/sredisp
/Sctl/Sglobals/lockmtr
/Sctl/Sglobals/showscene
/Sctl/Sglobals/cf_load
/Sctl/Sglobals/cf_upd
/Sctl/Sglobals/usewheel

/Sctl/Sglobals/timefmt
/Sctl/Sglobals/date fmt
/Sctl/Sglobals/Sfilesort
/Sctl/Sglobals/Snoautosave
/Sctl/Sglobals/Ssavenow

Global Settings
Command

/Sglobals
/Sglobals/clkrate
/Sglobals/clksrc

/Sglobals/startmute
/Sglobals/usbacfg

/Sglobals/sccfg

/Sglobals/harmt

/Sglobals/harmt/a
/Sglobals/harmt/b
/Sglobals/harmt/c

/Sglobals/custsync

— === —unm -0 un -z

—_- — n un n

0..128

0.1

0.1
0.1.

© o0 oo o
PRk R R R

NORM, FINE, AUTO
SLOW, MED, FAST

.2.0 191 steps

OFF, 8X, ON

24H, 12H
YMD, DMY
NAME, TYPE, 0->9, 9->0

Type Range Text

N
S
S

75> This command should not be used as part of a program loop as it will eventually wear the flash memory where data is saved. This

command may change in the future.

©Patrick-Gilles Maillot

0.1

0.1
0.1
0.1

48000.0, 44100.0
INT, A, B, C, AES, CARD,
MOD

2/2,8/8,16/16, 32/32,
48/48

AUTO, 0/32, 1/31, 2/30,
3/29,4/28,5/27, 6/26,
7/25, 8/24,9/23, 10/22,
11/21, 12/20, 13/19, 14/18,
15/17,16/16, 17/15, 18/14,
19/13, 20/12, 21/11, 22/10,
23/9, 24/8, 25/7, 26/6,
27/5, 28/4, 29/3, 30/2,
31/1,32/0

82

$actionidx should be 0 to enable NEXT
or PREV to work as expected with a GO
command.

Tag of the active scene if present [RO]

CTL Global Settings node
Screen Touch Fader Select
Fader resolution

Fader speed

Mouse disable touch

Mouse speed

Tap Tempo Flash

Show source on scribble

Show meter page when locked
Always show active scene
Confirm Snapshot Load
Confirm Snapshot Update

Use wheel to navigate in lists of items
(snaps, files,...)

Time format

Date format

File sort order

Auto save switch (O=autosave)
Save console data now”

Description

Global Settings node
Master clock rate
Master clock source

Mute outputs on startup
USB Input/Output configuration

SC Configuration

HA remote node

Enable HA remote on AES-A
Enable HA remote on AES-B
Enable HA remote on AES-C

Custom Sync node

WING remote protocols —V 3.0.6-4

/Sglobals/custsync /a | 0.1 Enable Cust Sync on AES-A
/Sglobals/custsync /b | 0.1 Enable Cust Sync on AES-B
/Sglobals/custsync /c | 0.1 Enable Cust Sync on AES-C

©Patrick-Gilles Maillot 83 WING remote protocols —V 3.0.6-4

WING native / binary data interface

©Patrick-Gilles Maillot 84 WING remote protocols —V 3.0.6-4

WING native / binary data interface

WING exposes a binary structure that contains all data presented above in the WING snapshot JSON structure
chapter, and more objects. Some objects are READ ONLY while others can bet accessible for get() and set()
functions. One can access the object data, effectively getting access to the value assigned to the object, or to
the object description, a special class that provides the object name, type, min/max values, or enumerated
values.

As mentioned before, communication takes place using TcP. We give all the basic/necessary details for
communicating with WING below; this data is coming from Behringer.

Applications can communicate with the console using TCP port 2222. The console will reject further connection
requests, if the maximum number of simultaneous connections (currently 16) is reached. Open connections
will time out after 10 seconds of inactivity (on the receiving side).

Communication Channels

Communication uses 14 distinct channels [1..14] corresponding to the Channel IDs presented below

Table 1. Channel Usage

channel ChID Usage

1 %] n/u

2 1 Audio Engine & Control requests
3 2 n/u

4 3 Meter Data Requests
5 4 n/u

6 5 n/u

7 6 n/u

8 7 n/u

9 8 n/u

10 9 n/u

11 A n/u

12 B n/u

13 « n/u

14 D n/u

To select/change the active channel, use the following sequence
oxdf, exd<ChID>

When communicating with WING, the escape byte exdf should be handled carefully, as shown in the two
routines shown below for sending and receiving data.

©Patrick-Gilles Maillot 85 WING remote protocols —V 3.0.6-4

Sample receive routine

#define NRP_ESCAPE_CODE oxdf
#define NRP_CHANNEL_ID_BASE oxdo
#define NRP_NUM_CHANNELS 14

void Cnrpclientconnector: :nrpc_data_rx(byte db)

if (db == NRP_ESCAPE_CODE && l!escf) escf = true;
else {
if (escf) {
if (db != NRP_ESCAPE_CODE) {
escf = false;
if (db == NRP_ESCAPE_CODE - 1) db = NRP_ESCAPE_CODE;
else if (db >= NRP_CHANNEL_ID_ BASE &&
db < NRP_CHANNEL_ID_ BASE + NRP_NUM_CHANNELS) {
if (ch_id_rx != db - NRP_CHANNEL_ID BASE) {
ch_id_rx = db - NRP_CHANNEL_ID BASE;
}

return;
} else if (ch_id_rx >= @) data_rx(ch_id_rx, NRP_ESCAPE_CODE);

}
if (ch_id_rx >= @) data_rx(ch_id_rx, db);
¥
¥

Example: The sequence D702DFDEAFRE@2 wWill in fact represent D702DFAF@E@2

Sample transmit routine

void Cnrpclientconnector::data_tx(int ch_id, const void* data, int len)
assert(ch_id >= 1 && ch_id <= NRP_NUM_CHANNELS);

if (ch_id_tx != ch_id) {
ch_id_tx = ch_id;
nrpc_data_tx_flush();
nrpc_data_tx(NRP_ESCAPE_CODE);
nrpc_data_tx(ch_id + NRP_CHANNEL_ID BASE);

}

bool esc = false;
byte* dpp = (byte*)data;
while (len-- > 9) {
byte db = *dpp++;
if (db == NRP_ESCAPE_CODE) esc = true;
else {
if (esc & db >= NRP_CHANNEL_ID BASE &&
db <= NRP_CHANNEL_ID BASE + NRP_NUM_CHANNELS) {
db = NRP_ESCAPE_CODE - 1;
dpp--;
len++;
}

esc = false;

}
nrpc_data_tx(db);

if (esc) nrpc_data_tx(NRP_ESCAPE_CODE - 1);
}

Examples: With current tx channel being 3, sending d7e2dfafeee2 to channel 1 will transfer dfded7e2dfafeeo2,
sending d702dfdfeee2 to channel 2 will transfer dfdid7e2dfdfeee2, and sending d702dfd1ee02 to channel 1
again will transfer dfded7e2dfded10e02

©Patrick-Gilles Maillot 86 WING remote protocols —V 3.0.6-4

Channel 2: Audio Engine

Communication with the audio engine uses a token/data based binary stream protocol. Words are 2 bytes
(big endian), longs are 4 bytes (big endian).

Binary Stream Format

Table 2. Binary Stream Protocol Tokens

Token
0x00
0x01

0x02..0x3f
0x40..0x7f
0x80...0xbf
0xco..oxcf

oxde
oxd1l
oxd2
oxd3
oxd4
oxd5
oxd6
oxd7
oxd8
oxd9
oxda
oxdb
oxdc
oxdd
oxde
oxdf

0xe0..oxff

Navigation within the nodes tree can be done by using root, 1 level up, node index, _node name, Or node

hash tokens.

Data

byte
word
word
long
long
long
long

byte

word

Function

false; off; ©

true; on; 1

int 2..63

node index 1..64
string[1..64]

node name[1..16]

empty string
string[1..256]

node index 1..65536

inti16

int32

float32

raw float32 (0.0.1.0)
node hash

click (toggle)

step (inc/dec)

node tree: goto root node
node tree: 1 level up
data request

request node definition (current node)
end of data/def request
node definition response (word: data
length in bytes)

not used

Definitions of all sub-nodes within the current node can be requested with the request node definition

token.

Node Definition Response

oxdf, len.w, [len.l], parent.l, hash.l, index.w, namelen.b, name, longnamelen.b, longname, flags.w,
(If len.w==0 then len.l is used)

node: -

linf: min.f, max.f, steps.l

logf: min.f, max.f, steps.l

fdr: -

int: min.1l, max.l

enum: count.w, [itemlen.b, item, longitemlen.b, longitem] * count

fenum: count.w, [itemval.f, longitemlen.b, longitem] * count
string: maxlen.w

Where the node type can be derived from the flags as follows:

Table 3. Node Flags

Flags
be..b3

b4..b7

©Patrick-Gilles Maillot

Function

unit

type

Details

. none

dB

%

ms

Hz

mtrs
seconds
octaves
node
lin float

RPONOCUMAWNERO

87

WING remote protocols —V 3.0.6-4

2: log float
3: fader level
4: integer
5: string enum
6: float enum
7: string

b9 r/o read-only flag

©Patrick-Gilles Maillot 88 WING remote protocols —V 3.0.6-4

Channel 3: Metering

Use this channel to request metering data from the console. The data is sent back to the client 1P to the
specified port. Meter data times out after 5 seconds.

Each metering data block is prefixed by a client-specified 4byte report id.

To avoid confusion on the receiver side, the client should use different report id values for different meter
collections.

Meter collections are specified by using multiple type/index elements. Specified meters are sent back in the
sequence corresponding to the request message.

Meter values are coded on 2 bytes (signed, big endian). Level values are in 1/256 dB.
Most data are returned in 1/256 steps. This is typically the case for Gate gain and Dyn gain values. The
returned value is multiplied/adjusted with a fixed value to cover for the plugin model data range in use.

For most of them 1.@ (256) maps to 20 dB gain reduction. Standard Wing gate is 6e dB.

fx meter subscriptions return 4 levels and 6 state meters (see table below: Meter Data). Band gain reduction
isin the first 5 of these. value in dB = return value * 6.0 / 2048.

Gate LED and Dyn State in * V2 subscriptions return a value of 0 or 1, depending on the state of the
respective channel’s Gate and Dyn LEDs, respectively.

Meter Request Tokens

Table 4. Meter Request Tokens

Token Data Function
oxd3 word client UDP port (2 bytes big endian; set at least once)
oxd4 long report id (repeat this token with current id to reset transmission
timeout)

oxdc start of meter collection definition

0xa0 channel (1..40)

oxal aux (1..8)

0xa2 bus (1..16)

0xa3 main (1..4)

oxad matrix (1..8)

oxa5 dca (1..8)

0xa6 fx processor (1..16)

oxa7 source (input) device (1..16)

oxa8 output device (1..11)

0xa9 monitor (no index)

Oxaa rta (no index)

Oxab channel V2 (1.40)

oxac aux V2 (1..8)

oxad bus v2 (1..16)

Oxae main V2 (1..4)

oxaf matrix V2 (1..8)

0x00..0x7f index 1..128 (can be repeated multiple times)
oxde end of meter collection definition

Example specification
Oxdc Oxad Ox00 Ox01 Ox08 Oxab x4 Oxde

Requests meter data for channels strips 1,2,9, and fx 5.

Meter Data Packet Structure := <report id (4 bytes)><Meter Data (n words)>

©Patrick-Gilles Maillot 89 WING remote protocols —V 3.0.6-4

Meter Data

Table 5. Meter Data

Section
channel
aux

bus
main
matrix

fx

source
output
monitor

rta
Channel V2
aux V2

bus V2
main V2
matrix V2

Contents

input left

input right
output left
output right
gate key

gate gain

dyn key

dyn gain

pre fader left
pre fader right
post fader left
post fader right
input left

input right
output left
output right
state meters (1..6)

source group levels (i.e. local ins: 8 meters)

output group levels (i.e. local outs:

solo bus left
solo bus right
mon 1 left

mon 1 right
mon 2 left

mon 2 right
rta slot meters (120)
input left
input right
output left
output right
gate key

gate gain

gate led

dyn key

dyn gain

dyn state
automix gain

8 meters)

We show below a typical binary communication sequence for requesting metering data:

»W 7 B: dfd3d33737dfd1
-»W 13 B: dfd3d400000002dcadoldedfdl
»W 9 B: dfd3d400000002dfd1l

©Patrick-Gilles Maillot

// Declaring port to use is @x3737 = 14135

90

// Meters request id = 2, channel 02
// Renew request id = 2 meter data for 5s

WING remote protocols —V 3.0.6-4

Introducing wapi [wapi]

The previous chapters on 3SON structures and binary, token-based communication may not be very accessible
to many programmers. For that reason, a more accessible API (Application Programming Interface) available
as a set of include files and libraries is proposed here. It is written in C, which ensure it can easily be used in
many applications, providing good performance.

There are two include files that should always be part of your programs as they contain information about the
JSON structure and the objects respective binary pointers in WING. The API provides an abstraction layer to
the binary interface and procedure calls for standard functions to get, set, manipulate WING data.

At the API level, WING data can be 32bit int, 32bit float or string data. All APl data in little-endian, enabling
easy use in standard programming languages.

Besides this document, the wapi API consists of two include files and a library:
wapi.h is the main include file containing enumerated types for errors, token types, and wapi
abstraction enumerated tokens.
wext.h is a file containing the definitions of external library calls to wapi.lib the actual library of API
functions.
wapi.lib is a static-link library for linking with your application. The library contains all wapi functions
that can be used and are described later in this document.

A typical program accessing WING starts with an ‘open’ function and ends with a ‘close’ function. These two
functions establish the communication path to WING on your local network and ensure data is properly
cleaned when leaving the program.

Programs communicate with WING over network. The API call wopen() is used to establish communication link
between WING and the application.

WING supports multiple formats, including integers, floats, and strings types. The APl will try to ensure
conversions as best as possible in order to match the requested format either by WING or by the API
command. For example, if you request float data from a WING token which is an integer, the API will convert
the integer to float before returning the data. Similarly, if you set a WING token of type string by sending it a
float value, the float data will be changed to string before being sent to WING.

wapi tokens

wapi makes use of tokens (an enumerated 32bits integer acting as a unique identifier) to identify the subtrees
and leaves of the WING JsoN hierarchy structure. WING tokens are easily identified by their name, based on
their corresponding JSON structure name taken from the WING hierarchical data tree we already presented in
this document.

For example the identifier for “channel 1 mute control”, a.k.a. “ch.1.mute” in the JSON tree is known as token
CH_1_MUTE. The respective parameter in WING internal data structure is an integer that can be O or 1 and as
written above, can be modified (or set) from integer, float or even string data types, and can be returned to
the application also as an integer, a float or string.

Following the naming convention above “channel 1 fader value” will be identified as “cH_1_FDR”, “bus 14
panoramic value” will be identify as “BUS_14 PAN”, and so on.

©Patrick-Gilles Maillot 91 WING remote protocols —V 3.0.6-4

Some identifiers can have names that are not as obvious, and this typical of some of the dynamically
assignable subtrees of the JSoN tree. Typically, the filter, gate, compressor, and equalizer of WING channels
can be assigned different plugin models, set for example using the wapi CH_1_EQ_MDL token (or 0SC
ch/1/eq/md1), known as channel 1 EQ model in the case of channel 1 and its EQ setting. If you report to the
different types (or models) of EQ plugins in the appendices of this document, you will see that the EQ model
can be one of several choices, each model having different settings. In fact, every single setting maps to a
given token, based on their respective listing number, i.e. setting #7, a.k.a. “1q” for EQ model “sTD” will have
the same token value as setting #7 for EQ model souL, known as “1mg”.

To enable wapi managing these different mapping, all 3soN “dynamic” parameters are named after their listing
number, rather than their name for a given effect or plugin model. As a result, and taking the case of EQ
models “STD” and “SoUL” above, setting “1q” and “Img” will have the share the same token ending with “7” (for
listing #7).

The naming convention above applies to the following:
= Channel: filter, gate, compressor, equalizer [“1”, ”2”, ... “33"]
= Bus, Mains, Matrix: compressor, equalizer [“1”, 72", ... “33"]
= FX:all fx meter settings [“1”, ”2”, ... “33”]
= GPIOs [“1”,"2"]
= User buttons [“1”, ”2”, “3”]
= layered user encoders and buttons [“1”, 2", “3”]

Some tokens correspond to read-only data; trying to change their value will result in an error returned to the
calling function.

WING tokens are listed in an include file: wapi.h that must be included in your program. The wapi.h include
file also contains the status or error codes that can be returned by API function calls.

Compiling a program using wapi

All function calls are regrouped in a binary library: wapi.1lib, that you must include at link time.

A typical compilation of a source file wtest.c in a Windows environment can be as follows:
gcc -03 -Wall -c -fmessage-length=0 -o wtest.o “wtest.c”
gcc “-LC:<path to wapi.lib>” -o wtest.exe wtest.o -lwapi -1lws2_32

Don’t forget to set the correct path to the wapi.1ib file in the above compilation/link lines!
Depending on your application, you may need to provide additional Windows dynamic libraries references
(i.e.-lgdi32, -lcomdlg32, etc.)

WING parameters can be set (or modified) using the wSetxxx API family of calls; Similarly, the parameters can
be retrieved from WING using the wGetxxx APl family of calls. The following pages will present all API functions
and will include examples of source code to help you in your first steps with wapi.

Additional calls will serve establishing the communication path with the console, and several services and
utility functions needed to parse, or help with data.

©Patrick-Gilles Maillot 92 WING remote protocols —V 3.0.6-4

wapi Reference Guide

©Patrick-Gilles Maillot 93 WING remote protocols —V 3.0.6-4

wapi Reference Guide

Open and Close

Int wOpen(char* wip)

wOpen() initializes global variables for the application and opens the communication with a WING console
responding at IP address wip.

wip is a string containing the console 1P data in the form “xxx.xxx.xxx.xxx”; if the console 1P address is
unknown, wip should be an empty string and provide enough characters to store the IP address where WING
will be found. The wopen() function will attempt a network broadcast announce on the /247¢ of the local
network to identify the first WING that will reply on the local network.

Upon successful completion the function will return WSUCCESS and if the wip parameter was an empty string
when calling the function, it will contain the 1P at which the console was found. Other values can be returned
in case of issues or errors reported.

Once connection is established with the console, it will be kept active for about 10 seconds after which the
console will close the link. The wkeepAlive() function can be called (before the desk closes communication) to
extend the link active another 10 seconds.

It must be noted that if a connection is kept active, changes made directly at the console (by moving a fader,
or pressing buttons for example) will generate data the application will continuously receive. This can
represent a lot of data the application must be ready to accept and manage. It can also be the source of
incorrect data returned to Get functions and specific care should be taken when developing live or
event-driven applications.

void wClose()
wClose() ensures data is correctly disposed of when your program ends. It should be the last call before the
return statement or exit call in your application.

unsigned int wVer()

wVer() returns the version of the wapi library file being used. The returned version is in the form
‘major.minor.revision-update’, and its value is provided as @xMMmmvVuu, with MM.mm being the standard
major.minor version number corresponding as close as possible to the Wing FW release wapi was based on,
and wW-uu represents a software build revision number and update within MM.mm.

76 For example, 198.51.100.0/24 is the prefix of the Internet Protocol version 4 network starting at the given address, having 24 bits
allocated for the network prefix, and the remaining 8 bits reserved for host addressing. Addresses in the range 198.51.100.0 to
198.51.100.255 belong to this network.

©Patrick-Gilles Maillot 94 WING remote protocols —V 3.0.6-4

Setting Values

int wSetTokenFloat(wtoken token, float fval)

The wSetTokenFloat () sets WING token token to float value fval. If the token token is of a different type than
float, fval will be adapted to the format expected by token token; if token token corresponds to a dynamic
parameter named 1 to 32, no format change will take place and the function will set token token using fval as
float.

For example, sending value 444.0 to WING token CH_1_PEQ_1F will be sent as a 32bit float value. WING will
nevertheless adjust it to the nearest valid value of 444.533997. Sending that same value 444.0 to WING token
CH_1_PEQ_ON will result in a setting to 1; Finally, sending value 444.0 to WING token CH_1_NAME will change the
channel name to 444.ee.

To change the value of CH_1_EQ_1 to say ‘ten’ should be sent as float 10.0, assuming the parameter’s value
expected type is float.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting the value of fval, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE.

int wSetTokenInt(wtoken token, int ival)

The wSetTokenInt() sets WING token token to int value ival. If the token token is of a different type than int,
ival will be adapted to the format expected by token token; if token token corresponds to a dynamic
parameter named 1 to 32, no format change will take place and the function will set token token using ival as
int.

For example, sending value 444 to WING token CH_1_PEQ_ON will result in a setting to 1; Finally, sending integer
value 444 to WING token cH_1_NAME will change the channel name to 444.

To change the value of CH_1_GATE_5 to say ‘one’ with CH_1_GATE_MDL set to “9eeeG” should be sent as int 1, as
the parameter’s value expected type is int.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting the value of ival, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE.

int wSetTokenString(wtoken token, char*® str)

The wSetTokenString() function takes as input a WING token token and a string str. It sends to WING the
value of str after it has been adapted to the format expected by the WING token it is sent to.

For example, sending string “444” to WING token cH_1_PEQ_1F will be sent as a 32bit float value of 444.0;
WING will the adjust it to the nearest valid value of 444.533997. Sending that same string “444” to WING token
CH_1_PEQ ON will result in a setting to 1, Finally, sending string “444” to WING token CH_1_NAME will change the
channel name to 44a4.

To change the value of CH_1_GATE_6 to say ‘gate’ with CH_1_GATE_MDL set to “9000G” should be sent as “GATE”,
as the parameter’s value expected type is string.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting the string str, or WSEND_TCP_ERROR if an error took place
while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE.

©Patrick-Gilles Maillot 95 WING remote protocols —V 3.0.6-4

int wToggleTokenInt(wtoken token)

The wToggleTokenInt() function toggles the @/1 value of WING token token. Token token must be of type int.
This function offers a way to change or update @/1 parameter values without having to go through a
“read/test/set” roundtrip with the console, providing a more efficient communication path.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WTYPE if the parameter format for token token is not of type integer, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to set a value on a token of type NODE will return WNODE.

int wClickTokenByte(wtoken token, char ival)

The wClickTokenByte() function increments or decrements the value of token token by the amount
represebted by signed byte ival. Token token can be of type int or float.

The value of byte ival is in the range [-128..+127].

This function offers a way to change or update parameter values without having to go through a
“read/test/set” roundtrip with the console, providing a more efficient communication path.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WTYPE if the parameter format for token token is not of type integer or float, or WSEND_TCP_ERROR if an error
took place while communicating with WING. Attempting to set a value on a token of type NODE will return
WNODE.

©Patrick-Gilles Maillot 96 WING remote protocols —V 3.0.6-4

Getting Values

wapi offers several procedure calls to retrieve data from WING; specific datasets can be of use when getting
data. These are defined in wapi.h:

wvalue is a union type definition to enable receiving several types of data in a single 32bits field.

typedef union {

unsigned int uval; // unisgned integer type data
int ival; // integert type data
float fval; // float type data
char* sval; // pointer to string
} wvalue;

wtype is an enumerated list of ints to provide the data type returned in wvalue.

typedef enum wtype {

UNKN = -1,

NODE, // node type (unsigned int)

132, // int type

F32, // float type

532, // string (char*) type

V32 // an unsigned int or void type to accept all the above
} wtype;

wTV is a C structure defined in the wapi.h file as follows:

typedef struct {

wtoken token;

wtype type;

union {
unsigned int udata;
int idata;
float fdata;
char* sdata;

}od;

} wTV;

The filling of the structure is obvious for int and float data; string data sets are dynamically allocated and
the pointer of the allocated string is saved in sdata; if the string returned from the console is an empty string,
no memory allocation takes place and a NULL pointer is set in sdata. When receiving an element of type
string with a valid sdata pointer, the application is responsible for freeing the allocated memory pointed to
by sdata after use.

wtype wGetType(wtoken token)

wGetType() returns the type associated to the token token; the returned value is one of the types listed in the
wtype list described above.

char* wGetName(wtoken token)

wGetName () returns the string JSON descriptor corresponding to token token. The returned string is part of the
constant definitions of wapi and cannot be altered by the calling application.

Note that the string “$$unkown” (not part of the JSON tree leaves) is returned for tokens that are not found.

©Patrick-Gilles Maillot 97 WING remote protocols —V 3.0.6-4

whash wGetHash(wtoken token)

wGetHash() returns the binary descriptor (an unsigned int) corresponding to token token. The returned data
can be used to identify specific entries in binary maps returned by wapi with the wGetBinaryNode() call (see
later in this document). The value @ is returned for tokens that are not found.

int wGetToken(wtoken token, wtype *type, wvalue *value)
The wGetToken() function retrieves data from WING, based on token token.

wGetToken() is a generic data retrieval call for wapi; Other retrieval functions described later in this document
may be more tuned to your specific needs.

Depending on user actions, several data can queue in the receiving buffer; The function will use the data
provided by the first occurrence of token token in the queue.

The data type returned by WING is used to set a more generic type in type, which can be one of int, float or
string address on 32 bits data.

The actual value corresponding to int and float data is returned in value; In the case of string data (char*),
either a NULL pointer is returned for no character present, or value contains the pointer to a string of
characters.

Note that in the case a string is returned by wGetToken(), memory for storing the string will have been
allocated by the function. It is the responsibility of the calling application to free the allocated memory when
no longer needed to avoid application memory leaks.

wGetToken() will return WSUCCESS if the token token is found in the receiving queue and valid data is returned,
WZERO if no valid data type is found or if a timeout occurs during receiving data.

WMEMORY, WSENDERROR or WRECVERROR can be returned in specific error cases.

Below is a small program example of using set() and get() calls, the receiving part using the wGetToken()
function we first show the display obtained from running the program, followed by the program source code;

PS C:\Users\patrileclipse\wtest\release> ./wtest
ING found at IP: 192.168.1.71

sing version 0.10
, data

3 RIDE
2, data = -50.000000
2, data
1, data
2, data
2, data
2, data

8.000000
0.486968
6.000000

#include <stdio.h>
#include <string.h>
//

#include “wapi.h”
#include “wext.h”

//
int main() {
int i;
char wingip([24] = "";
wtype type;
wvalue value;
//
if ((i = wOpen(wingip)) != WSUCCESS) exit(1l);

printf ("WING found at IP: %s\n", wingip);
printf ("Using version %i.%i\n", wVer()/256, wVer()&l5);

//

©Patrick-Gilles Maillot 98 WING remote protocols —V 3.0.6-4

wSetTokenString (CH_1_GATE_MDL, "RIDE"); //Auto Rider Dynamics

wSetTokenFloat (CH 1 GATE 1, -50.); // thr
wSetTokenFloat (CH 1 GATE 2, 0.); // tgt
wSetTokenInt (CH 1 GATE 3, 20); // spd
wSetTokenFloat (CH 1 GATE 4, 8.); // ratio
wSetTokenFloat (CH 1 GATE 5, 0.5); // hold
wSetTokenFloat (CH 1 GATE 6, 6.0); // range

//
wGetToken (CH_1_GATE_MDL, &type, &value);
if (value.sval) {
printf ("type = %$i, data = %s\n", type, value.sval);
free(value.sval);
} else {
printf ("no data for ch 1 gate model!\n”);
}
wGetToken (CH 1 GATE 1, &type, &value);
printf ("type = %i, data = %f\n", type, value.fval);
wGetToken (CH_1 GATE 2, &type, &value);
printf ("type = %$i, data = %$f\n", type, value.fval);
wGetToken (CH 1 GATE 3, &type, &value);
printf ("type = %i, data = %i\n", type, value.ival);
wGetToken (CH_1 GATE 4, &type, &value);
printf ("type = %$i, data = %$f\n", type, value.fval);
wGetToken (CH_1 GATE 5, &type, &value);
printf ("type = %i, data = %f\n", type, value.fval);
wGetToken (CH 1 GATE 6, &type, &value);
printf ("type = %$i, data = %$f\n\n", type, value.fval);
fflush (stdout) ;
return (0);

int wGetTokenFloat(wtoken token, float* fval)

The wGetTokenFloat () function interrogates WING token token to get its currently associated value.

As it is the case for wGetToken(), wGetTokenFloat() will block until a token token is encountered in the
receiving queue. The received token value has a given native type, and the function will do its best at
converting the received data to float format as expected by the fval variable.

For example, inquiring WING token cH_1_PEQ_1F will return the current value of the token as a float value in
fval. Inquiring WING token cH_1_PEQ_ON will result in a value of 8.0 or 1.9, depending on the state of the
token.

On the other hand, inquiring WING token CH_1_NAME will most likely return a value of @.e and a status of
WZERO; In some cases (i.e., you set the name to be string “123.7” for example) you may get a valid
floating-point value returned.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting token value to fval, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE.

int wGetTokenInt(wtoken token, int* ival)

The wGetTokenInt() function interrogates WING token token to get its currently associated value. As it is the
case for wGetToken(), wGetTokenInt() will block until a token token is encountered in the receiving queue.
The received token value has a given native type, and the function will do its best at converting the received
data to integer format as expected by the ival variable.

For example, inquiring WING token cH_1_PEQ_1F will return the current value of the token as an int value in
ival. Inquiring WING token cH_1_PEQ ON will result in a value of @ or 1, depending on the state of the token.
On the other hand, inquiring WING token CH_1_NAME will return a value of @ and a status of WZERO; In some
cases (i.e., you set the name to be string «“12” for example) you may get a valid int value returned.

©Patrick-Gilles Maillot 99 WING remote protocols —V 3.0.6-4

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting token value to ival, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE.

int wGetTokenString(wtoken token, char* str)

The wGetTokenString() function interrogates WING token token to get its currently associated value. As it is
the case for wGetToken(), wGetTokenString() will block until a token token is encountered in the receiving
gueue. The received token value has a given native type, and the function will do its best at converting the
received data to string/char* format as expected by the str variable.

For example, inquiring WING token cH_1_PEQ_1F will return the current value of the token as a string in str.
Inquiring WING token cH_1_PEQ_ON will result in a 1-character string of “@” or “1”, depending on the state of
the token. Similarly, a token with a floating-point native format would result in a string containing the string
representation of the floating-point value.

As a last example, inquiring WING token cH_1_NAME will return the string currently used for naming channel 1.
Please note that the str variable should provide enough space to collect the data returned by
wGetTokenString().

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting token value to str, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE.

int wGetTokenDef(wtoken token, int *num, unsigned char* str)

The wGetTokenDef() function interrogates WING token token to get its currently associated definition in raw
form. wGetTokenDef () will block for 200 milliseconds or until a token token is encountered in the receiving
queue. The received token definition follows the description presented earlier in this document”’.

The returned data consists of the number of bytes num contained in an array of bytes str. Note that str is
allocated by the wGetTokenDef () function; it is therefore the responsibility of the calling application to free the
allocated memory when no longer needed. Parsing this data is left to the application, and follows the
description for node definition response.

The function returns WSUCCESS if the requested operation was successful; wGetTokenDef() will return WMEMORY
if it cannot allocate memory for the data to be returned, or WRECV_ERROR if the data cannot be recovered;
Would wGetTokenDef() return WRECV_ERROR when you expect data being available, it may be worth attempting
a second call to the function as a timeout may have occurred with the first/previous call.

The Get() functions presented above are all “one shot read” functions so to speak; They request data from
WING, and wait for the right token to appear in the receiving queue. They will return the buffer content,
adapting it to the requested type of data when applicable. This is a simple way to gather information from the
console, but comes with a caveat if someone is also manipulating (locally or remotely) the desk. Indeed, as
other changes take place and assuming your communication channel is in an ‘open’ state (i.e., your last
communication with WING is less than 10s old), the console will natively send you changes that are taking
place, resulting of the local or remote changes operated onto the desk.

So, when a “one shot read” request arrives and is served, it will sort through the received data for the
expected token, and in doing this will discard the data received prior to finding the correct token.

77 See “Node Definition Response” in the “WING native / binary data interface” chapter

©Patrick-Gilles Maillot 100 WING remote protocols —V 3.0.6-4

wapi therefore provides another set of Get() functions for applications requiring a finer time control over the
data they exchange with WING. In this new set of functions, the Get() instance will, as for the non-timed
versions, gather information from WING and filter the possibly multiple’® received tokens for the first one
matching the specified token provided at call time, for a given amount of time only. Only when the specified
token is received or time has expired (whichever comes first) will the function process the data it received, if
available.

int wGetTokenTimed(wtoken token, wtype *type, wvalue *value, int timeout)

wGetTokenTimed() is equivalent to its blocking sibling function call wGetToken(), but will block only for up to
timeout microseconds; If no data corresponding to token token is received during that amount of time, the
function will return WzeRro. If a token token is received withing the time allocated by timeout, the function will
parse data and return it as in the case of wGetToken().

int wGetTokenFloatTimed(wtoken token, float *fval, int timeout)

The wGetFloatTimed() function is similar to the wGetTokenFloat() function in the sense it aims at retrieving
from WING data and adapt it to floating-point format before returning it to fval;

But it will do so over a period timeout, expressed in ps (microseconds).

As long as timeout is not reached, the function is inquiring WING for data; If after timeout has expired, no
data appears available, a value of WZERO is returned.

If on the contrary data is available from WING, the function will check if the data token is the correct one; it
will treat the data as done in the wGetTokenFloat() function; i.e. the value retrieved from WING is converted
to float format as expected by the fval variable.

For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as a float value in
fval. Inquiring WING token cH_1_PEQ_ON will result in a value of @.@ or 1.0, depending on the state of the
token.

On the other hand, inquiring WING token CH_1_NAME will most likely return a value of @.e and a status of
WZERO; In some cases (i.e., you set the name to be string “123.7” for example) you may get a valid
floating-point value returned.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for adapting token value to fval, or WSEND_TCP_ERROR if an error took
place while communicating with WING. Attempting to get a value from a token of type NODE will return WNODE.
If data is available from WING and the data token is not the expected one, the function discards data and
inquires WING for new data. The above takes place as long as timeout is not reached.

int wGetTokenIntTimed(wtoken token, int *ival, int timeout)

The wGetTokenIntTimed() function is similar to the wGetTokenInt() function in the sense it aims at retrieving
from WING data and adapt it to floating-point format before returning it to ival;

But it will do so over a period timeout, expressed in ps (microseconds).

As long as timeout is not reached, the function is inquiring WING for data, if no data appears available, a value
of WZERO is returned.

If on the contrary data is available from WING, the function will check if the data token is the correct one; it
will treat the data as done in the wGetTokenInt() function; i.e. the value retrieved from WING is adapted to
float format as expected by the ival variable.

78 Can literally be hundreds

©Patrick-Gilles Maillot 101 WING remote protocols —V 3.0.6-4

For example, inquiring WING token CH_1_PEQ_1F will return the current value of the token as an int value in
ival. Inquiring WING token cH_1_PEQ_ON will result in a value of @ or 1, depending on the state of the token.
On the other hand, inquiring WING token cH_1_NAME will return a value of @ and a status of WZERO; In some
cases (i.e., you set the name to be string «“12” for example) you may get a valid int value returned.

The function returns WSUCCESS if the requested operation was successful, other values can be returned, such
as WZERO if no suitable format was found for converting the retrieved value to ival, or WSEND_TCP_ERROR if an
error took place while communicating with WING. Attempting to get a value from a token of type NODE will
return WNODE.

If data is available from WING and the data token is not the expected one, the function discards data and
inquires WING for new data. The above takes place as long as timeout is not reached.

int wGetTokenStringTimed(wtoken token, char* str, int timeout)

The wGetTokenStringTimed() function is similar to the wGetTokenString() function in the sense it aims at
retrieving from WING data and adapt it to string format before returning it to str;

But it will do so over a period timeout, expressed in ps (microseconds).

The function is inquiring WING for data until a timeout timeout is reached, if no data appears available, a
value of WZERO is returned.

If on the contrary data is available from WING, the function will check if the data token is the correct one;
wGetTokenStringTimed() will then treat the data as done in the wGetTokenString() function; The value
retrieved from WING is adapted to string format as expected by the str variable. Similar restrictions and
conversion rules apply. For example, inquiring WING token cH_1_PEQ_1F will return the current value of the
token as a string in str. Inquiring WING token cH_1_PEQ_ON will result in a 1-character string of “@” or “1”,
depending on the state of the token. Similarly, a token with a floating-point native format would result in a
string containing the string representation of the floating-point value. As a last example, inquiring WING token
CH_1_NAME will return the string currently used for naming channel 1. Attempting to get a value from a token
of type NODE will return WNODE.

If data is available from WING and the data token is not the expected one, the function discards data and
inquires WING for new data. The above takes place as long as timeout is not reached.

©Patrick-Gilles Maillot 102 WING remote protocols —V 3.0.6-4

A Small Program Example

Let’s program! Assume you need to programmatically change the name of channels and mute/unmute the
respective channels from data contained in a file. Let’s consider the file also contains initial channel faders,
and covers channels 1 to 4. The file can be a text file such as:

Steve © -144.0
Jimmy 1 -30.0
Carla 1 -22.0
Jannet © -100.0

This is C source code; easy to understand and translate if needed to other programming languages.
We show on the right of the page the resulting channel strips 1-4:

#include <stdio.h>
#include <string.h>
//
#include “wapi.h”
#include “wext.h”
//
int main() {
wtoken ntoken
wtoken mtoken
wtoken ftoken
char wingip
float fader;
char name [24];
FILE* fd;
//
// we don’t know the IP of our console..
if (wOpen (wingip) != WSUCCESS) exit(1l);
printf ("WING found at IP: %s\n”, wingip);
// open the file for reading
if ((fd = fopen(“file”, “r”)) != 0) {
for (int i = 0; i< 4; i++) {
// get data from the file
fscanf (fd, “%23s %i %$f”, name, &mute, &fader);
printf (“%s %i $f\n”, name, mute, fader);
// set/send values to WING;
// we don’t care about the returned status
wSetTokenString (ntoken[i], name);
wSetTokenInt (mtoken[i], mute);
wSetTokenFloat (ftoken[i], fader):;

] = {CH 1 NAME, CH 2 NAME, CH 3 NAME, CH 4 NAME};
] = {CH 1 MUTE, CH 2 MUTE, CH 3 MUTE, CH 4 MUTE};
] = {CH 1 FDR, CH 2 FDR, CH 3 FDR, CH 4 FDR};

241 = “W%; int mute;

[
[
[
[

}
}
fclose (fd) ;
wClose () ;
exit (0);

©Patrick-Gilles Maillot 103 WING remote protocols —V 3.0.6-4

Event-driven updates

There are times and situations when WING will send data to your program. This has been explained above: As
soon as you are connected to WING and have exchanged data with it, the connection will stay in an open
state for 10s, unless you specifically establish and close the TCP connection around your work. While this will
help, it will not prevent WING to send you data while the TCP link is active, and is certainly not an effective
way to manage data as you will send more resources in opening/closing the connection than in time sending
or receiving data.

wapi provides additional APl functions to manage event driven applications. These are managed around the
notion of ‘main loop” as often found in IOT devices running Arduino devices, in standard Linux or Windows
applications where a main loop ensures the management of all events coming from devices connected to your
computer (mouse, keyboard, etc.). WING data can be treated just as any other event.

API calls are therefore available to keep a connection between your application and WING alive, as well as to
get data from WING, effectively emptying the event queue of the communication with the console. This will
be assured with the wkeepAlive() and the wGetVoidPTokenTimed() function calls presented below.

int wKeepAlive

wKeepAlive() maintains the connection between WING and the calling program so data issued by the console
with no request initiated by the program can be received in a main loop, or over an extended period of time
beyond 10s”°.

In fact, this function can be called as often as you like and will optionally performs a small exchange with the
console, based on an internal timer. The elapsed time between two effective exchanges of data with the
console depend on the value of wkeepAlive TIMEOUT which is part of the wapi.h file.

The wKeepAlive() function returns WSUCCESS if a valid exchange took place to renew a 10 seconds working
communication, or WZERO if no exchange was necessary. The function can also return the values of
WSEND_ERROR Or WRECV_ERROR if communication was not successful.

int wGetParsedEvents(wTV *tv, int maxevents)

The wGetParsedEvents() API call is a specific Get function. Unlike other Get functions previously presented in
this document, it does not expect data from a specific token, nor a specified format in which the data from
the console should be converted to. The function will check the WING receive event queue for data and will
only return when data is received by removing the events available from the oldest queue record. If no valid
data is found, the function eventually returns with a network error.

When data is available in the event queue events are retrieved in a FIFO order, and the token, type and data
associated to events are returned to the calling application using the tv structure array. The function returns
the number of events parsed if data has been returned to the calling program, WzeRO if no events were found.
It can also return WMEMORY on memory allocation errors or WRECV_ERROR on TCP read errors. The parameter
maxevents represents the maximum number of entries tv can accept; The function will allocate memory for its
event read buffer to match that size.

79 The actual value in the wapi library may vary (but less than 10s) to ensure stability in event driven communications

©Patrick-Gilles Maillot 104 WING remote protocols —V 3.0.6-4

int wGetParsedEventsTimed(wTV *tv, int maxevents, int timeout)

The wGetParsedEventsTimed() APl call is similar to the wGetParsedEvents() function, but will returned after a
maximum time of timeout in ps. Like in the case of the wGetParsedEvents () function, wGetParsedEventsTimed()
does not expect data from a specific token, nor a specified format in which the data from the console should
be converted to. The function will check the WING receive event queue for data and will only return when
data is received by removing the events available from the oldest queue record. If no data is found before a
timeout of timeout s, the function returns with a value WzeRro.

If data is available in the event queue, events are retrieved in a FIFO order, and the token, type and data
associated to events are returned to the calling application using the tv structure array. The function returns
the number of events parsed if data has been returned to the calling program, WzeRO if no events were found.
It can also return WMEMORY on memory allocation errors or WRECV_ERROR on TCP read errors. The parameter
maxevents represents the maximum number of entries tv can accept; The function will allocate memory for its
event read buffer to match that size.

In a typical, simple example of use of the two API calls shown in the following paragraph, the main loop is
replaced with awhile(1){} statement.

#include <stdio.h>
#include <string.h>
//
#include “wapi.h”
#include “wext.h”
//
int main() {
int i, 37
char wingip[24] = "";
wTV TV[100];

if ((i = wOpen(wingip)) != WSUCCESS) return(-1);
printf ("WING found at IP: %s\n", wingip);
printf ("Using version %i.%i\n", wVer()/256, wVer()&l5);

while (1) {
wKeepAlive () ;

//
if ((i = wGetParsedEventsTimed (TV, 100, 1000)) > 0) {
for (3 = 0; J < i; j++) |
printf ("W-> %s type = %i, data = ", wGetName (TV[]j].token), TV[]].type):;
if (TV[J].type == I32) printf("%i\n", TV[j].d.idata);
if (TV[j].type == F32) printf("%.2f\n", TV[j].d.fdata);
if (TVI[j].type == S32) {
if (TV[j].d.sdata) {
printf ("$s\n", TV[j].d.sdata);
free(TV[]j].d.sdata);
}
}
fflush (stdout) ;
}
} else {
if (i != WZERO) {
printf ("Error = %$i\n", 1i); fflush (stdout);
}
}
}
return 0;

An example of (partial) output of the code snippet above, after launching the program and manipulating ch.1,
2 and 3 mutes and ch. 1 fader:

©Patrick-Gilles Maillot 105 WING remote protocols —V 3.0.6-4

PS C:\Users\patri\eclipse\wtest\release> ./wtest

ING found at IP: 192.168.1.71

Using version 0.10
ch.l.mute type = 1, data
ch.2.mute type = 1, data
ch.3.mute type 1, data
ch.1.fdr type data
ch.1.fdr type data
ch.l.fdr type data
ch.1.fdr type data
ch.1.fdr type data

1
1
1

-144.00
-89.18

1
2
3
il
1
ik
1
1

L I O 1
MNRMNRNRNRN
nwmnn

©Patrick-Gilles Maillot 106 WING remote protocols —V 3.0.6-4

Nodes

In many applications as well as in browsing over the JSoN data structure, one can easily envision it would be
interesting for optimization purposes to get and set a group of attributes at once, rather than establishing
communication requests for each single parameter.

Nodes were introduced in the X32 family to enable this functionality, and have been widely used in several
applications for controlling the desk; In the case of WING this may be even more interesting due to the very
large number/volume of parameter data available as one unrolls each branch in the JSoN tree opening a new
level of nodes and parameters. Each branch of the 3SoN tree can be walked through by a program, resulting in
a (sometimes very large) set of {token, value} sets and a way to represent the depth in the hierarchical tree
the reported sets are issues from.

We show below the node data extracted (using a wapi call) for a few nodes:

wing root: {$stat{}, cfg{}, $syscfg{}, io{}, ch{}, aux{}, bus{}, main{}, mtx{}, dca{}, x{},
cards{}, play{}, rec{}, $ctl{}, $globals{}}

node $stat, size: 212,

.A.stat=-,dev=,.B.stat=-,dev=, .C.stat=-,dev=, .lock=1,ppm=0,s0lo=0,sip=0,rtcerr=0,time="'15:41:28",d
ate=2025-02-13,usbstate=IDLE,usbvolname=KINGSTON, sc_stat=-,sc_devices=,sc_upcnt=32,sc_dncnt=32,sc_
uprout=,rmt_a=,rmt_b=,rmt_c=,~~~~

node $syscfg, size: 208,
.consolename=HMS-01, logflags=toto, ipmode=DHCP,ip0®=169,ipl=254,ip2=24,ip3=25,msk@=255,msk1=255,msk2
=0,msk3=0,gw0=192,gwl=168, gw2=0, gw3=254,tcplock=0,usbh_spd=HS, eth_cfg=SEPARATED,opt_mod=DANTE, ~

As mentioned above, some nodes such as ch, are very large (more than 80k characters).

The set of values in a node list can be variable depending on the options (effects for example) loaded in the
console at the time of the call, but all tokens are fixed and only contain known data types; A node can be set
and retrieved as a single line of text with pre-formatted data, making it easy to store and manage in
applications. wapi offers two methods of saving node data sets from the console, the first one is returning
data like what is obtained using 0sc (text data); the other one is more suitable to direct use from a compiled
program, with binary data saved in specific structures containing the token and its respective data. The first
method typically takes 2 or 3 seconds to get all WING data as multiple strings of node data. The second
method is probably more suitable for use with wapi and is also faster (1 to 2 seconds) as no formatting is
involved in saving the data returned by the console.

The following functions list AP| entries to use WING nodes as defined above.

©Patrick-Gilles Maillot 107 WING remote protocols —V 3.0.6-4

int wSetNode(char *str)

The wSetNode() function parses the string contained in str according to the format used in OSC nodes; For
example, a string such as /ch.1.fdr=8.5,mute=1,/bus.1.fdr=5.0,.2.fdr=0.5 will set fader of channel 1 to the
8.5dB value and mute the channel. Bus 1 fader will be set to 5dB and bus 2 fader will be set to 0.5dB.

Each parameter=value group is separated by a ‘,’ character, the /' character represents the root of the 3soN
tree, and ‘.’ characters are used to navigate up and down within the JSON tree. String type values containing
space characters should be encapsulated within **" characters, such as in /ch.1.name="space name”

The function returns a status WSUCCESS if the string was processed with no errors; It will return WNODE if a token
or value provided with the string str is not valid. The function can also report other errors if communication
issues were detected. str must be \@ ended. Please see a code example using wSetNode () further in this
document.

int wSetNodefFtomTVArray(wTV *array, int nTV)

The wSetNodeFromTVArray () function sends updates to WING in a single network exchange from the nTv
elements in wTV (see below) array array; This is a great way to improve network performance. Although the
function is the symmetrical to wGetNodeToTVArray(), it can accept hierarchically organized elements or
uncorrelated elements as long as they are not nodes and contain valid tokens-values sets. The function
returns WSUCCESS or an error if one takes place during allocating, preparing, or sending the resulting network
buffer to WING.

int wSetBinaryNode (unsigned char *array, int len)

The wSetBinaryNode () function will load from array the len bytes of binary data commands to be executed by
the desk in a single call. The function returns the number of bytes sent to the console on success or an error if
one takes place during sending the buffer to WING.

The length value returned by the call can be greater than the value of 1en. This results from the function call
possibly adding escape characters specific to Wing native/binary protocol.

A typical use for this call is external scene management® such as in the code snippet below.

void WRestoreS () {
unsigned char node[256000];
int i, 7J;
//
if ((fd = fopen(“Scene.scn”, "rb")) != NULL) {
fread(&i, sizeof (int), 1, £d);

fread(node, i1 * sizeof (unsigned char), 1, £fd);
if ((j = wSetBinaryNode (node, 1)) < 1) {
printf ("Error: %d only bytes sent vs. %d\n", j, 1);
} else {
printf ("Restored Scene\n");
}
fclose (£d);
} else {
printf ("Cannot open Scene.scn\n");
}

Return;

80 As opposed to WING internal Show files and Scene entities (see dedicated chapter)

©Patrick-Gilles Maillot 108 WING remote protocols —V 3.0.6-4

int wGetNode(wtoken node, char *str)

The wGetNode() function will return in str a string of values separated formatted as in the 0sc node
convention and corresponding to the node token node.

str must be large enough to accept the characters returned by the call. The function returns a status WSUCCESS
if the node was processed with no errors; It will return WTOKEN if the token provided is not a valid node and
WNODE if an error occurs during parsing the data received from the console. The function can also report other
errors if communication issues were detected. The line of text returned by the function end with a line-feed
and a \e@ byte.

Note that it may not be possible to directly send node data as a string received with a wGetNode() using
wSetNode(); Indeed, some nodes have variable/dynamically assigned parameters, such as in the case of
equalizer models, and the parameter names reported by wGetNode() must be changed to a numerical list of
parameters prior to being passed as a parameter string to wSetNode(); See “Dynamic parameters
anonymization in wapi” further in this document.

int wGetNodeToTVArray (wtoken node, wTV *array)

The wGetNodeToTVArray () function will return in TV, an array of structures wTv (see below), all values
respective of their corresponding token and part of the node token node.

array must be large enough to accept the data returned by the call (see below for the number of elements for
each level-1 node). The function the number of tokens in the array array if the node was processed with no
errors; It will return WTOKEN if the token provided is not a valid node and WNODE if an error occurs during parsing
the data received from the console. The function can also report other errors if communication issues were
detected.

Below is an indicative value of the number of wTv structures in the returned arrays for each level-1 node of the
console at the time of this writing; The sum of the values following ‘size:” give an idea of the number of
parameters the console knows.

node $stat, size: 23
node cfg, size: 194
node $syscfg, size: 25
node io, size: 6054
node ch, size: 12400
node aux, size: 2008
node bus, size: 2736
node main, size: 440
node mtx, size: 728
node dca, size: 144
node mgrp, size: 16
node fx, size: 624
node cards, size: 74
node play, size: 18
node rec, size: 7

node $ctl, size: 5328
node $globals, size: 11

Below is a C code source example of use of WSetNode(); The program will set the faders of channels 1 to 4 to
different positions, unmute channels 1 and 3, channel 2 mute is unchanged and channel 4 will be muted. DCA
1is muted and its fader is set to 1dB.

/*

* wtest.c

©Patrick-Gilles Maillot 109 WING remote protocols —V 3.0.6-4

* Created on: Oct. 18, 2020

* Author: Patrick-Gilles Maillot

*/

//
#include <stdio.h>
#include <string.h>

//

#include "wapi.h"

#include "wext.h"

"/ch.1l.fdr=8.5,mute=1, name=toto, .2.£fdr=0,/dca.l.fdr=1.0,mute=0";

//
int main() {
int i;
char wingip[24] = "";
char wtestl[64] = fdr:
char wtest2[64] = "/ch.3.fdr=-20,mute=0,name=, .4.fdr=-60, mute=1";
//
if ((1i = wOpen(wingip)) != WSUCCESS) exit(l);
printf ("WING found at IP: %s\n", wingip);
unsigned int ui = wVer()

7
printf ("Using wapi ver: %i.%i.%i-%i\n", ui >> 24,

//
i = wSetNode (wtestl) ;

printf ("result = %d, initial data: %s\n", i, wtestl);

i = wSetNode (wtest2) ;

printf ("result = %d, initial data: %s\n", i, wtest2);

return (0) ;

A listing of the program when ran:

PS C:\Users\patri\eclipse\wtest\release> ./wtest
WING found at IP: 192.168.1.90
Using wapi ver: 3.0.6-4

(ui & 0xf£0000) >> 16,
(ui & O0x£ff£00)

>> 8, ui & Oxff);

result = 1, initial data: /ch.l.fdr=8.5,6mute=1,6name=toto,.2.fdr=0,/dca.l.fdr=1.0,mute=0
result = 1, initial data: /ch.3.fdr=-20,mute=0,6name=, .4.fdr=-60,6 mute=1
PS C:\Users\patrileclipse\wtest\release>

Below the resulting state of the console, starting from an init state:

© Foape

||

wHF

©Patrick-Gilles Maillot 110

SENDS ON FADERS

slayoleaelyay |

(a |

Il

WING remote protocols —V 3.0.6-4

Requesting the full set of nodes from a freshly initialized console®! results in a file of 200000+ characters, and
is therefore a lot of data to manage. Over WIFI, it takes about 2 seconds to execute a full dump as OSC-like
node data and 1 to 2 seconds to retrieve a full dump as wTv structures.

We show below a typical example of the 0sc-like node string for ch.1 returned by wapi when using wGetNode():

node ch:

.1.in.set.$mode=M, srcauto=0,altsrc=0,inv=0,trim=0.00,bal=0.00,$g=0.00,$vph=0,d1ly=0.00, .conn.grp=LC
L,in=1,altgrp=0FF,altin=1,..flt.1c=0,1cf=100.24,hc=0,hcf=10018.26,tf=0,md1=TILT,tilt=0.00, .clink=0
,col=1,name="",icon=1,led=1,mute=0,fdr=144.00,pan=0.00,wid=100.00,$s0lo=0, $sololed=0, solosafe=0,mo
n=A, proc=GEDI, ptap=4, $presolo=0,peq.on=0,1g=0.00,1f=99.69,1q=2.00,2g=0.00,2f=999.25,2q=2.00,3g=0.0
0,3f=10016.53,39=2.00, .gate.on=0,md1=GATE, thr=40.00, range=40.00,att=10.00,h1d=10.00,rel=199.40,acc
=0.00,ratio=1:3, .gatesc.type=0FF,f=1002.37,q=2.00, src=SELF,tap=IN, $s0lo=0, .eq.on=0,md1=STD,mix=100
.00, $s0lo=0,$solobd=1,1g=0.00,1f=80.20,10=2.00, leq=SHV,1g=0.00,11=200.00,1q=2.00,2g=0.00,2f=601.39
,20=2.00,3g=0.00,31=1499.79,30=2.00,4g=0.00,4f=3990.52,49=2.00,hg=0.00,hf=11994.42,hq=2.00, heq=SHV
, .dyn.on=0,md1=COMP,mix=100.00,gain=0.00,thr=10.00,ratio=3.00, knee=3,det=RMS, att=50.00,h1d=20.00,r
el=152.57,env=L0G, auto=1, .dynxo.depth=6.00,type=0FF,f=1002.37,$s0l0o=0, .dynsc.type=0FF,=1002.37,q=
2.00,src=SELF,tap=IN,$so0lo=0, .preins.on=0,ins=NONE, $stat=, .main.1.0on=1,1v1=0.00,.2.0n=0,1v1=0.00, .
3.0n=0,1v1=0.00, .4.0n=0,1v1=0.00, . .send.1.0n=0,1v1=144.00,pon=0,ind=0,mode=PRE, plink=0,pan=0.00,wi
d=100.00,.2.0n=0,1v1=144.00,pon=0, ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .3.0n=0,1v1=144.00, po
n=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .4.0n=0,1v1=144.00,pon=0,ind=0,mode=PRE, plink=0, pan
=0.00,wid=100.00, .5.0n=0,1v1=144.00,pon=0, ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .6.0n=0,1v1=1
44.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00,.7.0n=0,1v1=144.00,pon=0, ind=0,mode=PRE,pli
nk=0,pan=0.00,wid=100.00, .8.0n=0,1v1=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .9.0n
=0,1v1=144.00,pon=0, ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .10.0n=0,1v1=144.00,pon=0,ind=0,mod
e=PRE, plink=0,pan=0.00,wid=100.00, .11.0n=0,1v1=144.00,pon=0,ind=0,mode=PRE, plink=0,pan=0.00,wid=10
0.00,.12.0n=0,1v1=144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .13.0n=0,1v1=144.00,pon=
0,1ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .14.0n=0,1v1=144.00,pon=0,ind=0,mode=PRE, plink=0, pan=
0.00,wid=100.00, .15.0n=0,1v1=144.00,pon=0, ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, .16.0n=0,1lvl=
144.00,pon=0,ind=0,mode=PRE,plink=0,pan=0.00,wid=100.00, ..postins.on=0,mode=FX, ins=NONE,w=0.00, $st
at=,.tags="",$fdr=144.00,$mute=0, $muteovr=0,

int wGetBinaryNode (wtoken node, unsigned char *array, int maxlen)

The wGetBinaryNode () function will return in array the raw, binary data corresponding to the WING node
selected with token node. The storage buffer array must be large enough to accept the data returned by the
call, up tomaxlen bytes. The function returns the number of bytes saved in array, or an error status if less or
equal to 0.

Note that token node can represent a node or a parameter.

A typical use for this call is external scene management®? such as in the code snippet below.

void WSaveS () {
unsigned char node[2048];
int i;
//
if ((fd = fopen(Scene.scn, "wb")) != NULL) {
// Get the node data for CH_ 1, composed of many 0Oxd7<Wing data> parts
if ((i = wGetBinaryNode(CH 1, node, 2048)) < WSUCCESS) {
fclose (fd);
printf ("Error reading node %d\n", tarrayltal);
return;
}
fwrite(&i, sizeof(int), 1, £d);
fwrite(node, i1 * sizeof (unsigned char), 1, £fd);
printf ("Saved scene\n");
fclose (fd);
} else {

81FW 1.10
82 As opposed to WING internal Show files and Scene entities (see dedicated chapter)

©Patrick-Gilles Maillot 111 WING remote protocols —V 3.0.6-4

printf ("Cannot create Scene.scn\n");

}

return;

int wGetBinaryData (char *str, unsigned char *array, int maxlen)
The wGetBinaryData() function will return in array the raw, binary data corresponding to the WING node or
parameter represented by its text description str. The storage buffer array must be large enough to accept
the data returned by the call, up to maxlen bytes.
stris a string of characters enabling to select a single WING node or parameter, for example:

“/ch” (a node),

“/ch.1.eq” (a node), or

“/ch.1.name” (a parameter).
The function returns the number of bytes saved in array, or an error status if less or equal to 0.

©Patrick-Gilles Maillot 112 WING remote protocols —V 3.0.6-4

Meters

WING offers many measurement points along the digital audio path; As a result, there are numerous meters.
As briefly presented in a table earlier in this document, every Channels, Aux, Bus, Main and Matrix strip offers
no less than 8 meters: input left & right, output left & right, gate key & gain, and dyn key & gain. This alone
represents 608 meters that can be retrieved, and there are even more with V2 (version 2) meters, and many
more meter data from other metering points.

The network data path for getting meter values is separated from the main network communication to keep
things simpler for the programmer and sound engineer.

Meter data is transmitted to a UDP port chosen by the user. When selecting which meters to receive, the user
associates an ID to the request, enabling simpler identification of the received data. As soon as a valid meter
request is received, WING will send back the respective meter data for 5 seconds, every approximately every
50ms. To continue or continuously receive a set of meter data, the user must renew the request for data by
issuing a simple renew command containing the ID of the requested meter set.

Meters API

wapi offers a small set of function calls to help programmers manage meter data. it hides the networking
complexity and proposes a simple way of selecting what meter to get back from the digital console. Meter
data will be provided back to the application in the form of a buffer of values, decoding data being left to the
application.

int wMeterUDPPort (int wport)

The wMeterUDPPort() API call enable users to select the UDP port WING will send meter data to. It also prepares
the wapi internal network for receiving meter data and being able to return data to the user application. wport
is a standard uDP port and must be available for receiving data. The function returns WsUccess if everything is
set correctly or will return an error value if the request was not successful.

int wSetMetersRequest(int reqlD, unsigned char *wMid)

wSetMetersRequest() must be called in order to start receiving meter data. The APl associates a request ID
reqID to a selection of meters to receive. The request ID helps renewing the request for data and sorting
through potentially multiple data sets sent by the console. The wMid parameter holds the selection of meters
that can be recovered from WING in an array of 29 bytes. Each bit (from left to right) in the array of 29 bytes
represents a meter family that can be received from the console, and is shown in the table below:

byte index bits selection

0-4 1-40 Channel 1-40

5 1-8 Aux 1-8

6-7 1-16 Bus 1-16

8 1-4 Main 1-4

9 1-8 Matrix 1-8

10 1-8 DCA 1-8

11-12 1-16 FX proc 1-16
13-14 1-16 Source input 1-16
15-16 1-11 Output 1-11

17 1 Monitor

18 1 RTA

19-23 1-40 Channel V2 1-40
24 1-8 Aux V2 1-8
25-26 1-16 Bus V2 1-16

27 1-4 Main V2 1-4

28 1-8 Matrix v2 1-8

©Patrick-Gilles Maillot 113 WING remote protocols —V 3.0.6-4

For example, a C source language array declaration as follows will request meters for channels 1 and 40:
unsigned char mbits[29] = {ox80, @, 0, 0, 0x01, 0}; // bytes indexes 5 to 28 are @

int wRenewMeters(int reqlD)

The wRenewMeters() API callis used to renew a previous request for meter data; This function should be
called every 5 seconds maximum in order to avoid losing meter data if continuous receiving is expected. The
reqID parameter must be previously defined with a call to wSetMetersRequest(). The function returns
WSUCCESS if the request is accepted, or will return other error status values otherwise.

int wGetMeters(unsigned char *buf, int maxlen, int timeout)

wGetMeters() will check if meter data has been received or is available. The call can be blocking or
un-blocking depending on the value of timeout. A timeout of @ will block the application in reading mode
until data is available. A non-zero value of timeout, expressed in micro-seconds will return after the provided
value and return to the caller with a value of Wzero (@) if no data is available or will return sooner with the
actual number of bytes read available in buf.

The maxlen parameter indicates the maximum number of bytes buf can hold. It is the responsibility of the
application to ensure buf is large enough to accept maxlen bytes.

The data returned by the wGetMeters() function is coded as follows:
<reqID><[meter data group][meter data group] .. >

Each meter data group is composed of several big-endian 16bits integers typically representing meter
values expressed in 1/256t" of a dB, or otherwise returned data (for ex. Gate led returns e or 1).

The table below provides the number and origin of each meter data for each of the possible meter groups:

Group name Contents
channel input left
aux input right
bus output left
main output right
matrix gate key

gate gain

dyn key

dyn gain
dca pre fader left

pre fader right
post fader left
post fader right
fx input left

input right
output left
output right

state meters (1..6)

source source group levels (i.e.
local ins: 8 meters)
output output group levels (i.e.
local outs: 8 meters)
monitor solo bus left
solo bus right
mon 1 left
mon 1 right
mon 2 left
mon 2 right
rta rta slot meters (120)
channel V2 input left
aux V2 input right

©Patrick-Gilles Maillot 114 WING remote protocols —V 3.0.6-4

bus V2 output left
main V2 output right
matrix V2 gate key
gate gain
gate led

dyn key

dyn gain

dyn state
automix gain

Below is an example of buffers received after requesting meter data for channel 1 and using different sources,
with ¢h 1 fadersetto +3dB.

As received data uses signed 16bits ([-32768..+32767]) and is expressed in 1/256" of dB, the actual meter
value can be calculated as <int16>/256.

Note that fx return a different format for their meters, with value in dB = returnvalue * 6.0 / 2048.

gate gate dyn dyn
<reqID> inL inR outL outR key gain key gain

W-> 20 B: 00000002 9bb2 9bb2 8000 8000 9b7c 00O 8000 0O (no input)
-100 -100 -128 -128 -100 0 -128 0
W-> 20 B: 00000002 fofb f9fb fcfb fcfb f9fb 0000 ee0l 0000 (0SC 1kHz, -6dB)
-6 -6 -3 -3 -6 e -17 0
W-> 20 B: 00000002 d7fd d7fd dafd dafd d7fd 0000 aa®2 0000 (0SC 1lkHz, -40dB)
-40 -40 -37 -37 -40 0 -85 0

©Patrick-Gilles Maillot 115 WING remote protocols —V 3.0.6-4

RTA test program
We show here is a small C/ Windows program example showing how to get and display RTA. The scaling of
meter data is tweaked in order to provide better readability, but isn’t meant to be dB accurate.

/*

* wrta.c

*

* Created on: May 9, 2020

* Author: Patrick-Gilles Maillot

*

*

* History

* wver 0.0: initial release

* wver 0.1: changed color scheme and used a pow() function to better match WING
* results out of raw meter data;
* updated to meters V2

*

/

#include <windows.h>
#include <stdio.h>
#include <sys/time.h>
#include <math.h>

#include "../wapi/wapi.h"
#include "../wapi/wext.h"
//

// Windows Declarations
WINBASEAPI HWND WINAPI GetConsoleWindow (VOID) ;
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

//
HINSTANCE hInstance = 0;
HWND hwndipaddr, hwndconx;
HDC hdc;
PAINTSTRUCT ps;
MSG wMsg;
HFONT hfont;
HPEN wnpen; // no line
HBRUSH gBrush, rBrush, yBrush, wBrush; // Green, red, yellow, white
int keep running = 1; // mainloop control
int ready = 0; // Ready flag after connect OK
char wingip[24] = ""; // Let wapi tell us our IP
int M id = 3; // Meters request ID
int M port = 10026; // Meters UDP port
#define MAXLEN 254 // enough for RTA (244 bytes)
unsigned char buf [MAXLEN] ; // data buffer
int len;
//
time t before = 0; // Timers
time t now;
//
unsigned char mbits[29] = {O, O, O, O, O, O, O, O, O, O,
o, o, 0, 0, 0, 0, 0, 0, 0x80, // RTA
o, o, 0, 0, 0, 0, 0, 0O}
//

// void wRTAMeters ()
// A basic RTA, positioned height is 128, width is 5 per freqg. (120 Fregs)
// we draw (systematically) rectangles from 0 to 128, varying the color depending on value and
// pre-defined thresholds for yellow and red. We always optionally draw green, yellow, red,
// and finally white
void wRTAMeters (int basex, int basey, int value) {
int basexx = basex + 5;
int baseyy = basey + 128;
basex++;
// not trying to be accurate, but close to WING data behavior
//
if (value < 48) {
SelectObject (hdc, gBrush);
SelectObject (hdc, wnpen);
Rectangle (hdc, basex, baseyy, basexx, baseyy - value);
SelectObject (hdc, wBrush);
Rectangle (hdc, basex, baseyy - value, basexx, basey);
} else if (value < 96) {
SelectObject (hdc, gBrush);
SelectObject (hdc, wnpen);
Rectangle (hdc, basex, baseyy, basexx, baseyy - 48);
SelectObject (hdc, yBrush);

©Patrick-Gilles Maillot 116 WING remote protocols —V 3.0.6-4

Rectangle (hdc, basex, baseyy - 48, basexx, baseyy - value);
SelectObject (hdc, wBrush);
Rectangle (hdc, basex, baseyy - value, basexx, basey);

} else {
SelectObject (hdc, gBrush);
SelectObject (hdc, wnpen);
Rectangle (hdc, basex, baseyy, basexx, baseyy - 48);
SelectObject (hdc, yBrush);
Rectangle (hdc, basex, baseyy - 48, basexx, baseyy - 96);
SelectObject (hdc, rBrush);
Rectangle (hdc, basex, baseyy - 96, basexx, baseyy - value);
SelectObject (hdc, wBrush);
Rectangle (hdc, basex, baseyy - value, basexx, basey);

}

//

// Windows main function and main loop

//

int WINAPI wWinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, PWSTR lpCmdLine, int nCmdFile) {
//

union {
unsigned char ccl2];
short ii;

} endian;

int ival = 0;

float fval;

//

WNDCLASSW wc = {0};

wc.lpszClassName = L"WING RTA";
wc.hInstance = hInstance;
wc.hbrBackground = GetSysColorBrush (COLOR 3DFACE) ;
wc.lpfnWndProc = WndProc;
wc.hCursor = LoadCursor (0, IDC ARROW) ;
//
RegisterClassW (&wc) ;
CreateWindowW (wc.lpszClassName,
L"wrta - WING RTA wapi demo (c)2021 PG Maillot - ver 0.1",
WS OVERLAPPED | WS VISIBLE | WS SYSMENU,
220, 220, 630, 220, 0, 0, hInstance, 0);

//
// Main loop
while (keep running) {
if (PeekMessage (&wMsg, NULL, 0, 0, PM REMOVE)) {
TranslateMessage (&wMsq) ;
DispatchMessage (&wMsq) ;
}

if (ready) {
now = time (NULL) ; // maintain meters
if (now > before + 4) { // by sending
wRenewMeters (M_id) ; // request every less than
before = now; // 5 seconds

}

// Read meters (if any data) with a timeout of 10ms

if ((len = wGetMeters (buf, MAXLEN, 10000)) > 0) {
for (int i = 0; i < 120; i++) {

endian.cc[0] = buf[5 + i + i]; // channel in 1
endian.cc[1l] = bufl[4 + 1 + i];
fval = ((float) (endian.ii + 32768)/32768.);

ival = pow(fval, 10) * 128;
wRTAMeters (10 + 1 * 5, 40, ival);

}
}
return (int) wMsg.wParam;
}
//
LRESULT CALLBACK WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
//

char *strll[]

(™ 18", " o™, " -6", "-12", "-18", "-26", "-40", "_%H};

switch (msg) {
case WM_CREATE:
hwndconx = CreateWindow ("button", "Connect", WS VISIBLE | WS _CHILD,
5, 15, 85, 20, hwnd, (HMENU)1, NULL, NULL);
hwndipaddr = CreateWindow ("Edit", NULL, WS CHILD | WS VISIBLE | WS BORDER,
95, 15, 120, 20, hwnd, (HMENU)O, NULL, NULL);

©Patrick-Gilles Maillot 117 WING remote protocols —V 3.0.6-4

break;
case WM_PAINT:
hdc = BeginPaint (hwnd, &ps);
SelectObject (hdc, hfont);
SetBkMode (hdc, TRANSPARENT) ;
for (int i = 0; 1 < 8; i++) {
TextOut (hdc, 0, 40 + i1i*16+10, strl[i], strlen(strl[i])):;
MoveToEx (hdc, 11, 40 + i*16+15, NULL);
LineTo (hdc, 609, 40 + i1i*16+15);
}
break;
case WM _COMMAND:
if (HIWORD (wParam) == BN CLICKED) { // user action
switch (LOWORD (wParam)) {
case 1:
if (ready) {
keep running = 0;
PostQuitMessage (0) ;
} else {
// Connect clicked
if (wOpen (wingip) != WSUCCESS) exit(1l);
SetWindowText (hwndipaddr, wingip);
// set udp port to receive UDP data and request meters for channel 1
if (wMeterUDPPort (M port) != WSUCCESS) exit(l);
if (wSetMetersRequest (M id, mbits) != WSUCCESS) exit(l); // Meter req ID 3
ready = 1;
}
break;
}
}
break;
case WM_DESTROY:
keep running = 0;
PostQuitMessage (0) ;
break;
}
return DefWindowProcW (hwnd, msg, wParam, lParam);
}
//
// main program
int main(int argc, char **argv)
HINSTANCE hPrevInstance = 0;
PWSTR pCmdLine = 0;
int nCmdFile = 0;
// Hide console window
ShowWindow (GetConsoleWindow (), SW HIDE) ;
// Set colors
gBrush = CreateSolidBrush
yBrush = CreateSolidBrush
rBrush = CreateSolidBrush (RGB (255, 30, 0));
wBrush = CreateSolidBrush (RGB (255, 255, 255));
wnpen = CreatePen(PS_NULL, 0, RGB(0, 0, 0));
hfont = CreateFont(8, 0, 0, 0, FW _MEDIUM, O, O, O,
DEFAULT CHARSET, OUT OUTLINE PRECIS, CLIP DEFAULT PRECIS,
ANTIALIASED QUALITY, VARIABLE PITCH, TEXT ("Arial™));
// Launch program
wWinMain (hInstance, hPrevInstance, pCmdLine, nCmdFile);
wClose () ;
return 0;

{

RGB (0, 200, 20));
RGB (255, 200, 20));

And the resulting displays: Sine wave signal 1kHz:

_— .
B! wrta - WING RTA wapi demo (€)2021 PG Maillot - ver 0.1

Connect |[192.168.1.90

©Patrick-Gilles Maillot 118 WING remote protocols —V 3.0.6-4

Pink noise mode:

B wrta - WING RTA wapi demo (c)2021 PG Maillot - ver 0.1 X

Connect |[192.168.1.90

White noise mode:

B wrta - WING RTA wapi demo (c)2021 PG Maillot - ver 0.1 X

Connect |[192.168.1.90

©Patrick-Gilles Maillot 119 WING remote protocols —V 3.0.6-4

Channel strips layers

WING consoles offer a full customization of their control surface or screen, enabling the standard/default
settings of course but any strip can be configured to become a different one.

The goal here is not to describe how to use the feature, but to warn the programmer on a specific parameter
when using channel strip layers with wapi.

The typical set of parameters for Section Left, layer 1 node 1 is the following:

/Sctl/layer/L/1
/Sctl/layer/L/1/ofs
/Sctl/layer/L/1/name

/Sctl/layer/L/1/1
/Sctl/layer/L/1/1/type
/Sctl/layer/L/1/1/i
/Sctl/layer/L/1/1/dst
/Sctl/layer/L/1/1/val

The type can take different values of assigned channel strip type: CH, BUS, DCA, SEN, FX, MIDI CC. For all but
the type MIDI CC, the set of attributes is receiving a fixed name. In the case of MIDI cc, the attribute val is
anonymized as 1. Therefore, all wapi tokens will fit to their counterpart’s name, except for val, as shown
below:

/Sctl/layer/L/1 $CTL_LAYER_L_1
/Sctl/layer/L/1/ofs $CTL_LAYER_L_1_OFS
/Sctl/layer/L/1/name $CTL_LAYER_L_1_ NAME
/Sctl/layer/L/1/1 $CTL_LAYER_L_1 1
/Sctl/layer/L/1/1/type $CTL_LAYER_L_1 1 TYPE
/Sctl/layer/L/1/1/i $CTL_LAYER_L_1 1 I
/Sctl/layer/L/1/1/dst $CTL_LAYER_L_1_1 DST
/Sctl/layer/L/1/1/val $CTL_LAYER_L_1 1 1

©Patrick-Gilles Maillot 120 WING remote protocols —V 3.0.6-4

Effects and Plugins

WING comes with an impressive number of effects, plugins and emulations that can be used on any channel
without costing any FX slots. In every channel, Gate, EQ Compressor can take different processing models you
can organize and change on the fly. The following pages below present the different effects and their
parameters. For a detailed description of effects and plugins, please refer to the “Processing and Effects
Plug-in Guide”®® on Behringer’s website.

Plugins

Plugins entries are directly included with channels, busses, etc. and can either default to WING standard
algorithms or adapt to alternative plugins to color your sound or fit your taste when it comes to mixing.
Plugins are showing under the main 3SON structure, only when instantiated. WING Channel audio engines
enable 4 sorts of plugins: Filter, Gate, EQ and Dynamics. Bus, Main and Matrix audio engines support EQ and
Dynamics plugins.

The choice of plugin is represented by the name (or model) of the plugin, as set under the respective “md1”
token; After a console reset, the default channel Filter, Gate, EQ and Dynamics plugins will be “TILT”, “GATE”,
“sSTD”, and “COMP”, respectively, and these can be changed to one of the multiple plugins available within the

console (respecting the category they apply to of course).

The choice of plugin is represented by the name (or model) of the plugin, as set under the respective “md1”
token; authorized values are:

Filters:
TILT EQ, MAXER, AP 90, AP 180
Gates:
GATE/EXPANDER, DUCKER, EVEN 88 GATE, SOUL 9000 GATE, DRAW MORE 241, BDX902 DEESSER, WAVE
DESIGNER, DYNAMIC EQ, SOUL WARMTH PRE, 76 LIMITER AMP, LA LEVELER, AUTO RIDER, SOURCE
EXTRACTOR, SOURCE EXTRACTOR/LA LEVELER combo
Equalizers:
WING EQ, SOUL ANALOGUE, EVEN 88 FORMANT, EVEN 84, FORTISSIMO 110, PULSAR, MACH EQ4
Compressors:

WING COMPRESSOR, WING EXPANDER, BDX 160 COMP, BDX 560 EASY, DRAW MORE COMP, EVEN COMP/LIM,
SOUL 9@ee, SOUL BUS COMP, RED3 COMPRESSOR, 76 LIMITER AMP, LA LEVELER, FAIR KID, ETERNAL
BLISS, NO-STRESSOR, WAVE DESIGNER, AUTO RIDER, PIA2250 RACK, LTA100 LEVELER, SOURCE
EXTRACTOR/LA LEVELER combo

For a wapi program to gain access to plugin parameters, independently from the plugin being installed/loaded
at a given slot, the plugin parameter names are being ‘anonymized’ to names 1..n, rather than the names that
are listed with each single plugin. The actual parameter names for each separate plugin are listed in the plugin
description tables later in this document and are preceded with their apparition number in the plugin
parameter list; For example, to access the “range” value of plugin “GATE” used in channel @3, you would set
the token value to CH_3_GATE_2.

83 See: https://mediadl.musictribe.com/media/PLM/data/docs/POBV2/EFFECTS%20GUIDE M BE 0603-AEN WING.pdf

©Patrick-Gilles Maillot 121 WING remote protocols —V 3.0.6-4

In the small program shown below, we replace the default Gate and Dynamics plugins for Channel 1 and set
their respective parameters values to arbitrary values. For this example, we use the settings of the AUTO RIDER
DYNAMICS gate and Dynamics plugins; Note that the settings are different for Gate and Compression, despite
the plugin carrying the same name.

#include <stdio.h>
#include <string.h>
//

#include “wapi.h”
#include “wext.h”
//

int main () {

ww o,
’

char wingip[24] =

// we don’t know the IP of our console..
if (wOpen (wingip) != WSUCCESS) exit(1l);
printf (“WING found at IP: %s\n”, wingip);

wSetTokenString (CH 1 GATE_MDL, “RIDE”); //Auto Rider Dynamics
wSetTokenFloat (CH 1 GATE 1, -30.); // thr
wSetTokenFloat (CH 1 GATE 2, 0.); // tgt
wSetTokenInt (CH 1 GATE 3, 20); // spd
wSetTokenFloat (CH 1 GATE 4, 8.); // ratio
wSetTokenFloat (CH 1 GATE 5, 0.5); // hold
wSetTokenFloat (CH 1 GATE 6, 6.0); // range
wSetTokenString (CH_1 DYN MDL, “RIDE”); //Auto Rider Dynamics
wSetTokenFloat (CH 1 DYN 1, 50.); // mix
wSetTokenFloat (CH 1 DYN 2, 0.); // gain
wSetTokenFloat (CH 1 DYN 3, -30.); // thr
wSetTokenFloat (CH 1 DYN 4, 0.); // tgt
wSetTokenInt (CH 1 DYN 5, 20); // spd
wSetTokenFloat (CH 1 DYN 6, 4.); // ratio
wSetTokenFloat (CH 1 DYN 7, 0.5); // hold
wSetTokenFloat (CH 1 DYN 8, 3.0); // range

wClose () ;

return 0;

©Patrick-Gilles Maillot 122 WING remote protocols —V 3.0.6-4

Effects

Effects nodes are part of the main JSON structure, under the fx.n names, with n: [1..16] representing the 16
effects slots available for simultaneous use in the WIN audio processing. These 16 slots are divided in two sets
of slots: 1-8 accepting premium, standard or channel effects, and slots 9-16 accepting standard and channel
effects, respectively.

As in the case of plugins, the choice of effect is represented by the name (or model) of the effect, as set under
the respective “md1” token; authorized values are:

Premium
NONE, EXTERNAL, HALL REVERB, ROOM REVERB, CHAMBER REVERB, PLATE REVERB, CONCERT REVERB,
AMBIENCE, VSS3 REVERB, VINTAGE ROOM, VINTAGE REVERB, VINTAGE PLATE, BLUE PLATE, GATED
REVERB, REVERSE REVERB, DELAY/REVERB, SHIMMER REVERB, SPRING REVERB, DIMENSION CRS, STEREO
CHORUS, STEREO FLANGER, STEREO DELAY, ULTRATAP DELAY, TAPE DELAY, OILCAN DELAYB, BBD DELAY,
STEREO PITCH, DUAL PITCH

Standard
NONE, EXTERNAL, GRAPHIC EQ, PIA 560 GEQ, SPEAKER MANAGER, TRIPLE DYNAMIC EQ, C5-COMBINATOR,
PRECISION LIMITER, 2-BAND DEESSER, ULTRA ENHANCER, EXCITER, PSYCHO BASS, SUB OCTAVER, SUB
MONSTER, VELVET IMAGER, DOUBLE VOCAL, PICH FIX, ROTARY SPEAKER, PHASER, TREMOLO/PANNER,
TAPE MACHINE, MOOD FILTER, BODYREZ, RACK AMP, UK ROCK AMP, ANGEL AMP, JAZZ CLEAN AMP,
DELUXE AMP

Channel
NONE, EXTERNAL, SOUL ANALOGUE, EVEN 88 FORMANT, EVEN 84, FORTISSIMO 110, PULSAR,
MACH EQ4, EVEN CHANNEL, SOUL CHANNEL, VINTAGE CHANNEL, BUS CHANNEL, MASTERING

Effects can be used as dedicated inserts at defined locations within the audio path.

If an effect is part of a channel insert, assigning the effect to a different channel will remove the effect from its
previous channel assignment. In order to create a more traditional effect bus, WING requires to dedicate one
of the channels to the operation; Channels that want to use the effect bus can the send their audio (or a part
of it) to the channel that carries the effect, creating an effect mix bus that will apply the same effect to several
sources mixed into the effect channel and provide the resulting effect as a traditional effect return that can be
routed to a bus.

As for the case of plugins, Effect types/engines are represented by their respective model’s name under the
“md1” OSC tag, enabling the selection (loading) of a specific in one of the 16 available effect slots.

The JsoN tree dedicated to effects has the following structure:
(ffX)): {
({1)): {
“mdL”: “NONE”,
“Fxmix”: 100

}
€ »]1G. {}

In fact, there are a few more, read-only®* elements in the actual WING structure of a non-affected effect slot,

resulting in the following JSON structure:
({fx)): {
({1)): {
“mdL”: “NONE”,
“Fxmix”: 100,
“$esrc”: o, external source: [6..400]
“$emode”’: M, external mode: Mono, Stereo, Mid/Side

84 Read-only JSON elements start with a ‘S’ character

©Patrick-Gilles Maillot 123 WING remote protocols —V 3.0.6-4

“%a_chn”: o, assign channel: [6..76]
“$a_pos”: © assign position: 0, 1]

}
€ »1G. {}

Once an effect is assigned to a slot, the JSoN structure for the respective slot is extended to include the
parameters for the assigned effect. For example, installing reverb effect “RooM” in effect slot 5 will result in the
following update to the 3soN of effect 5:

“fX”.' {
5. {
r{mdL)): {(ROOM)))
“Fxmix”: 100,
“$esrc”: o, [e..400]
“$emode”: M, [M, ST, M/S]
“$a_chn”: o, [0, 1]
“$a_pos”: o, [o, 1]
“pdel”: pre-delay
“size”: room size
“dcy”: decay
“mult”: bass multiplier
“damp” : damping
“lc”: Low cut
“hc”: high cut
“shp”: shape
“sprd”: spread
“diff”: diffusion
“spin”: spin
“ecl”: echo left
“ecr”: echo right
“efl”: feed left
“efr”: feed right
}
}

Each available effect is a sort of program including a set of dedicated parameters. When choosing a specific
effect, the effect program is instantiated in one of the available slots and its parameters are mapped to the
main Jason parameters lists for that effect slot, thus enabling for example up to 16 different copies®® of the
same effect to be active on every effect slot, with differentiated parameters for each slot.

The tables in “Appendix: Effects and Plugins’ Parameters list, provide all effects’ names and parameters, and
the parameter types associated with each known effect.

Dynamic parameters anonymization in wapi

For a wapi program to gain access to fx parameters (or other dynamic parameters found in eq, f1t, dyn, gate,
midi, etc.), independently from the effect being installed/loaded at a given slot, parameter names are being
‘anonymized’ to names 1..40, rather than the names that are listed with each single effect. These names listed
in the tables below are preceded with their apparition number in the effect parameter list; For example, to
access frequency band 125Hz of a Graphics EQ effect loaded at effect slot 12, you would set the token value to
FX_12_9.

To set/instantiate an effect in one of the 16 WING FX slots, just set the effect model’s name; The effect engine
will be loaded to the effect slot, discarding a previous one if there was one already. The newly installed effect
parameters will become available for tweaking the effect to your settings.

Model names can be found behind the tag: “md1” in the tables in the “Effects and Plugins’ Parameters list”
appendix, further down in this document.

85 For standard effects, 8 for premium effects

©Patrick-Gilles Maillot 124 WING remote protocols —V 3.0.6-4

In the code example below is shown the instantiation of a graphic equalizer at effect slot 1, and the
manipulation of its full set of parameters; In no way an interesting EQ setting, but a simple program example
on how to install an effect and set parameters.

#include <stdio.h>
#include <string.h>
//

#include “wapi.h”
#include “wext.h”

//

int main() {
char wingip[24] = “%;
char *ty[] = {“std”, “tru”};
//

// we don’t know the IP of our console..
if (wOpen (wingip) != WSUCCESS) exit(1l);
printf (“WING found at IP: %s\n”, wingip);

//
int 3 = 0;
float £ = -15.;
wSetTokenString (FX 1 MDL, “GEQ”);
while (1) {
for (int I = FX 1 2; I <= FX 1 32; i++)
wSetTokenFloat (I, f); // bands 30Hz to 20kHz
Sleep (1) ; // slow down!
F += 0.25;
if (£ > 15.) {
f = -15;
j r=1;
wSetTokenString(FX 1 1, ty[j]); // type
}
}
wClose () ;
return 0;

©Patrick-Gilles Maillot 125 WING remote protocols —V 3.0.6-4

WING MIDI

©Patrick-Gilles Maillot 126 WING remote protocols —V 3.0.6-4

WING MIDI (Remote-Control)

In addition to OSC and native modes, WING offers MIDI options and commands to remotely control the desk
capabilities. Some obvious use will be for baw control (see next Appendix: MCU [DAW BUTTONS] commands
list), but more options for MIDI remote control are available:

e MIDI REMOTE CONTROL mode can be used over DIN or USB WING MIDI control port on the Standard
WING, or WING MIDI DAW 2 on WING Rack or Compact.

e DAW CONTROL mode can be used over DIN (limited to Control+Single MCU) or usB (Full surface) using
WING MIDI DAW 1..3 ports depending on the console type (Compact/Standard) and which DAW section
MIDI data is coming from/going to.

MIDI port names

Wing Standard comes with 4 separate MIDI ports: (WING) MIDI control, and (WING) MIDI DAW 1..3

Wing Compact and Rack come with 2 separate MIDI ports: (WING) MIDI DAW 1..2

In the case of Rack and Compact models, MIDI REMOTE CONTROL is supported using port (WING) MIDI DAW 2.
The names mentioned above are for when in a Windows environment. If using MacOS, port names are (WING)
Port 1..2 on Compact and Rack

When multiple devices are connected to a same computer, MIDI port names will be differentiated using a
prefix, such as WING or 2-WING before them, so for example “MIDI DAW 1” from a Compact and a Rack will list as
WING MIDI DAW 1 and 2-WING MIDI DAW 1 when using Windows. MIDI port names are prefixed with WING,
WING-Compact, or WING-Rack when using MacOS.

Important note on USB & MIDI: Changing the clock rate or number of USB Audio channels on WING causes
USB to disconnect for a few seconds (including MIDI). On certain operating systems, this may also reset
already active MIDI connections. This could happen when loading snapshots with different clock rate or USB
Audio configuration.

MIDI REMOTE CONTROLss.

MIDI commands are divided by channels, most of them have been published in a Music Group Document
shown below. Additional commands via MIDI CH7, CH8 and CH9 are available for Scene recall and Show
control.

CC to Channel Mapping (for FADER, MUTE, PAN). FADER on MIDI Ch 1, MUTE on MIDI Ch 2, PAN on MIDI Ch 3:
CC12..31 = Channel 1..20
CC44..6 > Channel 21..40
CC70..77 > Aux 1.8
€C78..93 > Bus 1..16
CC94/95 - Main 1..2
€C102/103 - Main 3.4
CC104..111 - Matrix 1.8

86 MIDI DAW mode is something different and is presented in a separate appendix

©Patrick-Gilles Maillot 127 WING remote protocols —V 3.0.6-4

DCA/Mute Groups. DCA Fader on MIDI Ch 4, DCA Mute and Mute Group MUTE on MIDI Ch 5:
CC12.27 > DCA 1..16
CC28..31 - Mute Group 1.4
CC44..47 - Mute Group 5..8

FX Parameter Control (FX1 on MIDICh 9 .. FX8 on MIDI Ch 16):
CC12 - Insert ON/OFF
CC13 - FX Mix
CC14 - FX Model
CC15..31 - FX Parameter 1..17
CC44..58 - FX Parameter 18..32

FX Parameter Control (FX9 on MIDI Ch 9 .. FX16 on MIDI Ch 16):
CC70 - Insert ON/OFF
CC71 - FX Mix
CC72 = FX Model
CC73..95 - FX Parameter 1..23
CC102..111-> FX Parameter 24..33

Custom Controls Remote (RX only, user layers 1..16) on MIDI Ch 6:

CC12..15 - Layer 1 Rotaries Note0..7-> Layer 1 Buttons (upper row, lower row)
CC16..19 - Layer 2 Rotaries Note8..15-> Layer 2 Buttons (upper row, lower row)
CC20..23 - Layer 3 Rotaries Notel6..25-> Layer 3 Buttons (upper row, lower row)
CC24.27 - Layer 4 Rotaries Note24..31-> Layer 4 Buttons (upper row, lower row)
CC28..31 - Layer 5 Rotaries Note32..39-> Layer 5 Buttons (upper row, lower row)
CC44..47 - Layer 6 Rotaries Note40..47-> Layer 6 Buttons (upper row, lower row)
CC48..51 - Layer 7 Rotaries Note48..55-> Layer 7 Buttons (upper row, lower row)
CC52..55 - Layer 8 Rotaries Note56..63—> Layer 8 Buttons (upper row, lower row)
CC56..59 - Layer 9 Rotaries Note64..71-> Layer 9 Buttons (upper row, lower row)

CC60..63 - Layer 10 Rotaries Note72..79-> Layer 10 Buttons (upper row, lower row)
CC70..73 - Layer11 Rotaries Note80..87-> Layer 11 Buttons (upper row, lower row)
CC74..77 - Layer 12 Rotaries Note88..95-> Layer 12 Buttons (upper row, lower row)
CC78..81-> Layer13 Rotaries Note96..103-> Layer 13 Buttons (upper row, lower row)
CC82..85 - Layer14 Rotaries Notel04..111-> Layer 14 Buttons (upper row, lower row)
CC86..89 - Layer15 Rotaries Notel12..119-> Layer 15 Buttons (upper row, lower row)
CC90..93 - Layer16 Rotaries Note120..127-> Layer 16 Buttons (upper row, lower row)

MIDI Scene Change (on MIDI Ch 7)%":
CH7 CCO (bank MSB), CH7 PC 1..128 = Scene B60000..B60008, C600..C67F
number 1..128, number 129..256 on bank MSB
1, etc.

MIDI Show Control (on MIDI Ch 8 & Ch 9):
CH8 CCO (bank MSB), CH8 PC 1..128 = Scene B70000..B7007F, C700..C77F
Tag #1..#128 on bank MSB O, #129..#256 on
bank MSB 1, etc.

CH9 PC 1 Scene GO C800
CH9 PC 2-> Scene PREV €801
CH9 PC 3 Scene NEXT €802
CH9 PC 4-> Scene GO PREV C803
CH9 PC 5 Scene GO NEXT C804

87 See appendix on Shows and Scenes further in this document for details on why it can be better to use scene tags rather than scene
numbers when recalling show items using MIDI

©Patrick-Gilles Maillot 128 WING remote protocols —V 3.0.6-4

WING MIDI SYSEX

WING also supports MIDI SYSEX messages, part of the MIDI protocol implementation in the console. SYSEX is a
key component of MIDI implementation for advanced, digital desks as many commands are dedicated to
controlling the desk as a surface control, rather than sending MIDI instrument notes. Standard 3 bytes MIDI
messages are generally not long enough to support the full set of capabilities these new desks offer. This is
made possible through the use and support of SYSEX functionality.

MIDI SYSEX messages are “system exclusive” data that can be passed using the MIDI HW and standard
protocol to the console, using a specific formatting convention and system dedicated messages, sent over
MIDI.

Your WING should be set to accept SYSEX data over USB or DIN. This setting is part of the in the MIDI REMOTE
CONTROL tab in the SETUP-REMOTE screen.

SYSEX Messages format

The formatting used in SYSEX data is similar to the one used for Node Data: each parameter group is
separated by a ‘,” character, the /' character represents the root of the JSoN parameter tree, and *’
characters are used to navigate up and down within the JSON parameter tree, as shown below:

/ch.1.fdr=-1,mute=0,.2.fdr=0,mute=1

will set channel 1 fader to -1dB, will unmute the channel, and set channel 2 fader to 0dB and mute the
channel.

SYSEX communications can report error messages (see below) that can be:
NODE NOT FOUND
VALUE ERROR
BUFFER OVERFLOW
NODE IS NOT PAR
INCOMPLETE DATA
STACK EMPTY

SYSEX Messages, Explained
WING MIDI SYSEX messages are built as follows:

F@ 00 20 32 57 <cmd> <data[*]> F7

<data[*]> is an arbitrary number of bytes representing the data to be sent to the console, and can be an
empty string of bytes; The way data is interpreted by the console is controlled using <cmd>, a single byte as
listed below:

00: ident
Will return the signature string of the console, such as returned with OSC command /?# sent
to port 2223, or native identification datagram wING?¥ Sent to port 2222. Upon executing the
command, the console will return a MIDI byte o1.

88 Refer to chapter on OSC protocol
89 Refer to chapter “Remote communications with WING”

©Patrick-Gilles Maillot 129 WING remote protocols —V 3.0.6-4

02: execute <data[*]>
Will execute the requested command contained in or represented by <data[*]>. <data[*]>
should contain a WING command respecting the format rules described earlier in this
chapter. Upon executing the command, the console may return status @7 (Error) followed
with an error message if an error occurred.

03: dump <data[*]>
Will return the current values found for <data[*]>. <data[*]> should contain a WING node or
command respecting the format rules described earlier in this chapter. Upon executing the
command, the console will return MIDI byte @4 (OK) or @7 (Error) followed with an error
message.

05: describe <data[*]>
Will return the description of the node found at or represented by <data[*]>. <data[*]>
should contain a WING node respecting the format rules described earlier in this chapter.
Upon executing the command, the console will return a MIDI byte @6 (OK) or @7 followed with
an error message.

Examples
We give below a few examples of MIDI SYSEX commands sent to WING, with their interpretation, their
resulting effect on WING, and the returned data, if any.

cmd = 00 example:
Sending Fe @@ 20 32 57 @@ f7,

or cmd @@ will generate a SYSEX being returned by WING:
FO 00 20 32 57 01 57 49 4E 47 2C 31 39 32 2E 31 36 38
2E 31 2E 37 31 2C 50 47 4D 2C 6E 67 63 2D 66 75 6C 6C
2C 4E 4F 5F 53 45 52 49 41 4C 2C 31 2E 30 38 2E 31 2D
30 2D 67 33 33 65 36 39 66 38 38 3A 72 65 6C 65 61 73
65 F7

Containing the WING signature (your system will contain something slightly different):
WING,192.168.1.71,PGM,ngc-full,NO_SERIAL,1.08.1-0-g33e69f88:release

cmd = 02 examples:
Sending Fo @0 20 32 57 @2 2F 63 68 2E 31 2E 66 64 72 3D 2D 31 2C 6D 75 74 65 3D 38 2C 2E 32
2E 66 64 72 3D 30 2C 6D 75 74 65 3D 31 F7,
or cmd @2 followed by /ch.1.fdr=-1,mute=0, .2.fdr=0,mute=1 will set channel 1 fader to -1, channel 2
fader to 0 and will unmute channel 1 and mute channel 2.

Sending Fe @@ 20 32 57 @2 2F 63 68 2E 31 2E 66 64 3D 2D 31 2C 6D 75 74 65 3D 3@ 2C 2E 32 2E
66 64 72 3D 30 2C 6D 75 74 65 3D 31 F7,

or cmd @2 followed by /ch.1..=—1,mute=e, .2.fdr=0,mute=1 will return an error; note we omitted the
”I" of ”." above for channel 1. WING will reply with the following SYSEX message: Fe @@ 20 32 57
@7 4E AF 44 45 20 AE 4F 54 20 46 4F 55 4E 44 F7, or error status @7, followed by NODE NOT FOUND.

cmd = 03 examples:
Sending Fe @0 20 32 57 @3 2f 61 75 78 F7,

©Patrick-Gilles Maillot 130 WING remote protocols —V 3.0.6-4

or cmd @3 followed by /aux, will be replied by WING with a near 28000 bytes SYSEX message
corresponding to the following in ASCII (partial listing containing aux1 and aux8, aux2 to aux7
included but not listed):

1l.in.set.srcauto=0,altsrc=0,inv=0,trim=0.0,bal=0.0, .conn.grp=USB,in=1,altgrp=0FF,altin=1,.

clink=0,col=8,name=USB,icon=605,1led=1,mute=0,fdr=00,pan=0,wid=100, solosafe=0,mon=A, eq.on= 0

mix=100,1g=0.0,1f=80.2,19=2.00,1leq=SHV,1g=0.0,1f=399.1,1g=2.00,2g=0.0, 2f=2k50, 2q=2.00, hg=0.

0,hf=11k99,hqg=2.00,heq=SHV, .preins.on=0,ins=NONE, .main.1.0on=1,1v1=0.0,.2.0n=0,1v1=0.0, .3.0n
=0,1v1=0.0, .4.0n=0,1v1=0.0,..send.1.0n=0,1lv1l=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wid=100,
.2.0n=0,1lv1l=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wid=100, .3.0n=0, lvl=00,pon=0,ind=0, mode=P
RE,plink=0,pan@,wid=100, .4.0n=0,1lv1=00,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100, .5.0n=0,1
v1=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wid=100, .6.0n=0,1v1l=00,pon=0, ind=0,mode=PRE, plink=
0,pan=0,wid=100, .7.0n=0, 1lvl=00,pon=0, ind=0,mode=PRE, plink=0,pan=0,wid=00, .8.0n=0,1v1=00,pon
=0, ind=0,mode=PRE, plink=0,pan=0,wid=100, .9.0n=0, 1lvl=00,pon=0,ind=0,mode=PRE,plink=0,pan=0,w
id=100, .10.0n=0,1lv1=00,pon=0, ind=0,mode=PRE, plink=0,pan=0,wid=100, .11.0n=0, 1lvl=00, pon=0,ind
=0, mode=PRE,plink=0,pan=0,wid=100, .12.0n=0,1v1=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wd=100
,.13.0n=0,1v1l=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wid=100, .14.0n=0, 1lv1=00,pon=0, ind=0,mod
e=PRE, plink=0,pan=0,wid=100, .15.0n=0, 1lvl=00,pon=0, ind=0,mode=PRE, plink=0,pan=0,wid=100, .16.
on=0,lvl=00,pon=0, ind=0,mode=PRE,plink=0,pan=0,wid100, ..tags=,.2.in.set.srcauto=0, [..Aux cha
nnels 2 to 7 listed..],..tags=,.8.in.set.srcauto=0,altsrc=0,inv=0,trim=0.0,bal=0.0, .conn.grp
=0FF,in=1,altgrp=0FF,altin=1,..clink=0,col=1,name=,icon=0, led=1,mute=0, fdr=00,pan=0,wid=100
,solosafe=0,mon=A, eq.on=0,mix=100,1g=0.0,1f=80.2,19=2.00,1leq=SHV,1g=0.0,1f=399.1,19=2.00, 2g
=0.0,2f=2k50,20=2.00,hg=0.0,hf=11k99,hq=2.00,heq=SHV, .preins.on=0, ins=NONE, .main.1.0on=1,1v1l
=0.0,.2.0n=0,1v1=0.0, .3.0n=0,1v1=0.0, .4.0n=0,1v1=0.0,..send.1.0n=0,1lvl=00,pon=0,ind=0,mode=
PRE,plink=0,pan=0,wid=100, .2.0n=0,1lv1l=00,pon=0, ind=0,mode=PRE, plink=0,pan=0,wid=100, .3.0n=0
,1lvl=00,pon=0, ind=0,mode=PRE, plink=0,pan=0,wid=100, .4.0n=0, 1v1l=00, pon=0, ind=0,mode=PRE,plin
k=0,pan=0,wid=100, .5.0n=0,1v1l=00,pon=0,ind=0,mode=PRE, plink=0, pan=0,wid=100, .6.0n=0,1lv1=00,
pon=0,1ind=0,mode=PRE, plink=0,pan=0,wid=100, .7.0n=0,1v1l=00,pon=0,ind0@,mode=PRE, plink=0, pan=0
,wid=100, .8.0n=0,1v1l=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wid=100, .9.0n=0,1lv1l=00,pon=0,ind
=0, mode=PRE,plink=0,pan=0,wid=100, .10.0n=0,1v1=00,pon=0,ind=0,mode=PRE, plink=0,pan=0,wid=10
9,.11.0n=0,1lvl=00,pon=0,ind=0,mode=PRE,plink=0, pan=0,wid=100, .12.0n=0, 1lv1=00,pon=0,1ind=0,mo
de=PRE, plink=0,pan=0,wid=100, .13.0n=0, 1lvl=00,pon=0,ind=0,mode=PRE, plink=0, pan=0,wid=100, .14
.on=0, lvl=00,pon=0,ind=0,mode=PRE, plink=0, pan=0,wid=100, .15.0n=0, 1vl=00, pon=0, ind=0,mode=PR
E,plink=0,pan=0,wid=100, .16.0n=0,1lv]l=00,pon=0,ind=0,mode=PRE,plink=0,pan=0,wid=100, ..tags=,

Sending FO 00 20 32 57 @3 2F 63 68 2E 31 2E 66 64 72 F7,

or cmd @3 followed by /ch.1.fdr, will be replied by WING with a SYSEX message containing the
current value of channel 1 fader: Fe @0 20 32 57 @4 2D 31 2E 3@ F7, or status @4 (no error) and
value -1.0.

cmd = 05 examples:
Sending again SYSEX Fo 00 20 32 57 @5 2f 61 75 78 00 00 00 00 F7,
Or cmd @5 followed by /aux~~~~ will be replied by WING with the following SYSEX message (note the
status @6 (no error):

FO 00 20 32 57 @6 20 20 31 20 20 20 20 20 20 20 20 20
20 20 20 20 20 28 6E 6F 64 65 29 OA 20 20 32 20 20 20
20 20 20 20 20 20 20 20 20 20 20 28 6E 6F 64 65 29 OA
20 20 33 20 20 20 20 20 20 20 20 20 20 20 20 20 20 28
6E 6F 64 65 29 OA 20 20 34 20 20 20 20 20 20 20 20 20
20 20 20 20 20 28 6E 6F 64 65 29 OA 20 20 35 20 20 20
20 20 20 20 20 20 20 20 20 20 20 28 6E 6F 64 65 29 OA
20 20 36 20 20 20 20 20 20 20 20 20 20 20 20 20 20 28
6E 6F 64 65 29 QA 20 20 37 20 20 20 20 20 20 20 20 20
20 20 20 20 20 28 6E 6F 64 65 29 OA 20 20 38 20 20 20
20 20 20 20 20 20 20 20 20 20 20 28 6E 6F 64 65 29 0A
F7

Or in ASCII

©Patrick-Gilles Maillot 131 WING remote protocols —V 3.0.6-4

(node)
(node)
(node)
(node)
(node)
(node)
(node)
(node)

oONOUVT A~ WNER

Sending again F@ @0 20 32 57 @5 2F 63 68 2E 31 2E 66 64 72 F7,

or cmd @5 followed by /ch.1.fdr, will be replied by WING with a SYSEX message containing the
description of channel 1 fader: Fe @0 20 32 57 @6 66 61 64 65 72 20 5B 2D 6F 6F 20 2E 2E 20 31
30 2E 30 20 64 42 5D 2C 20 31 30 32 34 20 73 74 65 70 73 @A F7, or status @6 (no error),
followed by description fader [-00 .. 10.0 dB], 1024 steps.

©Patrick-Gilles Maillot 132 WING remote protocols —V 3.0.6-4

Appendices

©Patrick-Gilles Maillot 133 WING remote protocols —V 3.0.6-4

Appendix: Buttons (user/gpio, user/user, user/daw, user/)°

WING includes a rather large set of buttons separated in different logical blocks: user/gpio, user/user, and
user/daw and user. They are all managed under the $ctl subtree of commands. As in the case of effects
where the effect model sets the type and number of OSC patterns available for supporting the functionality
currently in effect, the associated JSON structure varies and adapts to the necessary sets of parameters.

user/gpio/1..4

This subsection covers the 4 possible GPIOs supported by WING; the actual set
of usable OSC patterns available at a given time depends on the mode

il parameter value of the /$ctl/user/gpio/1..4/bu/ OSC pattern represented
ki below as <0SC b_pattern>.
gpio/4 ’
user/user/1..4
This subsection covers the 8 user buttons supported by WING®?; the actual set
user daw1l daw2 daw3 daw4 of usable OSC patterns available at a given time depends on the mode
é @ é l@ é parameter value of the /$ctl/user/user/1..4/bu/ and the

/$ctl/user/user/1..4/bd/ OSC patterns for the 4 buttons of the upper and
lower row of the button section, and represented below as <0SC b_pattern>.

user/dawl..4/1..4

This subsection covers the 4 possible sets of 8 DAW buttons supported by
WING; the actual set of usable OSC patterns available at a given time depends
on the mode parameter value of the /$ctl/user/dawl..daw4/1..4/bu/ and the
/$ctl/user/dawl. .dawd/1..4/bd/ OSC patterns for the 4 buttons of the upper
and lower row of the button section, and represented below as <0sc
b_pattern>.

user/1..16/1..4

This subsection covers the 16 possible sets of 8 user buttons and 4 user

encoders supported by WING®; the actual set of usable OSC patterns available
@ _jene At given time depends on the mode parameter value of the

/$ctl/user/1..16/1..4/bu/, /$ctl/user/1..16/1..4/bd/, and

Hige
S
©

) [0 @ G @ -mu /$ctl/user/1..16/1..4/enc/ OSC patterns for the 4 buttons of the upper and
S p— lower row of the button section, and the 4 encoders represented below as
v 0 @ @ « Ibd p

<0SC b_pattern> and <0SC e_pattern>, respectively.

9 Describing here the buttons and CC section for the standard WING, Compact and Rack version differ in the amount of CC
buttons/knobs available.

91 Standard model only

92 Standard and Rack models only

©Patrick-Gilles Maillot 134 WING remote protocols —V 3.0.6-4

The tables below list the different options for OSC patterns <0SC b_pattern>:

mode Command

OFF none

MUTE <0SC b_pattern>/ch
INS1 <OSC b_pattern>/ch
INS2 <OSC b_pattern>/ch
MGRP <OSC b_pattern>/mgrp

DCAMUTE <OSC b_pattern>/dca
SOF <0OSC b_pattern>/ch

SPILL <0SC b_pattern>/area
<OSC b_pattern>/tgt

FXPAR <OSC b_pattern>/fx
<OSC b_pattern>/par
DAWBTN <OSC b_pattern>/btn
DAWENC <OSCb_pattern>/enc
CHPAGE <OSCb_pattern>/ch
<0SC b_pattern>/pg
PAGE <0SC b_pattern>/pg
FDRPAGE <OSCb_pattern>/area

<OSC b_pattern>/bank

VIEWPAGE <OSC b_pattern>/area
<0OSC b_pattern>/bank

Type Range / Text

| 1..76

| 1..76

| 1..76

S |MGRP.1, MGRP.2,..,MGRP.8

S |DCA.1, DCA.2,..,DCA.16

| [1..76

S LGR

S |DCA1,.., DCA16, FX1,.., FX16,
BUS1,.., BU16, MAIN1, ..,
MAIN4, MTX1,..,MTX8, AUTOX,
AUTOY

S |FX1,..,FX16

| [1.41

S [11,..,T20, N1,..,N9, Al,..,Al6,
F1,..,F8,V1,., V15, AU1,..,AU12,
SY1,..,SY10, OT1,..,0T12,
E1,.,E10, SP1,.., SP6

S M1P,..,M8P, E1P,..,E16P,
M1,..,M8, E1,..,E16, JOG

| 1..76

S HOME, INPUT, FILT, GATE,
DYN, EQ, INS1, INS2, MAIN,
SEND, SND.EQ

S |FX, MTRS, CHINS, SRC, OUTS,
SETUP, LIB, CUSTCTL, MON,
2TRK, WLIVE, MIXV, FDRYV,
SENDV, MGRP, LAYER

S |, C, R, CMPCT, RCK, EXT, VRT

| 1.21

S |, C, R, CMPCT, RCK, EXT, VRT

1.21

93 Maps to /Sctl/layer/xxx/spidx parameters values 1..62
941..40 are for FX parameters, 41 is for FX Mix
95 See MCU [DAW BUTTONS] commands list in Appendixes
% See MCU [DAW V-POTS] commands list in Appendixes

©Patrick-Gilles Maillot

135

Description
OFF

Channel number
Channel number
Channel number

Mute group number
DCA fader number mute
Channel number

Console area (left, center, right)
Targeted group®®

FX processor number
FX processor parameter number®

MCU button®?

DAW Rotary®®

Channel number
Page name

Page name

Area
Bank

Area
Bank

WING remote protocols —V 3.0.6-4

OTHER <0SC b_pattern>/other
<OSC b_pattern>/CCBK
GPIO <0SC b_pattern>/GPIO
FSTART <0SC b_pattern>/ch
MIDICCT <OSC b_pattern>/ch
<0SC b_pattern>/cc
<0SC b_pattern>/val
MIDICCP <OSC b_pattern>/ch
<OSC b_pattern>/cc
<OSC b_bpattern>/val
MIDINT <OSC b_pattern>/ch
<OSC b_bpattern>/note
<OSC bb_pattern>/val
MIDINP <OSC b_pattern>/ch
<OSC b_pattern>/note
<0SC b_pattern>/val
MIDIPGM <OSC b_pattern>/ch
<0SC b_pattern>/note
USBPR <0SC b_pattern>/usbpr
SDRECA <OSC b_pattern>/sdrec
SESSIONA <OSC b_pattern>/session
MARKERA <OSC b_pattern>/marker

TBA, TBB, ALTSRC, DAWSW,
MONA, MONB, MONAB,
MONDIM, MONMONO,
MONSWAP, MONMUTE,
FDROFF, FDR-10DB, FDRODB,
AUTOX, AUTOY, CHPREV,
CHNEXT, CHSOLO, BUSSOLO,
MAINSOLO, MTXSOLO, CHMTR,
BUSMTR, MAINMTR, MTXMTR,
DCAMTR, CCBANK

1..16,-1, +1

A, B, C, D, A-P, B-P, C-P, D-P,
2S, 55, 108, 155, 208, 25S, 30S

1..76

1..16
0..127
0..127

1..16
0..127
0..127

0..127
0..127

0..127
0..127

1..16
1..128

PSTOP, PLAY, PPAUSE, PNEXT,
PPREV, RSTOP, RECORD,
RPAUSE, RNEW

STOP, PLAY, REC, PAUSE,
PLAYSTOP, PLAYPAUSE, ADD,
PREV, NEXT, PLAYMARKER,
GOMARKER, SELSESSION,
PREV_S, NEXT_S

$1..520

M1..M20

Other functions

When other == CCBANK

GPIO Toggle, Push, or Power-on
delay®’

Channel number

MIDI channel (toggle)
MIDI control change number
MIDI control value

MIDI channel (push)
MIDI control change number
MIDI control value

MIDI channel (toggle)
MIDI note

MIDI note value
MIDI channel (push)
MIDI note

MIDI note value

MIDI channel
MIDI program value

USB Play Rec

SD A recorder

SD A Session

SD A Marker

97 Toggle (A..D) and Push (A-P..D-P) apply to GPIO and USER CC; Delays {2S...30S) apply only to GPIO state setup time after a console

power cycle.

©Patrick-Gilles Maillot

136

WING remote protocols —V 3.0.6-4

SDRECB

SESSIONB

MARKERB

<0SC b_pattern>/sdrec

<OSC b_pattern>/session

<0SC b_pattern>/marker

STOP, PLAY, REC, PAUSE,

PLAYSTOP, PLAYPAUSE, ADD,

PREV, NEXT, PLAYMARKER,
GOMARKER, SELSESSION,
PREV_S, NEXT_S

51..520

M1..M20

SD B recorder

SD B Session

SD B Marker

The table below lists the different options for the OSC encoder pattern <0SC e_pattern>:

mode
OFF

FDR

PAN

DCA

SSND

FSND

FX

DAWMCU

MON

OTHER

MIDICC

Command
none

<OSC e_pattern>/ch
<OSC e_pattern>/ch
<OSC e_pattern>/dca

<0SC e_pattern>/send

<0SC e_pattern>/ch
<0SC e_pattern>/send

<0SC e_pattern>/fx
<0OSC e_pattern>/par

<0SC e_pattern>/mcuenc

<0SC e_pattern>/mon

<0SC e_pattern>/other

<OSC e_pattern>/ch
<OSC e_pattern>/cc
<0SC e_pattern>/val

981..40 are for FX parameters, 41 is for FX Mix

TypeRange / Text

| 11..76

I 11..76

S |DCA.1, DCA.2,..,DCA.16

S |BUS]L,..,BUS1S,
MAINZ,..,MAIN4,
MTXZ,..,MTX8

| 1..48

S |BUSL,..,BUS16,
MAIN1,..,MAIN4,
MTX1,..,MTX8

S FX1,.,FX16

[1..41

S M1,..,M8, E1,..,E16, JOG

S |AB

S |BRILAMP, BRIGLOW,

BRIPATCH

1..16
0..127
0..127

99 See MCU [DAW REMOTE MCU] commands list in Appendixes

100 Note these are only ‘readable’ when touching the encoder, the actual setting is only possible with the potentiometer in the

Monitoring/Talkback section of the console

©Patrick-Gilles Maillot

137

Description
OFF

Channel number

Channel number

DCA fader number

Send to Bus, Main or Matrix

number

Channel number
Send to Bus, Main or Matrix
number

FX processor number
FX processor parameter number®

DAW Rotary®®

Monitor selection®

A: PHONES level

B: SPEAKERS / MONITOR level

Lamp and other lighting controls
MIDI channel

MIDI control change number
MIDI control change value

WING remote protocols —V 3.0.6-4

SD A <0SC e_pattern>/sdarec S |POS, MARKER, SESSION SD-A Recorder

SDB <0SC e_pattern>/sdbrec S |POS, MARKER, SESSION SD-B Recorder

©Patrick-Gilles Maillot 138 WING remote protocols —V 3.0.6-4

Appendix: Effects and Plugins’ Parameters list

In the (long) tables below, we list all known/exposed effects and plugins available with the WING digital
console, along with their name, type, and min/max/step/list values; We therefore present Standard Effects,
Premium effects, Filter Plugins, Gate Plugins, EQ Plugins, and Compressor Plugins.

All active effects and plugins modify the JsoN tree and their respective OSC patterns.

On any channel, an insert will create a processing delay of 32 samples (i.e. around 0.66ms). This is because
audio is routed to a different DSP for FX processing. It is important to take this into account when mixing, as
phasing effects may result from the imposed delay.

With FW 2.1, Behringer published a document on effect: the WING Effects Guide, with a description of effects
and plugins that can be found on WING. This document can be found and downloaded at:
https://mediadl.musictribe.com/media/PLM/data/docs/POBV2/EFFECTS%20GUIDE M BE 0603-AEN WING.p
df

In addition to the Behringer document above, the tables below show all parameters associated to effects and
plugins, including their name, type, and value range following the OSC pattern /fx/1. .16/

Effects

Standard effects

None
0 “mdl”: NONE

EXTERNAL EFFECT External
P 0 “mdl”: EXT
= 1 “egrp”: str [OFF, LCL, AUX, A, B, C, SC,
USB, CRD, MOD, PLAY, AES] ext grp

2 “ein”: int [1..64] ext in
OIO mossie 3 “emode”: str [M, ST, M/S] ext mode
4 “lat”: int [@..200] Llatency
5 “trim”: Llinf [-18, 18, 361] dB, trim
Graphic EQ
0 “mdl”: GEQ
1 “type”: str [STD, TRU] geq type
2 “20”: Llinf [-15, 15, 121] dB
3 “25”: Llinf [-15, 15, 121] dB
4 “31”: Llinf [-15, 15, 121] dB
5 “40”: Llinf [-15, 15, 121] dB
6 “50”: Llinf [-15, 15, 121] dB
7 “63”: linf [-15, 15, 121] dB
8 “80”: Llinf [-15, 15, 121] dB
9 “100”: Llinf [-15, 15, 121] dB

10 “125”: Llinf [-15, 15, 121] dB
11 “160”: Llinf [-15, 15, 121] dB
12 “200”: Llinf [-15, 15, 121] dB
13 “250”: Llinf [-15, 15, 121] dB
14 “315”: Llinf [-15, 15, 121] dB
15 “400”: Llinf [-15, 15, 121] dB
16 “500”: Llinf [-15, 15, 121] dB
17 “630”: Llinf [-15, 15, 121] dB
18 “800”: Llinf [-15, 15, 121] dB
19 “1k”: linf [-15, 15, 121] dB
20 “1k25”: linf [-15, 15, 121] dB
21 “1k6”: Llinf [-15, 15, 121] dB
22 “2r”: Llinf [-15, 15, 121] dB

©Patrick-Gilles Maillot 139 WING remote protocols —V 3.0.6-4

23 “2r5”: Llinf [-15, 15, 121] dB
24 “3r15”: linf [-15, 15, 121] dB
25 “4r”: linf [-15, 15, 121] dB
26 “5k”: linf [-15, 15, 121] dB
27 “6k3”: Llinf [-15, 15, 121] dB
28 “8k”: linf [-15, 15, 121] dB
29 “10R”: Llinf [-15, 15, 121] dB
30 “12k5”: linf [-15, 15, 121] dB
31 “16k”: Llinf [-15, 15, 121] dB
32 “20k”: Llinf [-15, 15, 121] dB
33 “TRIM”: linf [-15, 15, 121] dB

PIA 560 GEQ

0 “mdl”: PIA

1 “mix”: Llinf [0, 125, 126] %, mix
2 “gain”: linf [-12, 12, 241] dB
3 “31”: Llinf [-12, 12, 241] dB
4 “63”: Llinf [-12, 12, 241] dB
5 “125”: Llinf [-12, 12, 241] dB
6 “250”: Llinf [-12, 12, 241] dB
7 “500”: Llinf [-12, 12, 241] dB
8 “1k”: Llinf [-12, 12, 241] dB
9 “2kr”: linf [-12, 12, 241] dB

10 “4r”: Llinf [-12, 12, 241] dB
11 “8r”: linf [-12, 12, 241] dB
12 “16k”: Llinf [-12, 12, 241] dB

Triple Dynamic EQ

0 “mdL”: DEQ3

1 “1-thr”: Linf [-60, @, 121] dB, threshold 1

2 “1-ratio”: str [1.20, 1.30, 1.50, 2.00, 3.00,

5.00, 10.00] ms, ratio 1

3 “1-att”: Linf [0.00, 200.00, 201] ms, att 1
4 “1-rel”: Logf [260.00, 4000.00, 130] ms, rel 1
5 “1-filt”: str [OFF, BP, LP6, LP12, HP6, HP12]
6 “1-g”: Linf [-15.00, 15.00, 301] dB, gain 1
7 “1-f7: Logf [26, 20000, 961] Hz, freq 1

8 “1-q”: Logf [©.44, 10.00, 181] qual 1

9 “1-mode”: str [low, high] mode 1
10 “2-thr”: Linf [-66, @, 121] dB, threshold 2
11 “2-ratio”: str [1.20, 1.36, 1.50, 2.00, 3.00,

5.00, 10.00] ms, ratio 2

12 “2-gtt”: Linf [0.00, 200.00, 201] ms, att 2
13 “2-rel”: Logf [20.00, 4000.00, 130] ms, rel 2
14 “2-filt”: str [OFF, BP, LP6, LP12, HP6, HP12]
15 “2-g”: Linf [-15.00, 15.00, 301] dB, gain 2
16 “2-f”: Logf [20, 20000, 961] Hz, freq 2
17 “2-q”: Logf [©.44, 10.00, 181] qual 2
18 “2-mode”: str [low, high] mode 2
19 “3-thr”: Linf [-66, @, 121] dB, threshold 3

20 “3-ratio”: str [1.20, 1.36, 1.50, 2.60, 3.00,
5.00, 10.00] ms, ratio 3

21 “3-agtt”: Linf [0.00, 200.00, 201] ms, att 3
22 “3-rel”: Logf [20.00, 4000.00, 130] ms, rel 3
23 “3-filt”: str [OFF, BP, LP6, LP12, HP6, HP12]
24 “3-g”: Linf [-15.00, 15.00, 301] dB, gain 3
25 “3-f”: Logf [20, 20000, 961] Hz, freq 3

26 “3-q”: Logf [©.44, 10.00, 181] qual 3

27 “3-mode”: str [low, high] mode 3

Combinator

0 “mdlL”: C5-CMB

1 “thr”: Linf [-40, 0, 401] dB, threshold

2 “gain”: Linf [-16, 10, 201] dB, gain

3 “ratio”: str [1.1, 1.2, 1.3, 1.5, 1.7,
2.9, 2.5, 3.0, 3.5, 4.0,
5.0, 7.0, 10.0, 100.0] ms, ratio

4 “slope”: str [24, 48] dB/Oct, slope

5 “bandse L”: int [1..5] selected band

6 “att”: Linf [6, 20, 21] attack

7 “rel”: Logf [26, 3000, 201] ms, release

©Patrick-Gilles Maillot 140 WING remote protocols —V 3.0.6-4

8 “arel”: int [0, 1] auto release

9 “sbc”: Linf [1, 10, 10] sbc speed
10 “sbcon”: int [0, 1] sbc on

11 “thr_1”: Linf [-10, 16, 201] dB, 1-THR
12 “thr_2”: Linf [-10, 16, 201] dB, 2-THR
13 “thr_3”: Linf [-10, 16, 201] dB, 3-THR
14 “thr_4”: Linf [-10, 10, 201] dB, 4-THR
15 “thr_5”: Linf [-10, 10, 201] dB, 5-THR

16 “gain_1”: Linf [-16, 10, 201] dB, 1-GAIN
17 “gain_2”: Linf [-16, 10, 201] dB, 2-GAIN
18 “gain_3”: Linf [-16, 10, 201] dB, 3-GAIN
19 “gain_4”: Linf [-16, 10, 201] dB, 4-GAIN
20 “gain_5": Linf [-16, 10, 201] dB, 5-GAIN

21 “byp 1”: int [0, 1], 1-BYP
22 “byp 2”7: int [0, 1], 2-BYP
23 “byp 3”: int [0, 1], 3-BYP
24 “byp 4”7: int [0, 1], 4-BYP
25 “byp 5”7: int [0, 1], 5-BYP

26 “width_1”: Linf [-50, 50, 101], 1-XOVER
27 “width_2”: Linf [-50, 50, 101], 2-XOVER
28 “width_3”: Linf [-50, 50, 101], 3-XOVER
29 “width_4”: Linf [-50, 50, 101], 4-XOVER
30 “width_5”: Llinf [-56, 56, 101], 5-XOVER
31 “mix”: Linf [0, 1e0, 101], mix

32 “$bdsolo”: 1int [@, 1] band solo

€ e e a2 Precision Limiter
- E Q- \,J 0 “mdL”: LIMITER
o E ; i 1 :gin”):) L?nf [e, 18, 73] dB, 1in gair.l
Al TR | s s e e
g d o ol B o m;.s'! 4 4 “Rnee”: int [0.10] knee
: 5 “again®: int [0, 1] auto gain
6 “att”: Linf [.05, 1, 95] ms, attack
7 “rel”: Logf [26, 2000, 101] ms, release
B s S Dcaker Manager
0 “mdlL”: SPKMAN
1 “hpf”: Logf [26.00, 20000.00, 961] Hz, high

2 “hptype”: str [FLAT, BW6, BW12, BS12, LR12,
BW18, BW24, BS24, LR24, BWw4S,
LR48] type
3 “Lpf”: Logf [20.00, 20000.00, 961] Hz, Low
“Lptype”: str [FLAT, BW6, BW12, BS12, LR12,
BW18, BW24, BS24, LR24, BWw48,
LR48] type

N

5 “tiltf”: Llogf [100.00, 10000.00, 121] Hz, tilt
6 “tiltg”: Linf [-6.00, 6.00, 121] dB, tilt gain
7 “phase”: Linf [6.00, 180.00, 37] phase

8 “invert ”: int [0, 1] 1invert

9 “dist”: Linf [@.00, 5.00, 501] mtrs, distance
10 “pos”: Linf [-5.00, 5.00, 1001] mtrs, pos.

11 “dyneq”: int [0, 1] deq

12 “dynthr”: Linf [-60.00, ©.00, 121] dB, threshold

13 “deqratio”: str [1.20, 1.30, 1.50, 2.00, 3.00,
5.00, 10.00] ratio

14 “deqatt”: Linf [©.00, 200.00, 201] ms, attack

15 “deqrel”: Llogf [20.00, 4000.00, 130] ms, release

16 “deqfilt”: str [OFF, BP, LP6, LP12, HP6, HP12]

17 “deqg”: Linf [-15.00, 15.00, 301] dB, gain
18 “deqf”: Logf [20.00, 20000.00, 961] Hz, freq
19 “deqq”: Logf [©.44, 10.00, 181] qual

20 “deqgmode”: str [low, high] mode

21 “Lim”: int [0, 1] limiter

22 “Limthr”: Llinf [-24.00, 0.00, 241] dB, threshold
23 “Limrms”: 1int [©, 1] rms
24 “Limrel”: Llogf [50.00, 2000.00, 121] ms, release

©Patrick-Gilles Maillot 141 WING remote protocols —V 3.0.6-4

FEMALE

TuNE PEAK ZEROFILL TIMBRE HARMONICS. DRY Mix

- ©0DDGD °9

MIN 55 MAX

[| (

OCTAVE 1

.
»

LOW HIGH

SUBOCTAVER

£ﬁﬁi§/¢6xazétrﬁ

Tune

8 722 1z BN 33.3 Hz BN 50.0Hz | £ 500 Hz

©Patrick-Gilles Maillot

2-Band DeEsser

AUV ANWNROD

“mdL”:
({L o)} '.
({h i 2 '.
“los”:
“his”:
, 2 .
ode;

DE-S2

Linf [6, 56, 51] low

Linf [6, 56, 51] high

Linf [0, 56, 51] Low (s)
Linf [6, 56, 51] high (s)
str [FEMALE, MALE] gender
str [STEREO, MID/SIDE] mode

Ultra Enhancer

VWoONAATULNWNROD

10
11
12
13

“mdL”:
“stlv”:
ﬂ'meJ):
II'L”IVL)J .
"St”:
ﬂ'm)l:
ﬂ'bass)l .
“mid”:
“high”:
ﬂ'g)l .

“solo”:

“bassf”:

“mi dq»:

“highf”:

Exciter

[\

1
2
3
4
5
6
7

“mdL”:
“tune”:
“peak"’.‘

“Zfill”:

ENHANCE

Linf [-100, 100, 201] %, st Lvl
Linf [-100, 100, 201] %, Lmf spread
Linf [-160, 100, 201] %, mono Lvl
Linf [-160, 100, 201] %, st pan
Linf [-160, 100, 201] %, mono pan
Linf [0, 100, 101] %, bass gain
Linf [0, 100, 101] %, mid gain
Linf [0, 100, 101] %, high gain
Linf [-112, 12, 241] dB, gain
int [0, 1] solo

Linf [1, 50, 50] bass freq

Linf [1, 50, 50] mid Q

Linf [1, 50, 50] high freq

EXCITER

Logf [1ee66, 10000, 51] Hz, tune
Linf [@, 1ee, 101] %, peak
Linf [e, 100, 101] %, zfill

“timbre”:linf [-50, 50, 101] timbre

“harm”:
ﬂ'mixl) .
ﬂ'dryl):

Linf [@, 1ee, 101] %, harm
Linf [6, 1ee, 101] %, mix
int [0, 1] dry

Psycho Bass

[

N WNR

“mdL*:
ff.,‘.ntl) .
ffbasle .
ffx }I..
ffsoLoJl .

P-BASS

Linf [-24, 6, 61] dB, intensity
Linf [-60, @, 121] dB, bass gain
Logf [32, 200. 51] Hz, X/0 freq
int [0, 1] solo

Sub Octaver

7}
1
2
3

“mdL”:
ﬂ'rngl) :
“oct1”:
“oct2”:

SUB

str [LOW, MID, HIGH] range
Linf [0, 106, 101] %, octave 1
Linf [0, 106, 101] %, octave 2

Sub Monster

[\

1
2
3
4
5
6
7

“mdL”:
“mix”:
“freq”:
“bd1”:
“bd2”:
“bd3”:
“bd4”:
“bd5”:

SUB-M

[0, 160, 101] %mix

Linf [45, 67.5, 226] Hz, freq
Linf [6, 166, 161] %, band 1
Linf [6, 106, 101] %, band 2
Linf [6, 106, 101] %, band 3
Linf [0, 100, 101] %, band 4
Linf [0, 100, 101] %, band 5

Velvet Imager

ANWNR

142

“mdL”:
“wid”:
"S tl):
“gain”:
“mode” :

V_IMG

Linf> [-1.00, 1.00, 201] width
Linf [0.00, 100.00, 101] %, stereo
Linf [-6.00, 6.00, 49] dB, gain
str [K, VELVET] mode

WING remote protocols —V 3.0.6-4

5 “deep”: 1int [0,1] deep

DOUBLE VOCAL Double Vocal
' 0 “mdL”: DOUBLE
— i 1 “mode”: str [TIGHT, LOOSE, GROUP,
* DETUNE, THICK] mode
Tight Thick A 2 “mix”: Llinf [0, 100, 101] %, mix
) 3 “sprd”: linf [0, 100, 101] %, spread

Group

Pitch Fix
0 “mdl”: PCORR
1 “spd”: Llinf [1, 100, 100] speed
2 “amnt”: Llinf [0, 50, 51] amount
3 “a4”: Llinf [41e, 476, 601] A4 pitch
c¥ob nsb 1 . 4 “ c”: int [0, 1]
|- Bl - Bl - | - Bl c Bl Bl c 5 “db”: int [0, 1]
6 “.d”’: int [o, 1]
7 “_eb”: 1int [o, 1]
8 “ e”: int [0, 1]
9 “ f”: int [e, 1]

10 “_gb”: int [6, 1]
11 “_g”: int [0, 1]
12 “_ab”: int [0, 1]
13 “_a”: int [0, 1]
14 “ bb”: int [0, 1]
15 “ b”: int [0, 1]

Rotary Speaker

0 “mdl”: ROTARY

1 “sw”: str [STOP, SLOW, FAST]

2 “lo”: Llogf [.1, 3.999, 51] Hz, Lo speed

3 “hi”: Logf [4, 16, 51] Hz, hi speed

4 “bal”: Llinf [-100, 100, 201] balance

5 “mix”: Llinf [0, 100, 101] %, mix

6 “dist”: Linf [6, 100, 101] distance

7 “dac”: Llinf [e, 1ee, 101] %, drum accel

8 “hac”: Linf [6, 100, 101] %, horn accel
ENVELOPE Phaser

0 “mdlL”: PHASER

1 “spd”: Logf [.65, 5, 201] Hz, speed

2 “phase”: 1int [0..180] phase

3 “wave”: int [-50..50] wave

4 “range”: int [2..98] %, range

5 “depth”: 1int [0..100] %, depth

6 “emod”: int [-100, 100] % env mod

7 “att”: Logf [16, 1000, 201] ms, attack

8 “hld”: Logf [16, 2000, 201] ms, hold

9 “rel”: Logf [16, 1000, 201] ms, release

10 “mix”: int [6..100] %, mix

11 “stg”: int [2..12] stages

12 “reso”: int [0..80] %, reso

Tremolo Panner

ENVELOPE
0 “mdlL”: PANNER
1 “att”: Logf [16, 1e00, 201] ms, attack
2 “hld”: Logf [10, 2000, 201] ms, hold
3 “rel”: Logf [10, 1000, 201] ms, release
4 “espd”: int [6..100] %, env>depth
5 “edep”: int [e..100] %, env>depth
6 “spd”: Logf [.05, 5, 201] Hz, speed
7 “phase”: 1int [0..180] phase
8 “wave”: int [-560..50] wave
9

“depth”: int [0.100] %, depth

©Patrick-Gilles Maillot 143 WING remote protocols —V 3.0.6-4

Tape Machine

0 “mdL”: TAPE
1 “drv”: Linf [-12, 12, 97] dB, drive
. 2 “spd”: Logf [7.5, 30, 65]

A 3 “Low”: int [0, 1] Low bump

SHEEED 4 “hi”: int [@, 1] high shelv
5 “out”: Linf [-12, 12, 97] dB, out gains s
Mood Filter

S, 0 “mdlL”: MooD
_ 1 “fbase”: logf [20, 15000, 101] Hz, base

2 “filt”: str [LP, HP, BP, NOTCH] type
3 “slope”: str [12, 24] slope
4 “reso”: Llinf [0, 10, 101] reso
5 “drv”: Linf [0, 10, 101] drive
6 “env”: Linf [-160, 100, 201] %, env
7 “att”: Logf [16, 250, 101] ms, attack
8 “hlLd”: Logf [1, 506, 101] ms, hold
0 “rel”: Llogf [1, 5600, 101] ms, release
1 “mix”: Linf [0, 10, 101] %, mix
2 “Lfo”: Linf [linf [e, 10, 101] %, Llfo
6 “spd”: Logf [.05, 20, 301] Hz, speed
7 “phase”: int [0..180] phase
8 “wave”: str [TRI, SIN, SAW+, SAW-,

RMP, SQU, RND] Lfo wave

Bodyrez
o “mdL”: BODY
1 “body”: Linf [0, 100, 161] body

Rack Amp
0 “mdlL”: RACKAMP
1 “pre”: Linf [0, 10, 101] preamp
2 “buzz”: Llinf [0, 10, 101] buzz
3 “punch”: linf [@, 10, 1601] punch
4 “crunch”:linf [6, 10, 101] crunch
5 “drive linf [e, 10, 101] drive
6 “out”: Linf [0, 10, 101] out gain
7 “leq”: Linf [0, 10, 101] low eq
8 “heq” Linf [0, 10, 101] high eq
9 “cab”: int [0, 1] cab sim
UK Rock Amp
0 “mdlL”: UKROCK
1 “gain”: Llinf [0, 10, 101] gains
2 “bass”: Llinf [6, 10, 101] bass
3 ﬁ YKROCK 3 “mid”: linf [o, 10, 101] middle
4 “treb”: Llinf [0, 16, 101] treble
5 “pres Linf [@, 16, 101] presence
6 “mstr”: Linf [6, 10, 101] master
7 “out”: Linf [6, 16, 161] out gain
8 “sag” Linf [6, 16, 101] sag
9 “cab”: int [0, 1] cab sim
Angel Amp
0 “mdL”: ANGEL
1 “gain”: Llinf [6, 10, 101] gains
2 “bass”: Llinf [6, 10, 101] bass
3 “mid”: linf [o, 10, 101] middle
4 “treb”: Llinf [0, 16, 101] treble
5 “pres Linf [@, 16, 161] presence
6 “mstr”: Llinf [0, 16, 101] master
7 “out”: Linf [0, 10, 101] out gain
8 “sag” Linf [0, 10, 101] sag
9 “cab”: int [0, 1] cab sim

©Patrick-Gilles Maillot 144 WING remote protocols —V 3.0.6-4

10 “midb”: 1int [©, 1] mid boost
11 “bri”: int [0, 1] bright
12 “bt”: int [0, 1] bottom

Jazz Clean Amp

oo | wmesoumncn JATE GLEAN

3|(0) 0 “mdl”: JAZZC

. 1 “vol”: Linf [0, 10, 101] volume
2 “bass”: Llinf [0, 10, 101] bass
3 “mid”: Linf [0, 10, 101] middle
4 “treb”: Llinf [0, 10, 101] treble
5 “out”: Linf [0, 10, 101] out gain
6 “bri”: int [0, 1] bright
7 “cab”: int [0, 1] cab sim
Deluxe Amp
0 “mdlL”: DELUXE
1 “vol”: Linf [1, 10, 91] volume
2 “bass”: linf [1, 10, 91] bass
4 “treb”: Llinf [1, 10, 91] treble
5 “out”: Linf [1, 10, 91] out gain
6 “sag”: Linf [1, 10, 91] sag
7 “cab”: int [0, 1] cab sim

Soul Analogue

“mdL”: SouL

1 “mix”: Linf [6, 125, 126] %, mix
2 “Lf”: Linf [6, 10, 101] lo freq
3 “lLg”: Linf [-5, 5, 101] Lo gain
4 “Lmf”: Linf [6, 16, 101] Lm freq
5 “Lmf3”: 1int [e, 1] Llm /3
6
7
8

[\

“Lmq”: Linf [6, 16, 101] Lm g
“Lmg”: Linf [-5, 5, 161] Lm gain
“hmf>: Linf [6, 16, 161] hm freq
“hmf3”: int [©, 1] hm x3

10 “hmq”: Linf [6, 16, 161] hm g

11 “hmg”: Linf [-5, 5, 161] hm gain
12 “hf”: Linf [6, 10, 101] hf freq
13 “hg”: Linf [-5, 5, 101] hf gain

o}

Even 88 Formant

“mdl”: E88

“mix”: Linf [0, 125, 126] %, mix
“Lf”: Linf [0, 10, 101] Lf freq
“lg”: Linf [-5, 5, 101] Lf gain
“lg”: str [LOW, HIGH] Lf g
“Lt”: str [BELL, SHELV] Lf type
“Lmf”: Linf [0, 10, 101] Lm freq
“Lmg”: Linf [-5, 5, 101] Lm gain
“Lmq”: Linf [0, 10, 101] Lm q
“hmf>: Linf [0, 10, 101] hm freq
10 “hmg”: Linf [-5, 5, 161] hm gain
11 “hmq”: Linf [0, 10, 101] hm q
12 “hf”: Linf [0, 10, 101] hm freq
13 “hg”: Linf [-5, 5, 101] hf gain
14 “hg”: str [LOW, HIG] hf q

15 “ht”: str [BELL, SHELV] hf type

VWoONAATULNWNROD

Even 84

0 “mdlL”: E84

1 “mix”: Linf [6, 125, 126] %, mix

2 “g”: Linf [-206, 20, 81] dB, gain

3 “Lf”: str [OFF, 35, 60, 110, 220] Lf freq
4

5

“Lg”: Linf [-5, 5, 1601] Lf gain
“mf”: str [OFF, 350, 700, 1k6, 3k2,
4k8, 7kR2] mid freq
6 “mg”: Linf [-5, 5, 1601] mid gain
7 “mq”: str [LOW, HIGH] mid q
8 “hf”: str [16k, 12k, 16k, OFF] hf freq
9 “hg”: Linf [-5, 5, 101] hf gain

©Patrick-Gilles Maillot 145 WING remote protocols —V 3.0.6-4

Fortissimo110

“mdL”: F11e

“mix”: Llinf [0, 125, 126] %, mix
“peq”: int [0, 1] peq on

“Lmf”: Linf [0, 10, 101] Lm freq
“Lmg”: Linf [-5, 5, 1e1] Lm gain
“Lmq”: Linf [0, 10, 101] lm q
“Lmf3”: 1int [6, 1] lm /3

“hmf” : Linf [0, 10, 101] hm freq
“hmg” : Linf [-5, 5, 101] hm gain
“hmq” : Linf [0, 10, 101] hm q
10 “hmf3”: int [6, 1] hm x3

11 “shv”: inf [0, 1] shv on

B

VWoONAATULNWNRO

12 “Lf”: str [33, 56, 95, 160,
270, 460] Lf freq
13 “lg”: Linf [-5, 5, 101] Lf gain
14 “hf”: str [3k3, 4k7, 6k8, 16k,
15k, 18k] hf freq
15 “hg”: Linf [-5, 5, 101] hf q
16 “g”: Linf [-18, 18, 73] gain
¢ o
PULSAREQ ™™ | D e Pulsar
el R - , : 0 “mdL”: PULSAR
wwomma wern wwesmn war’ wemm wwen wem o mar 1 “mix”: linf [e, 125, 126] %, mix
- o SR = o . 2 “eq1”: int [0, 1] eql on
I G N s) 3 “1lb”: linf [0, 10, 101] Lf boost
: wowaosst woow W-masoost oaoost’ *wanost woarrrega 4 “ilatt”: linf [e, 1o, 101] Lf att
s = 5 “1Lf”: str [20, 30, 60, 100] Hz, Lf freq
6 “1hw”: linf [o, 10, 101] hf wid
7 “1hb”: linf [0, 10, 101] hf boost
8 “1hf”: str [3k, 4k, 5k, 8k, 16k,

12k, 16R] Hz, hf freq
9 “1hatt”: Linf [0, 10, 101] hf att
10 “lhattf”:str [5k, 16k, 20R] hf att
11 “eq5”: inf [0, 1] eq5 on
12 “5Llb”: Llinf [0, 10, 101] Lm boost
13 “5Lf”: str [200, 300, 500, 700,
1R] Hz, Lf freq
14 “5md”: Linf [e, 10, 101] mid dip
15 “Smf”: str [200, 300, 500, 700, 1k, 1R5,
2k, 3R, 4k, 5k, 7R] Hz, mid freq
16 “5hb”: Linf [0, 1@, 101] HM boost
17 “Shf”: str [1k5, 2k, 3k, 4k,
5kR] Hz, hf freq

Mach EQ4
0 “mdL”: MACH4
“mix”: Linf [0, 125, 126] %, mix
“sub”: Linf [-5, 5, 101] sub
“40”: Linf [-5, 5, 101] 4@
“160”: Linf [-5, 5, 101] 160
“650”: Linf [-5, 5, 101] 650
“2r5”: Llinf [-5, 5, 101] 2k5
“air”: Linf [0, 10, 101] air
“airm”: str [OFF, 2R5, 5k, 10k,
20k, 40k] air mode
“again”: int [0, 1] auto

ONOUVANWNR

e}

©Patrick-Gilles Maillot 146 WING remote protocols —V 3.0.6-4

Premium effects

None
0 “mdlL”: NONE

EXTERNAL EFFECT External
MODE RETURN 0 “mdL”: EXT

O momo

1 “egrp”: str [OFF, LCL, AUX, A, B, C, SC,
USB, CRD, MOD, PLAY, AES] ext grp
“ein”: int [1..64] ext in
“emode”: str [M, ST, M/S] ext mode
“Lat”: int [6..200] Latency
“trim”: Linf [-18, 18, 361] dB, trim

O|O minsie

uh WN

Hall Reverb

“mdl”: HALL

“pdel”: int [6..200] ms, pre-delay
“size”: int [0..100] hall size

“dcy”: Llogf [.2, 5, 101] s, decay
“mult”: Logf [.5, , 101] bass multiplier
“damp”: Llogf [1k, 26k, 51] Hz, damping
“lc”: Logf [26, 460, 51] Hz, Llow cut
“hc”: Logf [260, 206k, 51] Hz, high cut
“shp”: Linf [0, 50, 51] shape

“sprd”: int [0..50] spread

“diff”: int [1..30] diffusion

“mspd”: int [0..100] mod speed

ROWVWONAOATUANWNROD

N

Room Reverb

0 “mdl”: R-OOM

“pdel”: int [6..200] ms, pre-delay

“size”: linf [4, 76, 145] m, room size
“dcy”: Llogf [.3, 25, 101] s, decay

“mult”: Logf [.25, 4, 101] bass multiplier
“damp”: Llogf [1k, 26k, 51] Hz, damping
“lc”: Logf [26, 460, 51] Hz, Llow cut
“hc”: Logf [260, 206k, 51] Hz, high cut
“shp”: Linf [©, 250, 51] shape

“sprd”: int [0..50] spread

10 “diff”: int [0..100] diffusion

11 “spin”: int [@0..100] spin

12 “ecl”: Linf [6, 1200, 1201] ms, echo Lleft
13 “ecr”: Linf [6, 1200, 1201] ms, echo right
14 “efl”: Llinf [-100, 100, 201] %, feed left
15 “efr”: Linf [-100, 100, 201] %, feed right

VWOoONAMNUVANWNR

Chamber Reverb

0 “mdl”: CHAMBER

1 “pdel”: int [@..200] ms, pre-delay

2 “size”: linf [4, 76, 145] m, room size

3 “dcy”: Llogf [.3, 25, 101] s, decay

4 “mult”: logf [.25, 4, 1601] bass multiplier
5 “damp”: logf [1k, 26k, 51] Hz, damping
6
7
8

“Lc”: Logf [26, 400, 51] Hz, low cut
“hc”: Logf [260, 206k, 51] Hz, high cut
“shp”: Linf [0, 250, 51] shape

9 “sprd”: int [0..50] spread

10 “diff”: int [0..100] diffusion

11 “spin”: int [6..100] spin

12 “ecl”: Linf [e, 300, 301] ms, echo left

13 “ecr”: Linf [e, 300, 301] ms, echo right

14 “ell”: fader Lvl dB, echo left

15 “elr”: fader Lvl dB, echo right

©Patrick-Gilles Maillot 147 WING remote protocols —V 3.0.6-4

te electronic| it s

cEHEE883888

©Patrick-Gilles Maillot

Plate Reverb

VWoONAOATULNWNRO

10
11
12
13
14
15

“mdL”:
“pdel”:
“size”:
({dch):
“mult”:
“damp” :
({LCJ) .
({hCJ) .
({att)) .
({sprdl) .
({diff)):
({spinl) .
({ecL)) .
({ecr)) .
, »
efl”:
({e r)} .

PLATE

int [6..200] ms, pre-delay

Linf [4, 76, 145] m, room size

Llogf [.3, 25, 101] s, decay

Logf [.25, 4, 161] bass multiplier
Logf [1k, 26k, 51] Hz, damping

Logf [26, 400, 51] Hz, low cut

Logf [200, 26k, 51] Hz, high cut
Linf [6, 100, 101] attack

int [0..50] spread

int [6..100] diffusion

int [6..100] spin

Linf [, 1200, 1201] ms, echo left
Linf [6, 1200, 1201] ms, echo right
Linf [-100, 100, 201] %, feed lLeft
Linf [-100, 100, 201] %, feed right

Concert Reverb
0 “mdL”:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

“pdel”:
“size”:
({dcy)):
“‘mult”:
“damp” :
({LCJ) .
({hCJ) .
s el
shp”:
r{sprd;) .
r{diff;) .
“depth”:
€, »
rfl”:
({rfrJ) .
({rfLL)) .
({rfLr)) .
({spin)) .
({CrsJ) .

Ambiance

7]
1
2
3
4
5
6
7
8
9

“mdL”:
“pdel”:
“size”:
({dcy)):
({taiLJ) .
({dampl) .
({diff)):
({mod)) .
({Lc))..
({hc))..

CONCERT

int [0..200] ms, pre-delay

Linf [26, 76, 113] m, room size
Logf [.3, 29, 51] s, decay

Logf [.25, 4, 101] bass multiplier
Logf [1k, 26k, 51] Hz, damping

Logf [26, 400, 51] Hz, low cut

Logf [200, 26k, 51] Hz, high cut
Linf [6, 56, 51] shape

int [6..50] spread

int [1..16] diffusion

int [0, 100] depth

Linf [e, 1200, 1201] ms, refl. left
Linf [e6, 1200, 1201] ms, refl. right
fader Lvl dB, reflection Lleft
fader Lvl dB, reflection right

int [6..100] spin

int [1..100] chorus

AMBI

int [6..200] ms, pre-delay

Linf [2, 1@, 99] m, room size
Llogf [.2, 7.3, 101] s, decay

int [6..100] tail gain

Logf [1k, 26k, 51] Hz, damping
int [1..30] diffusion

int [1..100] modulation speed
Logf [26, 460, 51] Hz, Llow cut
Logf [260, 206k, 51] Hz, high cut

VSS3 Reverb

[

“mdL”:

VSsS3

1 “preset”: str [Build, Small Booth, Home Room,

148

Dialog Alley, Small Wood Room,

A Small Room, Intimate Studio,
Small Room, Tight & Natural, Room
Conversation, Furnished Room 2,
Studio 26x20 ft, Drew Room, Piano
Close, Clear Guitar Room, Wide
Ambient Chamber, Small Dense Hall,
Slap Hall, Acoustic Gtr Ambience,
Clear Room, Livingroom, Band
Rehearsal Room, The Studio, In The
Room, Studio 46x46 ft, Hit Room,
Ambient Hall, Stage and Hall,
Acoustic Guitar Space, Medium
Vocal Hall, Bright Theatre , Big
Empty Club, Venue Warm 1, Concert
1, Bright Guitar Hall, Concert
Arena, Concert Piano, Piano Hall
1st Row, Empty Arena, Ballad Vocal

WING remote protocols —V 3.0.6-4

Hall, Grand Vocal Hall, Large Warm
Hall, Back There, WoodHall,
Church, Sound Col, 5000 Hall,
Cathedral, Large Church, Medium
Church, Warm Cathedral, Cologne
Cathedral, Drum Plate Stuff, Drum
Wood Plate, Piano Plate, Stairway
Plate, Slapback Plate, Ambient
Plate, Silky Gold Plate, Gold
Plate, EMT 141, Leader Of The
Band, VocalDry, Vocal Room,
VocalWet, Slapback Vox 1, Vocal
Hall 1, Vocal Chamber, Bright Male
Vox, Vocal Bright, Vocal Deep,
Vocal Female, Vocal Deep Male,
Large Vocal Hall, Kick & Bass
Ambience, Drum Room, Small Perc
Room, Drum Room Xpander, Bright
Shoe Gaze Snare, Snare Room
Bright, Tom-Tom Reverb, Bossa Nova
Perc Room, Hard Drum Space, Puk
Drum Ambience, Overhead Mics,
Dance Snare, Drum Perc Soft 1,
Perc Straight Tail, Store Room,
Studio Small, The Alley, Near The
Wall, WoodFlr, Large Office,
Conference Room, Dance Studio,
Forest 2, StonewWall, Venue 1,
Small Stairway, Forest 1, Airport
PA, Small Tower Hall, On The
Street, Dark Tunnel, Empty
Nightclub, Parking Garage, Parking
Distant, Long Swimmingpool] preset

2 “load”: int [0, 1] load

“erpdly”: linf [@6, 160, 101] ms, er pdly

4 “ertype”: str [ROYAL, THEATRE, CHURCH, GAS,
CONCERT, ROYAL2, V1-NEAR,
V2-HARD, V3-SPREAD, V4-BUILD,
V5-RANDOM, SLAP, CAR, PHONEBTH,
BATHROOM, CONFRM9, CONFRM30,
GARAGE, SWIMSTDM, AIRPORT,
STREET, ALLEY, PIAZA,
FOREST], er type

w

5 “ersize”: str [SML, MED, LRG] er size
6 “erpos”: str [NEAR, DIST] er position
7 “erbal”: Linf [-1060, 100, 201], er balance
8 “erlc”: Logf [26, 400, 51] Hz, er Llow cut
9 “ercol”: Linf [-40, 40, 81] er color
10 “erlvl”: fader Lvl dB, er Level
11 “rvtype”: str [SMOOTH, NATURAL, ALIVE, FAST,

X-WIDE, ALIVE2] rev type
12 “rvwide”: str [NARROW, NORMAL, WIDE, X-WIDE] rev

wide
13 “rvpdly”: linf [6, 200, 201] ms, rev pdly
14 “dcy”: Linf [.1, 206, 280] s, decay

15 “diff”: Linf [-56, 56, 101] diffuse

16 “rvbal”: Llinf [-100, 100, 201] balance
17 “rvlvl”: fader Lvl dB, reverb Level

18 “ldcy”: Linf [.1, 2.5, 25] low decay

19 “lmdcy”: Llinf [.1, 2.5, 25] Lowmid decay
20 “hmdcy”: Linf [.1, 2.5, 25] mid decay

21 “hdcy”: Linf [.1, 2.5, 25] high decay
22 “hsoft”: Llinf [-50, 50, 101] high soft

23 “Lxo”: Logf [26, 500, 113] Hz, Low xover
24 “mxo”: Logf [2006, 2000, 81] Hz, mid xover
25 “hxo”: Logf [506, 20000, 105] Hz, high xover

26 “Lshv”: Logf [26, 200, 81] Hz, Low shelf

27 “lsdmp”: Linf [0, -18, 37] dB, lLow damp

28 “hcut”: Logf [26, 20000, 241] Hz, high cut

29 “mtype”: str [A, B, C, D, E, F] modulation type
30 “mrate”: Llinf [-100, 100, 201] modulation rate
31 “mwid”: Linf [@, 260, 201] modulation width

32 “view”: int [0, 1] view

©Patrick-Gilles Maillot 149 WING remote protocols —V 3.0.6-4

Vintage Room

0 “mdlL”: V-ROOM

1 “pdel”: 1int [@..200] ms, pre-delay

2 “size”: 1int [@.50] size

3 “dcy”: logf [.1, 20, 101] s, decay

4 “dens”: Llinf [1, 36, 30] density

5 “erlvl”: linf [6, 100, 101] %, Early Llevel

6 “Lmult”: logf [.1, 16, 101] lLow multiplier
7 “hmult”: logf [.1, 10, 101] high multiplier
8 “lc”: Logf [206, 400, 51] Hz, Llow cut

9 “hc”: Logf [266, 26k, 51] Hz, high cut

10 “frz”: int [0, 1] freeze

11 “erl”: Linf [0, 200, 201] ms, er delay left
12 “err”: Linf [0, 200, 201] ms, er delay right
13 “add”: int [0, 1] add

14 “Lvl”: int [-6, 6, 101] dB, Level

VINTAGE REVERB V]ntage Reverb’
0 “mdlL”: V-REV
1 “pdel”: int [6..120] ms, pre-delay
2 “dcy”: Linf [.4, 4.5, 83] s, decay
3 “Lmult”: logf [.5, 2, 51] Low multiplier
4 “hmult”: logf [.25, .67, 51] high multiplier
5 “mod”: int [6..100] modulation speed
6 “lc”: Logf [20, 400, 51] Hz, low cut
7 “hc”: Logf [5600, 20k, 31] Hz, high cut
8 “out”: str [FRONT, REAR] output
9 “trans”: int [@..1] transformer

Vintage Plate

“mdL”: V-PLATE

“pdel”: 1int [6..250] ms, pre-delay
“dcy”: Linf [1, 6, 101] s, decay
“Lc”: Logf [20, 400, 51] Hz, low cut
“col”: Linf [-206, 20, 42] color

-'j\‘“l‘lilll\.
NWNRO

Blue Plate

0 “mdlL”: BPLATE

1 “pdel”: int [6..200] ms, pre delay

2 “size”: int [6..100] ms, size

3 “dcy”: Logf [0.2, 5, 101] s, decay

4 “mult”: Llogf [0.5, 2, 51] bass multiplier
5 “damp”: Logf [1000, 20000, 51] Hz, damping
6 “lLc”: Logf [206, 400, 51] Hz, Llow cut

7 “hc”: Logf [206, 20000, 51] Hz, high cut
8 “xover”: logf [26, 560, 51] Hz, xover

9 “mdep”: Linf [1, 50, 50] modulation depth
10 “msdp”: 1int [6..100] modulation speed

11 “diff”: int [1..30] diffusion

Gated Reverb

“mdl”: GATED

“pdel”: int [6..200] ms, pre-delay
“att”: 1int [4..30] attack

“dcy”: Llogf [.14, 1, 101] s, decay
“dens”: int [0..100] density

“diff”: int [0..100] diffusion

“sprd”: int [0..50] spread

“Lc”: Logf [26, 400, 51] Hz, low cut
“hfs”: Logf [260, 26k, 51] Hz, high freq
“hsg”: Linf [-306, 0, 61] dB, high gain

7]
1
2
3
4
5
6
7
8
9

©Patrick-Gilles Maillot 150 WING remote protocols —V 3.0.6-4

Reverse Reverb

“mdl”: REVERSE

“pdel”: int [6..200] ms, pre-delay
“rise”: int [4..50] rise

“dcy”: Llogf [.14, 1, 101] s, decay
“diff”: int [6..30] diffusion

“sprd”: int [0..100] spread

“Lc”: Logf [26, 400, 51] Hz, low cut
“hfs”: Logf [260, 26k, 51] Hz, high freq
“hsg”: Llinf [-30, @, 61] dB, high gain

ONAOAUANWNRO

Delay/Reverb

0 “mdlL”: DEL/REV

1 “time”: Linf [0, 3000, 3000] ms, time
2 “feed”: Linf [0, 100, 101] %, feed

3 “fhc”: Logf [206, 2000, 51] Hz, feed HC
4 “dly”: Linf [0, 100, 101] %, delay

5 “d2r”: Linf [0, 100, 101] %, delay-rev
6 “pdel”: 1int [@.200] ms, pre delay

7 “size”: 1int [2.100] size

8 “dcy”: Llogf [.1, 5, 51] s, decay

9 “damp”: Logf [1000, 20k, 51] Hz, damp
0 “rlc”: Logf [206, 400, 51] Hz, rev LC
1 “i2r”: Linf [0, 100, 101] %, in-rev

Shimmer Reverb
0 “mdl”: SHIMMER

PREDELAY

1 “pdel”: 1int [@..250] ms, pre delay

2 “size”: 1int [2.50] size

3 “dcy”: Llogf [1, 20, 101] s, decay

4 “lLc”: Logf [25, 250, 51] Hz, low cut

5 “hc”: Logf [506, 7000, 51] Hz, high cut
6 “damp”: Linf [, 1ee, 101] %, damp

7 “shim”: linf [0, 160, 101] %, shimmer

8 “shine”: linf [0, 100, 101] %, shine

Spring Reverb

“mdL”: SPRING

“dcy”: Llogf [1.5, 6, 101] s, decay
“dens”: Linf [1, 30, 30] density
“Low”: Linf [1, 56, 50] bass
“high”: Linf [1, 50, 50] treble

ANWNRO

e
TREBLE | 7

in

Dimension CRS

0 “mdl”: DIMCRS
1 “swil”: int [0, 1] swl
2 “sw2”: int [0, 1] sw2
3 “sw3”: int [0, 1] sw3
4 “sw4q”: int [0, 1] sw4
5 “In”: str [MONO, STEREO] input
6 “drysw”: int [0, 1] dry

L B : Stereo Chorus
0 “mdlL”: CHORUS
1 “lc”: Logf [20, 400, 51] Hz, LC
2 “hc”: Logf [200, 20000, 51] Hz, HC
3 “wave”: Llinf [6, 100, 101] waveform
4 “phase”: linf [0, 100, 101] phase
5 “mix”: Linf [0, 1ee, 101] %, mix
6 “dlLyl”: Llinf [5, 50, 226] ms, delay L
7 “dlyr”: linf [5, 56, 226] ms, delay r
8 “depl”: Llinf [0, 100, 101] %, depth L
9 “depr”: Llinf [0, 100, 101] %, depth r
10 “sprd”: Llinf [e, 106, 101] %, spread
11 “spd”: Llogf [.05, 5, 201] Hz, speed

©Patrick-Gilles Maillot 151 WING remote protocols —V 3.0.6-4

PREGELAY

_ WNE THPE-ECHO

TIME susmN WOBBLE

O 00 ¢

MAX, MIN. o MAK.

FEEDBACK
*

N
o=
o=
o
]

©Patrick-Gilles Maillot

Stereo Flanger

“mdl”:
({LCJJ:
({hCJJ:
“_fLC”.'
“_th”-'
“mix”:
({dLyL)):
r{dLyr»:
({depLJ):
({deprl):
10 “phase”:
11 “spd”:
12 “feed”:

VWoONAOATULNWNRO

CHORUS

Logf [20, 460, 51] Hz, LC

Logf [200, 20000, 51] Hz, HC
Logf [26, 400, 51] Hz, feed LC
Logf [200, 20000, 51] Hz, feed HC
100, 101] %, mix

Linf [o,
Linf [5,
Linf [5,
Linf [o,
Linf [o,

Stereo Delay

0 “mdL”:
1 “time”:
2 “mode”:
3 “fact”:

EN

(fpat»:

“feed”:
({‘fL C” .
({‘thJJ .
({L C” '.
({hCJJ .

VLN W0

“offset”:

ST-DL

20,
20,

196] ms, delay L
196] ms, delay r

100, 101] %, depth L
100, 101] %, depth r
Linf [e, 186, 181] phase
Llogf [.05, 5, 201] Hz, speed
Linf [-96, 90, 181] %, feed

Linf [1, 3000, 3000] ms, time

str [ST, X, M] mode

str [1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/8,
5/4, 4/3, 3/2, 2] factor

str [1/2:1, 2/3:1, 3/4:1, 7/8:1,
1:1, 1:9/8, 1:5/4, 1:4/3,
1:3/2] pattern

int [-56..50] ms, offset

Llinf [0, 100, 101] %, feed

Logf [20, 400, 51] Hz, feed L cut

Logf [200, 20000, 51] Hz, feed H cut

Logf [20, 400, 51] Hz, low cut

Logf [206, 20000, 51] Hz, high cut

UltraTap Delay

0 “mdl”: TAP-DL
1 “time”:
2 “rep”:
3 “slp”:
4 “fact”:
5 “pdel”:
6 “mode”:
7 “wid”:
8 “di_ff”.'
9 ({Lc)):
10 “hc”:
Tape Delay
0 “mdlL”: TAPE-DL
1 “time”:
2 “sust”: Linf [0,
3 “drv”: Linf [0,
4 “wf”: Linf [0,
QilCan Delay
0 “mdlL”: OILCAN
1 “time”: Linf [0,
2 “sust”: Linf [0,
3 “wb”: Linf [o,
4 “tone”: Linf [o,
BBD Delay
0 “mdlL”: BBD-DL
1 “dly”: Llinf [e,
2 “feed”: Llinf [e,
152

Linf [1, 2000, 2000] ms, time

int [1..16] repeat

Linf [-6, 6, 121] dB, slope

str [1/3, 1/2, 2/3, 3/4, 1, 5/4,
4/3, 3/2, 2] factor

Linf [@, 500, 501] ms, pre delay

str [MOVE, JUMP, FOCUS, SPREAD] mode

Linf [-100, 160, 201] %, width

Linf [@, 10, 101] diffusion

Logf [206, 400, 51] Hz, Llow cut

Logf [266, 20000, 51] Hz, high cut

Linf [60, 650, 591] ms, time

100,
100,
100,

10,
10,
10,
10,

100,
100,

101] %, sustain
101] %, drive
101] %, flutter

1001] time
101] %, sustain
101] %, wobble
101] %, tone

1001] time
101] %, feed

WING remote protocols —V 3.0.6-4

Stereo Pitch

0 “mdlL”: PITCH

1 “semi”: 1int [-12..12] semitones

2 “cent”: 1int [-56..50] cent

3 “dly”: Linf [0, 500, 501] ms, delay

4 “lLc”: Logf [20, 400, 51] Hz, low cut

5 “hc”: Logf [206, 20000, 51] Hz, high cut
6 “mix”: Linf [6, 1ee, 101] %, mix

Dual Pitch

0 “mdlL”: D-PITCH

1 “semil”: int [-12..12] semitones 1

2 “centl”: int [-56..50] cent 1

3 “dly1”: Linf [0, 500, 501] ms, delay 1
4 “pani”: Llinf [-100, 100, 201] %, pan 1
5
6
7
8
9

“Lvl1”: fader Lvl 1 dB
“semi2”: int [-12..12] semitones 2
“cent2”: int [-560..50] cent 2
“dly2”: Linf [0, 500, 501] ms, delay 2
“pan2”: Llinf [-100, 100, 201] %, pan 2
10 “Lvl2”: fader Lvl 2 dB
11 “Lc”: Logf [206, 400, 51] Hz, Low cut
12 “hc”: Logf [266, 20000, 51] Hz, high cut

©Patrick-Gilles Maillot 153 WING remote protocols —V 3.0.6-4

Channel effects

None
0 “mdlL”: NONE

EXTERNAL EFFECT External
0 “mdlL”: EXT
1 “egrp”: str [OFF, LCL, AUX, A, B, C, SC,
USB, CRD, MOD, PLAY, AES] ext grp
“ein”: int [1..64] ext in
“emode”: str [M, ST, M/S] ext mode
“Lat”: int [6..200] Latency
“trim”: Linf [-18, 18, 361] dB, trim

uh WN

Soul Analog EQ

“mdL”: SouL

“mix”: Linf [6, 125, 126] %, mix
“Lf”: Linf [6, 1@, 101] lo freq
“Lg”: Linf [-5, 5, 101] Lo gain

“Lmf”: Linf [6, 16, 101] Lm freq
“Lmf3”: 1int [6, 1] lm /3

“Lmq”: Linf [0, 10, 101] Lm q
“Lmg”: Linf [-5, 5, 101] Lm gain
“hmf> : Linf [0, 10, 101] hm freq
“hmf3”: int [0, 1] hm x3

10 “hmq”: Linf [0, 10, 101] hm q

11 “hmg”: Linf [-5, 5, 101] hm gain
12 “hf”: Linf [0, 10, 101] hf freq
13 “hg”: Linf [-5, 5, 101] hf gain

VWoONAANULNWNRO

Even 88-Formant EQ

“mdl”: E88

“mix”: Linf [0, 125, 126] %, mix
“Lf”: Linf [0, 10, 101] Lf freq
“lg”: Linf [-5, 5, 101] Lf gain
“lg”: str [LOW, HIGH] Lf g
“Lt”: str [BELL, SHELV] Lf type

“Lmf”: Linf [6, 16, 161] Lm freq
“Lmg”: Linf [-5, 5, 161] Lm gain
“Lmq”: Linf [6, 16, 101] Lm g
“hmf>: Linf [6, 16, 161] hm freq
10 “hmg”: Linf [-5, 5, 161] hm gain
11 “hmq”: Linf [6, 16, 101] hm g

VWoONAATULANWNRO

12 “hf”: Linf [6, 10, 161] hm freq

13 “hg”: Linf [-5, 5, 1601] hf gain

14 “hq”: str [LOW, HIG] hf g

15 “ht”: str [BELL, SHELV] hf type

Even 84 EQ

0 “mdlL”: E84

1 “mix”: Linf [6, 125, 126] %, mix

2 “g”: Linf [-206, 20, 81] dB, gain

3 “Lf”: str [OFF, 35, 60, 110, 220] Lf freq

4 “lg”: Linf [-5, 5, 1601] Lf gain

5 “mf”: str [OFF, 3560, 700, 1k6, 3k2,
4k8, 7kR2] mid freq

6 “mg”: Linf [-5, 5, 101] mid gain

7 “mg”: str [LOW, HIGH] mid q

8 “hf”: str [16k, 12k, 16k, OFF] hf freq

9 “hg”: Linf [-5, 5, 101] hf gain

Focusrite ISA 110 EQ

“mdL”: F110

“mix”: Linf [0, 125, 126] %, mix
“peq”: int [0, 1] peq on

“Lmf”: Linf [0, 10, 101] Lm freq
“Lmg”: Linf [-5, 5, 101] Lm gain
“Lmq”: Linf [0, 10, 101] Lm q

VUAWNRO

©Patrick-Gilles Maillot 154 WING remote protocols —V 3.0.6-4

6 “Lmf3”: 1int [0, 1] lm /3

7 “hmf”: Linf [0, 10, 101] hm freq
8 “hmg”: Linf [-5, 5, 1e1] hm gain
9 “hmq”: Linf [o, 10, 101] hm q
10 “hmf3”: 1int [0, 1] hm x3

11 “shv”: inf [0, 1] shv on

12 “Lf”: str [33, 56, 95, 160,
270, 460] Lf freq
13 “lg”: Linf [-5, 5, 101] Lf gain
14 “hf”: str [3k3, 4k7, 6k8, 16k,
15k, 18R] hf freq
15 “hg”: Linf [-5, 5, 101] hf q
16 “g”: Linf [-18, 18, 73] gain
(i‘ULSAREn 0 1 . - e g o il Pulsar P1a/l\/|5 EQ
P = | @ B @ » D 0 “mdl”: PULSAR
Lo-MoFREQ o H\ufgm 1orsen unmmmmﬂ HFRED nﬂ:w 1 “mix”: l.'l.nf [9, 125, 126] %, mix
i SR P = = 2 “eq1”: int [@, 1] eql on
o G O @ 3 “1lb”: linf [0, 10, 101] Lf boost
Lo WOBOST Moo H-Waso0sT T *asoost WeArTrsE 4 “1latt”: Llinf [0, 10, 101] Lf att
= 5 «qufr: str [20, 30, 60, 100] Hz, Lf freq
6 “lhw”: Linf [0, 10, 101] hf wid
7 “1hb”: Linf [0, 10, 101] hf boost
8 “1hf”: str [3k, 4k, , 5k, 8k, 106k,

12k, 16R] Hz, hf freq
9 “1hatt”: Linf [0, 10, 101] hf att
10 “lhattf”:str [5k, 16k, 20kR] hf att
11 “eq5”: int [0, 1] eqg5 on
12 “5Llb”: Llinf [0, 10, 101] Lm boost
13 “5Lf”: str [200, 300, 500, 700,
1R] Hz, Lf freq
14 “5md”: Linf [e, 10, 101] mid dip
15 “Smf”: str [200, 300, 500, 700, 1k, 1k5,
2k, 3k, 4k, 5k, 7R] Hz, mid freq
16 “5hb”: Llinf [0, 10, 101] HM boost
17 “5hf”: str [1k5, 2k, 3R, 4k,
5kR] Hz, hf freq

Mach EQ4
0 “mdlL”: MACH4
“mix”: Linf [0, 125, 126] %, mix
“sub”: Linf [-5, 5, 101] sub
“40”: Linf [-5, 5, 101] 4@
“160”: Linf [-5, 5, 101] 160
“650”: Linf [-5, 5, 101] 650
“2r5”: Linf [-5, 5, 101] 2k5
“air”: Linf [0, 10, 101] air
“airm”: str [OFF, 2R5, 5k, 10k,
20k, 40k] air mode
“again”: int [0, 1] auto

ONOUVANWNR

e}

Even Channel
Even 88 Gate, Even 88 Formant EQ, Even

Compressor/Limiter

0 “mdlL”: *EVEN*

1 “g_thr”: Linf [-40.0, 0.0, 81] dB
2 “g hyst”: Linf [6.0, 25.0, 51] dB
3 “g_range”: Linf [6, 60, 61] dB

4 “g_rel”: Logf [1e0, 3000, 130] ms
5 “g fast”: int [0, 1]

6 “g_mde”: int [, 1]

7 “g_on”: int [0, 1]

8 “eq_on”: int [0, 1]

9 “Lf”: Linf [@.0, 10.0, 101]
10 “lg”: Linf [-5.0, 5.8, 101]
11 “Lq”: Str [LOW, HIGH]

12 “Lt”: Str [BELL, SHELV]

13 “Lmf”: Linf [@.0, 10.0, 101]
14 “Lmg”: Linf [-5.0, 5.0, 101]
15 “Lmg”: Linf [@.0, 10.0, 101]
16 “hmf”: Linf [@.0, 10.0, 101]

©Patrick-Gilles Maillot 155 WING remote protocols —V 3.0.6-4

17 “hmg”: Linf [-5.8, 5.0, 101]

18 “hmg”: Linf [e.e, 10.0, 101]
19 “hf”: Linf [@.e, 10.0, 101]
20 “hg”: Linf [-5.0, 5.0, 101]
21 “hg”: Str [LOW, HIGH]

22 “ht”: Str [BELL, SHELV]

23 “mix”: Linf [0, 125 %, 126]

24 “d_Llon”: int [0, 1]

25 “d_Lthr”: Linf [-12.0, 0.6, 25] dB

26 “d_Lrec”: Str [56, 100, 200, 860, Al, A2]
27 “d_Lfast”: int [0, 1]

28 “d_con”: int [0, 1]

29 “d_cthr”: Linf [-35.0, -5.0 dB, 61]

30 “d_ratio”: Str [1.5, 2.0, 3.0, 4.0, 6.0]

31 “d_crec”: Str [166, 460, 860, 1500, Al, A2]
32 “d_cfast”: int [0, 1]

33 “d_gain”: Linf [-6, 12 dB, 7]

Soul Channel

Soul 9000 Gate/Expander, Soul AnalLogue EQ, Soul 9000
Channel Compressor

0 “mdl”: *SOUL *

1 “g_thr”: Linf [-40.0, 0.0, 81] dB

2 “g_range”: Linf [6, 40, 41] dB

3 “g_hld”: Logf [1e, 400, 130] ms

4 “g rel”: Logf [1ee, 4600, 130] ms

5 “g_fast”: 1int [0, 1]
6
7
8

“g_mode”: Str [GATE, EXP]

“g_on”: int [0, 1]
“eq_on”: int [0, 1]

9 “Lf”: Linf [@.e, 10.0, 101]

10 “lg”: Linf [-5.0, 5.0, 101]

11 “Lmf”: Linf [e.0, 10.0, 101]

12 “Lmf3”: int [0, 1]

13 “Lmg”: Linf [e.e, 10.0, 101]

14 “lmg”: Linf [-5.0, 5.0, 101]

15 “hmf”: Linf [e.e, 10.0, 101]

16 “hmf3”: int [0, 1]

17 “hmg”: Linf [e.0, 10.0, 101]

18 “hmg”: Linf [-5.6, 5.0, 101]

19 “hf”: Linf [e.e, 10.0, 101]

20 “hg”: Linf [-5.6, 5.0, 101]

21 “mix”: Linf [0, 125 %, 126]

22 “d_on”: int [0, 1]

23 “d_thr”: Linf [-30.0, 18.0, 97] dB

24 “d_ratio”: Str [1.3, 1.4, 1.6, 1.8, 2.0,
2.5, 2.8, 3.3, 4.0, 5.0,
6.0, 7.0, 9.0, 12, 20,
50, 100]

25 “d_fast”: int [0, 1]
26 “d_rel”: Logf [100, 4000, 65] ms
27 “d_peak”: int [0, 1]

* | Vintage Channel
76 Limiting Amplifier, Pulsar EQ P1A/m5, Model 2A
Leveling Amplifier

0 “mdlL”: *VINTAGE *

1 “d_in”: Linf [-48.0, 0.0, 97] dB

2 “d_out”: Linf [-48.0, 0.0, 97] dB
_ 3 “d_att”: Linf [1.8, 7.0, 61]

4 “d_rel”: Linf [1.8, 7.0, 61]

5 “d_ratio”: Str [4, 8, 12, 20, ALL]

6 “d_on”: int [, 1]

7 “eql”: int [0, 1]

8 “1lb”: Linf [@.0, 10.0, 101]

9 “ilatt”: Linf [©.0, 10.0, 101]

10 “1Lf”: Sstr [20, 30, 60, 100]

11 “1hw”: Linf [@.0, 10.0, 101]

12 “1hb”: Linf [@.0, 10.0, 101]

13 “1hf”: Str [3kR, 4k, 5k, 8k, 16k, 12k, 16R]

14 “1hatt”: Linf [@.0, 10.0, 101]

15 “1hattf”: Str [5k, 10k, 20k]

©Patrick-Gilles Maillot 156 WING remote protocols —V 3.0.6-4

16 “eq5”: int [0, 1]

17 “5Lb”: Linf [0.e, 10.8, 101]

18 “SLfF”: Str [200, 300, 500, 700, 1k]

19 “Smd”: Linf [0.e, 10.8, 101]

20 “Smf”: Str [20e, 300, 500, 700, 1k, 1kS5,
2k, 3k, 4k, 5k, 7k]

21 “Shb”: Linf [0.0, 10.8, 101]

22 “Shf”: Str [1k5, 2k, 3k, 4k, 5k]

23 “lL_ingain”: Linf [6, 100, 101]
24 “lL_peakR”: Linf [0, 1@, 101]
25 “lL_mode”: Str [COMP, LIM]

26 “L_on”: int [0, 1]
Bus Channel
Soul Warmth, Even 84 EQ, Soul G Bus Compressor
0 “mdL”: *BUS*
1 “w_drv”: Linf [1e, 125, 116] %
2 “w_hrm”: Linf [-100, 100, 201]
3 “w_col”: Linf [-1.00, +1.00, 41]
4 “w_trim”: Linf [-18.0, +6.0, 49] dB
5 “w_mix”: Linf [0, 100, 101] %
6 “w_on”: int [0, 1]
7 “eq_on”: int [0, 1]
9 “g”: Linf [-20.0, 20.0, 81] dB
10 “Lf”: Str [OFF, 35, 60, 110, 220]
11 “lg”: Linf [-5.0, 5.0, 101]
12 “mf”: Str [OFF, 350, 700, 1k6, 3k2,
4r8, 7kR2]
13 “mg”: Linf [-5.0, 5.0, 101]
14 “mg”: Str [LOW, HIGH]
15 “hf”: Str [16k, 12k, 16k, OFF]
16 “hg”: Linf [-5.0, 5.0, 101]
17 “mix”: Linf [6, 125 %, 126]
18 “d_thr”: Linf [-40.0, 0.0, 81] dB
19 “d_ratio”: Str [1.5, 2.0, 3.0, 4.6, 5.0, 10]
20 “d_att”: Str [0.1, 0.3, 1.0, 3.0, 10.0, 30.0]
21 “d_rel”: Str [0.1, 0.2, 0.4, 0.8, 1.6, AUTO]
22 “d_gain”: Linf [-6.0, 12.0, 37] di
23 “d_on”: int [, 1]
- Mastering
Tape, Mach EQ4 EQ, Stereo Enhancer, Precision
Limiter
0 “mdlL”: *MASTER*
1 “t_drv”: Linf [-5.0, 25.0, 61] dB
- a 2 “t_spd”: Logf [7.5, 30.0, 65]
3 “t_Low”: int [0, 1]
4 “t_hi“: int [e, 1]
5 “t_on”: int [0, 1]
6 “sub”: Linf [-5.6, 5.0, 201]
7 “40”: Linf [-5.0, 5.0, 201]
8 “160”: Linf [-5.0, 5.0, 201]
9 “650”: Linf [-5.0, 5.0, 201]
10 “2kr57: Linf [-5.0, 5.0, 201]
11 “air”: Linf [0.0, 16.0, 201]
12 airm”: Str [OFF, 2R5, 5k, 10k, 20k, 46Rk]

13 “eq_on”: int [0, 1]

14 “e_stlvl”: Linf [-100, +100, 201] %
15 “e_Lmf”: Linf [-100, +100, 201] %
16 “e_mlvl”: Linf [-100, +100, 201] %

17 “e_st”: Linf [-1ee, 100, 201] %
18 “e_m”: Linf [-100, 100, 201] %

19 “e_bass”: Linf [0, 100, 101] %

20 “e_mid”: Linf [0, 100, 101] %

21 “e_high”: Linf [0, 100, 101] %

22 “e_bassf”: Linf [1, 50, 50]

23 “e_midq”: Linf [1, 50, 50]

24 “e_highf”: Linf [1, 56, 50]

25 “e_on”: int [0, 1]

26 “lL_gin”: Linf [0.00, 18.00, 73] dB
27 “lL_gout”: Linf [-18.00, 0.00, 73] dB
28 “l_sqz”: int [0, 100]

©Patrick-Gilles Maillot 157 WING remote protocols —V 3.0.6-4

29 “lL_knee”: int [0, 10]
30 “l_again”: int [0, 1]
31 “L_att”: Linf [0.065, 1.00, 96] ms
32 “lL_rel”: Logf [26, 2000, 101] ms
33 “L_on”: int [0, 1]

©Patrick-Gilles Maillot 158 WING remote protocols —V 3.0.6-4

Plugins

Filter plugins

TOOLFILTER o Tllt F||ter

TILT EQ *

0 “mdL”: TILT
1 “tilt”: Llinf [-6, 6, 49] tilt

el Maxer Filter

0 “mdL”: MAX
1 “low”: Linf [0, 100, 101] %, Low cont
2 “proc”: Llinf [0, 100, 101] %, high proc

sl APOO Filter (all pass)
0 “mdL”: AP1
1 “freq”: Llogf [106, 10000, 100] Hz, freq

RoCEl AP180 Filter (all pass)

0 “mdl”: AP2
1 “f”: logf [100, 10000, 100] Hz, freq
2 “q”: logf [.442, 10, 181] q

©Patrick-Gilles Maillot 159 WING remote protocols —V 3.0.6-4

Gate plugins

ENVELOPE

()

ENVELOPE

@

THRESHOLD

o

EXPAND

THRESHOLD

- e

——— GAIN REDUCTION

ouTPUT

i 1
RELEASE

©Patrick-Gilles Maillot

Standard Gate/Expander

[

1
2
3
4
5
6
7

“mdL”: GATE
“thr”: Linf [-86, 6, 161] dB, thr
“range”: linf [3, 60, 115] dB, range
“att”: Linf [0, 120, 121] ms, attack
“hold”: Linf [1, 206, 200] ms, hold
“rel”: Logf [4, 4000, 130] ms, release
“acc”: Linf [0, 100, 21] %, accent
“ratio”: str [1:1.5, 1:2, 1:3, 1:4,
gate] ratio

Standard Ducker

0 “mdlL”: DUCK

1 “thr”: Linf [-86, 6, 161] dB, thr

2 “range”: linf [3, 60, 115] dB, range

3 “att”: Linf [0, 120, 121] ms, attack

4 “hold”: Llinf [1, 200, 200] ms, hold

5 “rel”: Linf [20, 4000, 130] ms, release
SSL 9000 Gate/Expander

0 “mdlL”: 9000G

1 “thr”: Linf [-46, @ 81] dB, input

2 “range”: Linf [-6, 40, 41] dB

3 “hld”: Logf [16, 4000, 130] ms, hold
4 “rel”: Logf [166, 4000, 130] ms, release
5 “fast”: int [0, 1] fast

6 “mode”: str [GATE, EXP] mode

Even 88-Gate

AUV ANWNRO

“mdl”: E88

“thr”: Linf [-40, 6, 81] dB, thr
“hyst”: Linf [6, 25, 51] dB, hyst
“range”: Llinf [6, 60, 61] dB, range
“rel”: Logf [1e6, 3000, 130] ms, release
“fast”: 1int [0, 1] fast

“m40” : int [0, 1] thr

DrawMore Expander Gate 241

(2
1
2

“mdL”: DUCK
“thr”: Llinf [-86, @, 161] dB, thr
“slow”: 1int [0, 1] slow

DBX 902 De-Esser

7}
1
2
3

76

VUAWNRO

160

“mdL”: DS9062

“of: Logf [806, 8000, 130] Hz, freq
“range”: linf [3, 12, 25] dB, range
“mode”: str [FULL, HF] mode

Limiting Amp

“mdL”: 76LA

“in”: Linf [-48, @, 97] dB, input
“out”: Llinf [-48, @, 97] dB

“att”: Linf [1, 7, 61] attack

“rel”: Linf [1, 7, 61] release
“ratio”: str [4, 8, 12, 20, ALL] ratio

WING remote protocols —V 3.0.6-4

L

LA

Sy e “ | Leveling Amplifier 2A
0 “mdl”:

e ¥ 1 “ingain”:linf [6, 100, 101] gain
a9 2 “peak”: Llinf [6, 100, 101] peak
ol Ao 3 “mode”: str [comp, Lim] mode

e Source Extractor
-:m .:“ rnsjuom n[l:r“ 9 “mdL”: PSE
PSE-545 3 1 “thr”: Linf [-36, 12, 97] dB, threshold
Source Extractor @ @ 2 “depth”: linf [@, 20, 41] dB, depth
/ 3 “fast”: int [0, 1] fast
=k il 4 “peak”: 1int [0, 1] peak

-

L % | PSE/LA Combo

Source Extractor "-':VE e “m dL ”: CMB
E O 1 “thr”: Linf [-36, 12, 97] dB, threshold
: @ @ 2 “depth”: linf [6, 20, 41] dB, depth
Bl Q et/ | 3 “fast”: int [0, 1] fast
. e 2 - , 4 “peak”: int [0, 1] peak
6
7

2

“ingain”:linf [0, 100, 101] gain
“peak”: Linf [0, 100, 101] peak
“mode”: str [comp, Lim] mode

Wave Designer
0 “mdlL”: WAVE
1 “att”: Linf [-15, 15, 61] dB, attack
2 “sust”: Llinf [-24, 24, 97] dB, sustain

3 “g”: Linf [-18, 9, 55] dB, gain
SPEED 7 w o | | AutoRider Dynamics
Sa s 0 “mdL”: RIDE
R HOLD RANGE e (b 1 “thr”: Linf [-54, 18, 73] dB, thr
a o ;_:‘u‘g'; 2 “tgt”: linf [-48, @, 97] dB, target
[4 = 3 “spd”: 1int [1..50] speed
érﬁn" AUTU ﬁlUEH] THRESHOLD TARGET > 4 “ratio”: th [2.@, 4.0, 8.0,

20.0, 100.0] ratio
“hld”: logf [.1, 10, 65] s, hold
“range”: linf [1, 15, 29] dB, range

a \n

SOURracrH Soul Warmth Preamp

T 0 “mdlL”: WARM

1 “drv”: Linf [10, 100, 91] %, drive
“hrm” : Linf [-100, 100, 201] harm
“col”: Linf [-1, 1, 41] color
“trim”: Linf [-18, 6, 49] dB, trim
“mix”: Linf [0, 100, 101] dB, mix

NwwN

Dynamic EQ
0 “mdl”: DEQ
1 “thr”: Linf [-66, 6, 121] dB, thr
2 “ratio”: flLt [1.2, 1.3, 1.5, 2.0,
3.0, 5.0, 10.0] ratio
3 “att”: Linf [0, 200, 201] ms, attack
4 “rel”: Logf [20, 4000, 130] ms, release
5 “filt”: str [OFF, BP, LP6, LP12,
HP6, HP12] filter

6 “g”: Linf [-15, 15, 301] dB, gain
7 “f7: Logf [26, 20000, 961] Hz, freq
8 “q”: Logf [.442, 10, 181] q

9 “mode”: str [low, high] mode

©Patrick-Gilles Maillot 161 WING remote protocols —V 3.0.6-4

EQ plugins
Standard EQ

Channel:

“mdl”: STD

“Lg”: Linf [-15, 15, 301] dB, gain L
“Lf”: Logf [26, 2000, 641] Hz, freq L
“lg”: Logf [0.442, 10, 181] q L

“leq”: str [SHV, PEQ] eq L

“1g”: Linf [-15, 15, 301] dB, gain 1
“1f”: Logf [26, 20000, 961] Hz, freq 1
“1q9”: Logf [©.442, 10, 181] q 1

“2g”: Linf [-15, 15, 301] dB, gain 2
“2f”: Logf [26, 20000, 961] Hz, freq 2
10 “2q”: Logf [0.442, 10, 181] q 2

11 “3g”: Linf [-15, 15, 301] dB, gain 3
12 “3f”: Logf [26, 20000, 961] Hz, freq 3
13 “3q”: Logf [0.442, 10, 181] q 3

14 “4g”: Linf [-15, 15, 301] dB, gain 4
15 “4f”: Logf [26, 20000, 961] Hz, freq 4
16 “4q”: Logf [©.442, 10, 181] q 4

17 “hg”: Linf [-15, 15, 301] dB, gain h
18 “hf”: Logf [56, 20000, 833] Hz, freq h
19 “hq”: Logf [©.442, 10, 181] q h

20 “heq”: str [SHV, PEQ] eq h

VWoONAANULNWNRO

Bus, mtx, main:

“mdl”: STD

“Lg”: Linf [-15, 15, 301] dB, gain L
“Lf”: Logf [26, 2000, 641] Hz, freq L
“Lg”: Logf [0.442, 10, 181] q L

“Leq”: str [SHV, PEQ, CUT] eq L

“1g”: Linf [-15, 15, 301] dB, gain 1
“1f”: Logf [26, 20000, 961] Hz, freq 1
“1q9”: Logf [©.442, 10, 181] q 1

“2g”: Linf [-15, 15, 301] dB, gain 2
“2f”: Logf [26, 20000, 961] Hz, freq 2
10 “2q”: logf [0.442, 10, 181] q 2

11 “3g”: Linf [-15, 15, 301] dB, gain 3
12 “3f”: Logf [26, 20000, 961] Hz, freq 3
13 “3¢”: logf [0.442, 10, 181] q 3

14 “4g”: Linf [-15, 15, 301] dB, gain 4
15 “4f”: Logf [26, 20000, 961] Hz, freq 4
16 “4q”: Logf [©.442, 10, 181] q 4

17 “5g”: Linf [-15, 15, 301] dB, gain 5
18 “5f”: Logf [26, 20000, 961] Hz, freq 5
19 “5q”: Logf [0.442, 10, 181] q 5

20 “6g”: Linf [-15, 15, 301] dB, gain 6
21 “6f”: Logf [26, 20000, 961] Hz, freq 6
22 “7q”: Logf [0.442, 10, 181] q 6

23 “hg”: Linf [-15, 15, 301] dB, gain h
24 “hf”: Logf [56, 20000, 833] Hz, freq h
25 “hg”: Logf [0.442, 10, 181] q h

26 “heq”: str [SHV, PEQ, CUT] eq h

27 “tilt”: linf [-6, 6, 49] dB, tilt

VoONAATULNWNRO

Soul Analog EQ

“mdl”: SOUL

“mix”: Linf [0, 125, 126] %, mix
“Lf”: Linf [0, 10, 101] lo freq
“Lg”: Linf [-5, 5, 101] Lo gain

“Lmf”: Linf [6, 16, 161] Lm freq
“Lmf3”: 1int [6, 1] Llm /3

“Lmq”: Linf [0, 16, 101] Lm g
“Lmg”: Linf [-5, 5, 161] Lm gain
“hmf>: Linf [6, 16, 161] hm freq
“hmf3”: int [©, 1] hm x3

10 “hmq”: Linf [6, 16, 161] hm g

11 “hmg”: Linf [-5, 5, 161] hm gain
12 “hf”: Linf [6, 10, 101] hf freq
13 “hg”: Linf [-5, 5, 101] hf gain

VWoONAATULNWNRO

©Patrick-Gilles Maillot 162 WING remote protocols —V 3.0.6-4

L
PULSAREQ 1005 s 5

o0 '3y
oo ' 4

i
"

LO-MID FREQ Hi-MiD FREQ

s g n o9 n
LO-MDBOOST MIDDIP HI-MIDBOOST

©Patrick-Gilles Maillot

e ee

b o
LoFRED HIWIOTH HIFREQ AT

w

® [} ° n
Lo B00ST wiBoOsT Hi-ATTFREQ

Even 88-Formant EQ

“mdL”: E88

“mix”: Linf [6, 125, 126] %, mix
“Lf”: Linf [o, 10, 101] Lf freq
“Lg”: Linf [-5, 5, 1601] Lf gain
“Lg”: str [LOW, HIGH] Lf g
“Lt”: str [BELL, SHELV] Lf type

“Lmf”: Linf [6, 16, 161] Lm freq
“Lmg”: Linf [-5, 5, 101] Lm gain
“Lmq”: Linf [0, 10, 101] Lm q
“hmf> : Linf [0, 10, 101] hm freq
10 “hmg”: Linf [-5, 5, 101] hm gain
11 “hmq”: Linf [0, 10, 101] hm q

VWoONAATULNWNRO

12 “hf”: Linf [0, 10, 101] hm freq

13 “hg”: Linf [-5, 5, 101] hf gain

14 “hqg”: str [LOW, HIG] hf q

15 “ht”: str [BELL, SHELV] hf type

Even 84 EQ

0 “mdl”: E84

1 “mix”: Linf [0, 125, 126] %, mix

2 “g”: Linf [-206, 20, 81] dB, gain

3 “Lf”: str [OFF, 35, 60, 110, 220] Lf freq

4 “lLg”: Linf [-5, 5, 101] Lf gain

5 “mf*”: str [OFF, 356, 700, 1k6, 3k2,
4kR8, 7kR2] mid freq

6 “mg”: Linf [-5, 5, 1601] mid gain

7 “mq”: str [LOW, HIGH] mid q

8 “hf”: str [16k, 12k, 16k, OFF] hf freq

9 “hg”: Linf [-5, 5, 101] hf gain

Focusrite ISA 110 EQ

“mdL”: F1i0

“mix”: Linf [@, 125, 126] %, mix
“peq”: int [0, 1] peq on

“Lmf”: Linf [6, 16, 161] Lm freq
“Lmg”: Linf [-5, 5, 161] Lm gain
“Lmq”: Linf [6, 16, 101] Lm g
“Lmf3”: 1int [6, 1] Llm /3

“hmf>: Linf [6, 16, 161] hm freq
“hmg” : Linf [-5, 5, 161] hm gain
“hmq” : Linf [0, 10, 101] hm q
10 “hmf3”: 1int [0, 1] hm x3

11 “shv”: inf [0, 1] shv on

VWoONAATULNWNRO

12 “Lf”: str [33, 56, 95, 160,
270, 460] Lf freq

13 “Lg”: Linf [-5, 5, 101] Lf gain

14 “hf”: str [3k3, 4k7, 6k8, 16k,
15k, 18R] hf freq

15 “hg”: Linf [-5, 5, 101] hf q

16 “g”: Linf [-18, 18, 73] gain

Pulsar P1a/M5 EQ

“mdL”: PULSAR

“mix”: Linf [0, 125, 126] %, mix

“eql”: int [0, 1] eql on

“1lb”: Linf [o, 10, 101] Lf boost

“1latt”: Linf [0, 10, 101] Lf att

“ILf”: str [20, 30, 60, 100] Hz, Lf freq

“1hw”: Linf [e, 10, 101] hf wid

“1hb”: Linf [e, 10, 101] hf boost

“1hf”: str [3k, 4k, , 5k, 8k, 16k,
12k, 16R] Hz, hf freq

9 “1hatt”: Linf [0, 16, 101] hf att

10 “1hattf”:str [5k, 10k, 20R] hf att

11 “eq5”: int [0, 1] eqg5 on

12 “5Llb”: Linf [@, 16, 161] Lm boost

13 “5Lf”: str [200, 300, 500, 700,

ONAOAUVANWNROD

163 WING remote protocols —V 3.0.6-4

©Patrick-Gilles Maillot

164

“5md”:
[y smf}) :

“Shb”:
ffshf})‘.

1kR] Hz,
Linf [0, 16,

Lf freq
101] mid dip

str [200, 300, 500, 700, 1k, 1k5,
2k, 3k, 4k, 5k, 7R] Hz, mid freq

Linf [0, 16,

str [1R5, 2R,

5k] Hz,

MACH4

Linf [0, 125,

Linf [-5, 5,
Linf [-5, 5,
Linf [-5, 5,
Linf [-5, 5,
Linf [-5, 5,
Linf [o, 1o,

101] HM boost
3k, 4k,
hf freq

126] %, mix
101] sub
101] 40
101] 160
101] 650
101] 2k5
101] air

str [OFF, 2k5, 5k, 16k,
20k, 40k] air mode
“again”: int [0, 1] auto

WING remote protocols —V 3.0.6-4

Compressor plugins

ENVELOPE

0

DETECTOR ENVELOPE

ENVELOPE

O

o} o]
=)

DETECTOR AUTD ENV

PEAK m OFF n

COMPRESSION OUTPUT GAIN

Compressor/Limiter

R “ PR S = o e

—— cAmREDUCTION

COMPRESSOR

N\ THRESHOLD ———— RATIO ————— AT

©Patrick-Gilles Maillot

165

Standard compressor

0 “mdL”: comp
1 “mix”: Linf [0, 100, 101] %, mix
2 “gain”: Llinf [-6, 12, 37] dB, gain
3 “thr”: Linf [-66, 6, 121] dB, thr
4 “rgtio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,
2.5, 3.0, 3.5, 4.0, 5.0, 6.0,
8.0, 10., 20., 50., 100.] ratio
5 “Rnee”: int [6..5] knee
6 “det”: str [PEAK, RMS] detector
7 “att”: Linf [0, 120, 121] ms, attack
8 “hld”: Llinf [1, 200, 200] ms, hold
9 “rel”: Logf [4, 4000, 130] ms release
10 “env”: str [LIN, LOG] envelope
11 “auto”: 1int [@, 1] auto

Standard expander

0 “mdlL”: EXP

“mix”: Linf [@, 1ee, 101] %, mix

“gain”: Llinf [-6, 12, 37] dB, gain

“thr”: Llinf [-66, @, 121] dB, thr

“ratio”: flLt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,
2.5, 3.0, 3.5, 4.0, 5.0, 6.9,

N WNR

8.0, 10., 20., 50., 100.] ratio

5 “knee”: 1int [@..5] knee

6 “det”: str [PEAK, RMS] detector

7 “att”: Linf [6, 120, 121] ms, attack
8 “hld”: Linf [1, 200, 200] ms, hold

9 “rel”: Logf [4, 4000, 130] ms release
10 “env”: str [LIN, LOG] envelope
11 “auto”: 1int [©, 1] auto

BDX 160 Compressor/Limiter

0 “mdlL”: B166

“mix”: Linf [@, 1ee, 101] %, mix

“gain”: Linf [-6, 12, 37] dB, gain

“thr”: Logf [.01, 5, 65] thr

“ratio”: flt [1.1, 1.2, 1.3, 1.5, 1.7, 2.0,
5, 3.0, 3.5, 4.0, 5.0, 6.0

9, 10., 20., 50.] ratio

N WNR

i

2.
8.

BDX 560 Easy Compressor

0 “mdlL”: B560

1 “mix”: Linf [0, 100, 101] %, mix

2 “gain”: Llinf [-6, 12, 37] dB, gain

3 “thr”: Linf [-46, 20, 121] dB, thr

4 “rgtio”: flt [1.1, 1.2, 1.5, 2.0, 3.0, 4.0,
5.8, 7.0, 10., 50., 999.,
-5.09, -3.0, -2.0, -1.0] ratio

5 “guto”: int [0, 1] auto

Draw More Compressor
“mdL”: D241
“mix”: Linf [@, 1ee, 101] %, mix
“gain”: Llinf [-6, 12, 37] dB, gain
“thr”: Llinf [0, -60, 121] dB, thr
“ratio”: flt [1.1, 1.2, 1.3, 1.
1.7, 2.0, 3.0, 3.
4.0, 5.0, 6.0, 8.
le.0, 20.0, 50.0
100.0] ratio
“att”: Linf [.5, 100, 65] ms, attack
“rel”: Logf [50, 5000, 130] ms release
“Lim”: Linf [-20, ©, 41] dB, Lim thr
“Lrel”: Llogf [50, 5600, 130] ms, Lim rel
“auto”: 1int [0, 1] auto

ANWNRO

’

-

5
5
o,

E

OV o NGO W

WING remote protocols —V 3.0.6-4

Red Compressor

() 0 “mdl”: RED3
Compressor 1 “mix”: linf [0, 10e, 101] %, mix
2 “gain”: linf [-6, 12, 37] dB, gain
@ .‘—;— 3 “thr”: Linf [-48, @, 97] dB, thr
) 4 “ratio”: flLt [1.1, 1.2, 1.3, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 5.0,
6.0, 8.0, 10.] ratio
5 “att”: Llinf [1, 50, 65] ms, attack
7 “rel”: Logf [106, 4000, 65] ms release
8 “auto”: int [0, 1] auto
SOUL2008 Soul 9000 Channel Compressor
> 0 “mdlL”: 9000C
1 “mix”: Linf [0, 100, 101] %, mix
2 “gain”: Llinf [-6, 12, 37] dB, gain
3 “thr”: Linf [-48, 6, 97] dB, thr
4 “ragtio”: flt [1.3, 1.43, 1.57, 1.8, 2.0,
2.8, 3.3, 4.0, 5.0 , 6.0,
7.0, 9.0, 12.0, 20.0, 50.0,
100.0] ratio
5 “fast”: int [0, 1] fast att
6 “rel”: Logf [106, 4000, 65] ms release
7 “peak”: 1int [0, 1] peak

0 “mdL”:
ﬂ'mi X}) :
“gain”:
“thr”:
“ratio”:

N WNR

wn

“att”:

6 “rel”:

COMPRESS

“mdL”:
“mix”:
c, s n??
gain”:
“Lon”:
ﬂ'L thrJl .
ﬂ'Lrec)J .

a
conpRESSION

% W
RATIO ATTACK THRESHOLD ATTACK

BUANWNRD

6 “Lfast”:
7 “con”:

8 “cthr”:
9 “ratio”:
0 “crec”:

11 “cfast”:

Soul G Buss Compressor

SBUS

Linf [@, 1ee, 101] %, mix

Linf [-6, 12, 37] dB, gain

Linf [-48, 6, 81] dB, thr

flt [1.5, 2.0, 3.0, 4.0, 5.0,
10.0] ratio

flt [0.1, 0.3, 1.0, 3.0, 10.0,
30.0] ratio

str [0.1, 0.2, 0.4, 0.8, 1.6,
AUTO] release

Even Compressor/Limiter

ECL33
Linf [@, 1ee, 101] %, mix
Linf [-6, 12, 37] dB, gain
int [0, 1] Lim on
linf [-12, o, 25] dB, Llim thr
str [50, 100, 200, 860,
A1, A2] Llim rec
int [0, 1] Llim fast
int [©, 1] comp on
Linf [-35, -5, 61] dB, comp thr
str [1.5, 2.0. 3.0, 4.0, 6.0] ratio
str [160, 400, 800, 1500
Al, A2] comp rec
int [0, 1] comp fast

Eternal Bliss

0 “mdl”: BLISS

1 “mix”: Linf [0, 100, 101] %, mix

2 “gain”: Llinf [-6, 12, 37] dB, gain

3 “thr”: Linf [-56, o, 101] dB, thr

4 “rgtio”: flt [1.2, 1.3, 1.6, 2.0, 3.0,

-1.0, -2.0, -3.0, -4.0] ratio

5 “att”: Linf [.4, 150, 65] ms, attack

6 “rel”: Logf [5, 1200, 65] ms release

7 “afast”: int [6, 1] auto fast

8 “alog”: 1int [0, 1] anti log

9 “glon”: 1int [@, 1] gr Llimit on

10 “glim”: Llinf [-21, o, 43] gr limit
©Patrick-Gilles Maillot 166 WING remote protocols —V 3.0.6-4

Amplifier76 Limiting Amplifier
0 “mdlL”: 76LA
1 “mix”: Linf [6, 1ee, 101] %, mix
2 “gain”: linf [-6, 12, 37] dB, gain
3 “in”: Linf [-48, @, 97] dB, input
4 “out”: linf [-48, @, 97] dB
5 “gtt”: Llinf [1, 7, 61] attack
6 “rel”: Linf [1, 7, 61] release
7 “ratio”: str [4, 8, 12, 20, ALL] ratio

i 1
RELEASE

‘% * | Leveling Amplifier 2A
: 0 “mdl”: LA
- ¥ 1 “mix”: Linf [0, 100, 101] %, mix
a9 2 “gain”: Llinf [-6, 12, 37] dB, gain
S okt 3 “ingain”:linf [0, 106, 101] gain
. s 4 “peak”: Llinf [0, 100, 101] peak
5 “mode”: str [comp, Lim] mode
E545 - o | PSE/LA Combo
~ Source Extractor ACTIVE MODEL 2A
‘ o “mdl”: CMB
© 1 “thr”: Linf [-36, 12, 97] dB, threshold
22 2 “depth”: linf [0, 20, 41] dB, depth
22) 3 “fast”: int [0, 1] fast
: 4 “peak”: 1int [0, 1] peak
5 “ingain”:linf [0, 106, 101] gain
6 “peak”: Linf [0, 100, 101] peak
7 “mode”: str [comp, Lim] mode

Fairkid Model 670

“mdL”: F670

“mix”: Linf [6, 1ee, 101] %, mix
“gain”: Llinf [-6, 12, 37] dB, gain
“in”: Linf [-206, @, 81] dB, input
“thr”: Linf [0, 10, 41] thr
“time”: 1int [1..6] time

“bias”: Llinf [0, 1, 101] bias

THRESHOLD TIME CONSTANT

AUV ANWNROD

No Stressor

S 0 “mdL”: NSTR

1 “mix”: Linf [0, 1o, 101] %, mix
o - . j _ 2 “gain”: Llinf [-6, 12, 37] dB, gain
| # o o e el 3 “in”: Linf [0, 10, 101] input

4 “ou”: Linf [0, 10, 101] output

5 “att”: Linf [0, 10, 101] attack

6 “rel”: Linf [0, 10, 101] release

7 “ratio”: str [1.5:1, 2:1, 3:1, 4:1, 6:1,

10:1, 20:1, NUKE] ratio

PIA 2250

: “mdl”: 2250

@ -3 “mix”: Llinf [0, 106, 101] %, mix

“gain”: Llinf [-6, 12, 37] dB, gain

“thr”: Linf [0, 10, 101] threshold
“ratio”: linf [0, 10, 101] output
“att”: str [FAST, MED, SLOW] attack
“rel”: Logf [50, 3000, 130] ms, release
“Rnee”: str [HARD, SOFT] knee
“Type”: str [OLD, NEW] type

RELEASE

OONAOAUANWNRO

LTA100 Leveler

“mdL”: L1o0

“mix”: Linf [0, 1o, 101] %, mix
“gain”: Llinf [-6, 12, 37] dB, gain
“ingain”:linf [6, 10, 101] gain

“gr”: Linf [@, 16, 161] gain reduction
“att”: str [FAST, MED, SLOW] attack
“rel”: str [FAST, MED, SLOW] release

AUV ANWNROD

©Patrick-Gilles Maillot 167 WING remote protocols —V 3.0.6-4

Wave Designer

0 “mdlL”: WAVE

1 “mix”: Linf [6, 1ee, 101] %, mix

2 “gain”: Llinf [-6, 12, 37] dB, gain

3 “att”: Linf [-15, 15, 61] dB, attack
4

5

& KITACK SUSTAiy

“sust”: Llinf [-24, 24, 97] dB, sustain
“g”: Linf [-16, 9, 55] dB, gain

o Auto Rider Dynamics
0 “mdlL”: RIDE

RANOE 1 “mix”: Linf [0, 1e0, 101] %, mix
2 “gain”: Llinf [-6, 12, 37] dB, gain

- : 3 “thr”: Linf [-54, 18, 73] dB, thr
AUTO RIDER 4 “tgt”: Llinf [-48, @, 97] dB, target
5 “spd”: int [1..50] speed
6 “ratio”: flt [2.0, 4.0, 8.0,
20.0, 100.0] ratio

7 “hld”: logf [.1, 10, 65] s, hold
8 “range”: linf [1, 15, 29] dB, range

©Patrick-Gilles Maillot 168 WING remote protocols —V 3.0.6-4

Appendix: Routing

Routing is a key aspect in digital consoles and can be ... intimidating, especially with desks such as WING, with
a multitude of physical sources and destination, tap points, and total flexibility of signal path arrangements for
mixing and routing. “In the world of digital consoles with a multitude of inputs, outputs, and complex mixing
capabilities, routing is the fundamental process that determines how audio signals flow throughout the
system. It's akin to a sophisticated traffic control center, ensuring each sound reaches its intended destination
with the desired processing applied. Routing in digital consoles is the foundation for achieving a high-quality,
well-controlled sound. By mastering this skill, you can unlock the full potential of your console and create
professional-sounding mixes with unparalleled flexibility”*°*.

The following chapters along with existing videos on routing you can find on the web will help you with your
first steps in routing your signals in the WING console.

WING routing is always done from a WING perspective:

e Forinput routing, input SOURCES are the physical connections to WING, while destinations are either
WING CHANNELS or OUTPUTS (i.e. physical outputs);

e For output routing, signal SOURCES are any of the possible tap points in WING to send out a digital
audio signal, including INPUT SOURCES, BUS, MAIN, MATRIX, USER SIGNAL, MONITOR, and FX SENDS, while
destinations are the physical outputs available from the desk or additional devices that are connected
to it.

Benefits of Effective Routing:
e Clean Mixes: Proper routing avoids unwanted signal bleed and ensures each element sits clearly
within the mix.
e Efficient Workflow: By creating custom routing setups, you can save time during live performances or
studio sessions.
e Creative Possibilities: Advanced routing unlocks creative options like sending specific instruments to
dedicated effects mixes, or managing both FOH and Monitoring from the same desk.

Understanding Routing Interfaces:

Digital consoles such as WING offer visual interfaces for routing, with screens depicting virtual "patches"
connecting inputs, outputs, and internal processing modules. For WING, the interfaces are the main
touchscreen using the ROUTING dedicated button, or software applications such as WING-Edit!®? or Mixing
Stationte3,

101Soyrce: Gemini Al
102 See: https://www.behringer.com/series.html?category=R-BEHRINGER-WINGSERIES, under the Software section
103 See: https://mixingstation.app/

©Patrick-Gilles Maillot 169 WING remote protocols —V 3.0.6-4

Input Routing

WING has numerous possibilities when it comes to connecting sources and channels (so called “routing”),
effectively enabling audio to ‘flow’ from its source to the WING audio engine for processing and mixing within
the desk.

There is a very large choice of no less than 376 input sources that can be found under the ROUTING-SOURCES
screen, the SOURCE GROUP selection includes:

e LOCAL IN (8local XLR inputs on the full-size desk)

e AUX IN (8local 6.3mm inputs on the full-size desk)

e AES/EBU IN (2 AES/EBU inputs)

e OSCILLATOR (2 internal oscillator sources with various signal options and settings)

e AES50-A, B and C (each with 48 inputs)

e ST CONNECT (StageConnect™, configurable 32 IN or OUT at line level on a standard XLR/DMX cable)
e USB AUDIO (48 inputs from a USB-2.0 port)

e WLIVE PLAY (2x 32 inputsfrom one or two SD cards)

e DANTE®* (64 inputs from either a card or internal module, or 128 inputs if both are installed)

e USB PLAYER (4 inputs from the USB stick input)

e USER SIGNAL (48 configurable user data path or patches overlapping/referencing sources above)

All Sources above come with their associated SETTINGS (Mono/Stereo/MS, Gain, Polarity, Mute, Phantom, ...), ICON,
COLOR, and TAGS.

The process of “source routing” or “input routing” is the action of associating a SOURCE to one of the WING 48
(input/aux) channels (or Channel Strips) for mixing their audio within the desk. This is accomplished by
pressing the ROUTING button on the left of the WING Screen, and selecting the CHANNELS tab on the screen,
opening the following screen:

16:55:58

COPY CUSTOMIZATION

SOURCE GROUP
€ B

LOCAL IN

There are two routing options: MAIN and ALT. Both serve the same purpose and can be selected within
Channel Strips; There are therefore two routing tables available at the desk.

WING routing tables are write-protected (to avoid major issues during live performances) unless the unlocked
padlock [@] is selected. With the padlock being green, a Channel Strip can be selected in the left side of the
screen and a SOURCE entry can be selected from the Sources available on the right side of the screen.

104 This could be another option

©Patrick-Gilles Maillot 170 WING remote protocols —V 3.0.6-4

Different groups of SOURCES blocks are available from the SOURCE GROUP pull down menu (see below):

17:13:36

+]

UKIN AESEBUIN
STCONNECT
USBPLAYER

MATRIX

SOURCES include actual HW sources and logical audio paths such as BUS, MAIN, MATRIX and USER SIGNAL, which

are either the result of partially mixed audio or a specific/customized selection of Source in the case of USER
SIGNAL.

After a console init as shown above, LOCAL IN 1..8 mono sources will already be routed to Channels 1..8, USB
AUDIO 1&2 will be combined as a stereo source routed to Aux 1, and Aux 2 will receive USB PLAYER 1&2 as a
stereo source. This constitutes the default MAIN routing table. The ALT routing table is empty.

For example, routing WLIVE PLAY sources 1..16 to Channels 9..24 can be done by a click on the +1AUTO
button, selecting the first Channel to modify routing for (9), selecting WLIVE PLAY in the SOURCE GROUP
pull-down menu and sequentially clicking on the 16 first entries of WLIVE PLAY, resulting in the following
screen (and MAIN routing table).

Additional, similar, or different choices for routing could be done for the ALT routing table, offering an
alternate set of SOURCES to mix from at the mixing desk. Note that the MAIN/ALT selection at the Channel Strip
level is accomplished by selecting either the MAIN or the ALT source for that Channel, i.e. moving from one to
the other will possibly select a different source to mix, losing the previous one.

ala) 17:37:23
+1 SOURCE GROUP
A | winepLay ¥ &

©Patrick-Gilles Maillot 171 WING remote protocols —V 3.0.6-4

At that point, Channel Strips 9 to 24 can be used to mix the audio data issuing from the first 16 tracks of SD
card 11%. Channel Strip 1 to 8 can be used to mix the audio data coming from local inputs 1 to 8 at the back of
the console, and Aux strips 1 and 2 can be used to mix the audio signals from USB 1 & 2 and the 2 tracks from
the USB stick player.

What if the 16 WLIVE PLAY tracks above were representing 8 distinct stereo channels?

WLIVE PLAY sources must be declared as stereo pairs; This is done by returning to the SOURCES tab and
selecting the WLIVE PLAY source group, showing all 64 possible entries. Selecting entry 1 and clicking on STEREO
in the SETTINGS will automatically ‘join” entries 1 and 2 as a stereo pair named CRD1/L and CRD2/R, the same
action can then be done for entries 3, 5, 7, 9, 11, 13, and 15, resulting in 8 pairs of stereo sources that can
be routed to 8 different channels as described earlier. The pictures below show the screens resulting from the
actions we just described.

18:08:09

SOURCE GROUP | £ SETTINGS

D ‘o INITIALIZE ‘

WLIVE PLAY

?1:52 16

t==J WLIVE PLAY

QO mono

O|O misie

ala 18:09:07

SOURCE GROUP
wiveptay ~ @

As a result from the operations above, Channel Strips 9 to 16 can now be used to mix the audio data issued
from the first 16 tracks of SD card 1. Channel Strip 1 to 8 can still be used to mix the audio data coming from
local inputs 1 to 8 at the back of the console, and Aux strips 1 and 2 can still be used to mix the audio signals
from USB 1 & 2 and the 2 tracks from the USB stick player.

105 Note that SD card 1 maps to entries 1..32, and SD card 2 maps to entries 33..64 in the WLIVE PLAY or REC screens

©Patrick-Gilles Maillot 172 WING remote protocols —V 3.0.6-4

Output Routing

Output routing works in a similar way to Input routing. This time though, the oUTPUTS tab is selected in the
ROUTING screen, revealing OUTPUT GROUPS from a pull-down menu, and representing the physical outputs
where audio signals from the console can be routed to, using digital audio sources selected from the SOURCE
GROUPS pull-down menu and entries.

The selection of output physical connections is as numerous as for inputs and characterizes the console
versatility and extended capabilities with 374 physical outputs that can be found under the ROUTING-OUTPUT
screen; The OUTPUT GROUP selection includes:

e LOCAL OUT (8 local XLR outputs on the full-size desk)

e AUX OUT (8 local 6.3mm outputs on the full-size desk)

° AES/EBU OUT (2 AES/EBU outputs)

e AES50-A, B and C (each with 48 outputs)

e ST CONNECT (StageConnect™, configurable 32 IN or OUT at line level on a standard XLR/DMX cable)
e USB AUDIO (48 outputsfrom a USB-2.0 port)

e WLIVE REC (2x 32 outputsto one or two SD cards)

e DANTE® (64 outputs from either a card or internal module, or 128 outputs if both are installed)

e RECORDER (4 outputs to the USB stick input)

As for source assignments, the console comes with a default output routing right after being initialized. This is
shown below with LOCAL OUT 1..8 receiving BUS 1L to BUS 6L, MAIN 1L and MAIN 1R, respectively. Note also
that AUX OUT 7&8 are receiving MONITOR A&B by default.

09:04:39

OUTPUT GROUP | (m SOURCE GROUP

LOCAL OUT BUS

Changing the output routing is made from the ROUTING-OUTPUTS screen, with first clicking on the oUTPUT GROUP
of interest to select the first physical destination you want to assign a WING signal to.

Say we would like to record the first 8 (all stereo) channels of our show as a new session onto SD card 2,
along with the resulting show mix on the USB stick of the front panel as a 2-track mix coming from MAIN1;
The operations one would perform are as follows:

After selecting the WLIVE REC group of physical output on the left side of the screen and clicking on any entry
in that panel, we need to select where routed signals will be coming from. That selection is possible from the
SOURCE GROUP pull-down menu on the right side of the screen that offers a list of all possible ‘tap points’ for
getting digital signals from the desk to physical outputs. In our example, we would select the audio signal
sources that feed our Channel Strips 1 to 8. Let’s further assume our 8 Channel Strips are taking their inputs
from WLIVE PLAY as described above. SD card 2 maps its 32 entries from 33 to 64 in the WLIVE PLAY or REC

106 Could be another option

©Patrick-Gilles Maillot 173 WING remote protocols —V 3.0.6-4

panels. As we did for input routing, we first select the unlocked padlock [@], click on the first entry for SD card
2 (cRD 33) in the WLIVE REC panel on the left side of the screen, click on the +1AUTO button for ease of
selection and choose our audio signals to route to our outputs by clicking on the 16 entries in the WLIVE PLAY
panel on the right side of the screen, starting at entry CRD1, resulting in the following routing table:

ala; 09:06:31

OUTPUT GROUP SOURCE GROUP
WLIVEREC ¥ E==] WLIVE PLAY ®

NONE

The audio data used for our mix will be recorded to SD card 2, from SD card 1 (only when engaging record on
SD card 2 and play on SD card 1, of course).

We also need to set the output routing for recording our live mix; In the ROUTINGsOUTPUTS screen, with
clicking on the oUTPUT GROUP on the left side of the screen, we select RECORDER and click on the first entry, 1.
With the unlocked padlock [@] selected and the +1AUTO button engaged, we select MAIN in the SOURCE GROUP
on the right side of the screen, and then click on the 1L and 1R entries in the displayed table. This completes
our output routing with the following screen:

: 09:07:20

OUTPUT GROUP +1 S~ SOURCE GROUP
RECORDER ~ < MAIN - ®

We can now select the USB recorder and start a 2-channel recording on USB stick, then select the SD card
screen, start recording on card 2, select our 8 stereo tracks session and hit play on card 1 and mix our session,
simultaneously getting a digital copy of our dry data from SD1 to SD2 and a live mix result as a stereo wav file
in the USB stick.

©Patrick-Gilles Maillot 174 WING remote protocols —V 3.0.6-4

Advanced Routing Options

All routing scenarios presented above have a restriction when it comes to stereo pairs. The HW limitations of
the desk impose stereo pairs to always be in the form [odd-even] SOURCE numbers; i.e. you cannot route a
stereo signal to a single channel strip if your two mono sources are connected to say LOCAL IN 2 and LOCAL IN
3, or if they are connected to WLIVE PLAY 1and WLIVE PLAY 33.

This is where USER SIGNALS come into play, leveraging the internal WING FPGA routing chip flexibility to
remove some of this restriction. A USER SIGNAL is a virtual channel, and proposes two variants: USER SIGNAL
and USER PATCHES which we’'ll detail below:

USER SIGNAL

A USER SIGNAL can only accept INPUT, AUX or BUS, MAIN or MATRIX channels as source. Setting or assigning
sources to USER SIGNAL is done with selecting the ROUTING->SOURCES screen and choosing one of the 24 USER
SIGNAL entries in the SOURCE GROUP pull-down menu on the left side of the screen.

Clicking on an entry will display the SOURCE characteristics on the right side of the screen, with SOURCE
SETTINGS, ICON, COLOR, POLARITY, and MUTE, and a +ASSIGN button that is used for selecting which channel, tap
point (TAP or POST) and whether using stereo, mono, or M/S data as signal(s) for the selected USER SIGNAL
entry. If the selected USER SIGNAL entry is stereo, it is possible to choose two totally disjoint sources for each
of the L and R paths of the selected USER SIGNAL, such as for example channel 1 and channel 5 that would be
routed with WLIVE PLAY 1 and WLIVE PLAY 33 to take our example above, creating a stereo pair that can now
be assigned/routed to a single Channel strip thanks to USER SIGNALS. The screenshots below show routing
displays for such a case, with channels strips 1 and 5 routed to sources WLIVE PLAY 1 & 33, and channel strip
9 routed to stereo USER SIGNAL 1 that routes channels 1 and 5 as a single stereo pair to itself.

ala] 17:21:49

RCEGROUP | & SETTINGS OURCE GROUP & SETTINGS
USER SIGNAL RENAVE s

O iNmauzE

USER SIGNAL

oA
(1

@ @

O mono

OlO miossioe

©Patrick-Gilles Maillot

O wmauz

USER SIGNAL

Q oo

OlO Mossioe

WING remote protocols —V 3.0.6-4

12:15:01

CHANNEL INPUT

:-<® SOURCE GROUP ® COPY CUSTOMIZATION
= v
- USER SIGNAL

NONE

20

First track from First track from
= SDr1 session . SD-2 session

USER PATCHES

That same USER SIGNAL 1 can also be used as a SOURCE for an OUTPUT, such as for example to record into a
DAW on a PC using a USB connection, as a single stereo pair into USB 18&2.

To achieve this, we would click on the first entry of USB AUDIO in the OUTPUT GROUP on the left side of the
ROUTING-OUTPUTS screen. With the unlocked padlock [@)] selected and the +1AuUTo button engaged, we select
USER SIGNAL as a SOURCE GROUP on the right side of the screen and click on the USER 1L and USER 2R entries in
the displayed table. This completes our output routing with the following screen:

ala 12:16:48

OUTPUT GROUP 1-<® SOURCE GROUP
USBAUDIO ¥ g ®

@-! USER SIGNAL NONE
~[l

USER PATCHES

We can then hit play on WLIVE sessions on both SD card 1 and 2, and will get our signals available as a single
stereo pair for recording a 2-track session over USB cable to a connected PC.

©Patrick-Gilles Maillot 176 WING remote protocols —V 3.0.6-4

USER PATCH

A USER PATCH can be used the same way as a USER SIGNAL but unlike USER SIGNAL, the audio physical SOURCE
will directly connect to a USER PATCH, thus bypassing the need for using an intermediate channel strip or set of
channel strips.

Setting or assigning sources to USER PATCH is done with selecting the ROUTING->SOURCES screen and choosing
USER SIGNAL in the SOURCE GROUP pull-down menu on the left side of the screen and selecting one of the 32
USER PATCH entries in the list. As for USER SIGNAL, clicking on a USER PATCH entry will display the SOURCE
characteristics on the right side of the screen, with SOURCE SETTINGS, ICON, COLOR, POLARITY, and MUTE, and a
+ASSIGN button that is used for selecting which physical SOURCE will be used. A USER PATCH can accept any of
LOCAL IN, AUX IN, AES50 A/B/C, ST CONNECT, USB AUDIO, Add-on Card, Internal Module, USB PLAYER or AES/EBU
IN signal as its routed SOURCE.

If the selected USER PATCH entry is stereo, it is possible to choose two totally disjoint sources for each of the L
and R paths of the selected USER PATCH, such as routing for example WLIVE PLAY 1 and WLIVE PLAY 33 to USER
PATCH stereo entry 26L/26R to use once more our example above, creating a stereo pair that can now be
assigned/routed to a single Channel strip.

The screenshots below show routing displays for such a case, with sources WLIVE PLAY 1 & 33 (our installed
Add-on Card) routed to USER SIGNAL 25L/26R, itself routed as a single stereo pair into channel 9.

ala) 17:34:08 £ m oa 17:34:32

SER SIGNAL e 55 UstR sioNAL -

O mmauze O INmauzE

O|O miosioe OlO mossioe

ala; 14:37:38

;-<® SOURCE GROUP ‘ COPY CUSTOM

CHANNEL INPUT

&1 USERSIGNAL ¥ @[

USER PATCHES

©Patrick-Gilles Maillot 177 WING remote protocols —V 3.0.6-4

USER PATCH has the advantage of routing simplicity over USER SIGNAL. On the other hand, USER SIGNAL offers
more signal processing or mixing capabilities over USER PATCH, to the expense of using intermediate Channels.

©Patrick-Gilles Maillot 178 WING remote protocols —V 3.0.6-4

Appendix: Shows, Scenes (Snaps, Snippets, Presets & Audio Clips)

The WING desk has a high level of functionality to manage saving and restoring Shows, Snaps, Snippets and
Presets, Or Scenes.

Shows

A key feature in digital consoles is their ability to save and restore state (in different forms) to easily change
from one set to another, or save work for later use. This helps maximize the use of the desk in situations
where several bands share the same console, or in recording studios where saving console state is a must
have for effectively managing recordings and customer data.

For WING, a Show is typically a collection of up to 1000 Scenes. Show files contain references to Scene entities,
and not a copy of the actual data.

Shows can be managed directly from the WING screen via the LIBRARY button or using MIDI commands (see
below). One can create a Show, open, or delete it. There can be only a single active Show at any time.

Snaps, Snippets, FX or Channel Presets or Audio Clips can be added to the current Show, they can also be
re-organized using the options provided in the LIBRARY section. When added to a show file, they are
referenced as Scenes.

Users can ‘navigate’ up and down [i.e. loading Scenes] in the current Show using the Show Control buttons
dedicated to that effect [60, NEXT, PREV, GONEXT*?”, GOPREV'®®], 0SC or MIDI commands, or wapi calls. Some of
the show items can also be marked as ‘skip’ for a quick avoiding loading them during navigation. Show items
can also be marked with a ‘1ink’ tag to enable simultaneous loading of multiple items during navigation.
Please refer to the Behringer documents on how to use Shows®
RESTORE button can be used to return to previous console state.

. When loading a Scene by mistake, the

Scenes

A Scene can represent anything used in a Show. It can refer to a Snap, a Snippet, a Channel or FX Preset Or an
Audio Clip, or a combination thereof. Each single entry in a Show file is a separate Scene that can be loaded
using the LIBRARY navigation options.

Scene names can be built in two parts, separated with a ‘~’ character (like in “SnapName~Explanation” and be
displayed on two lines, with the part left of the ‘~’ char being in large font letters and the part right of the ‘~’
char displayed as a second line in smaller characters. This can be handy for adding explanation or use for the
Scene element to name (see below).

Snapname

107 GONEXT means Go to Next item, i.e. the next item is first pointed to and a GO command is then executed.
108 GOPREV means Go to Previous item, i.e. the previous item is first pointed to and a GO command is then executed
109 Available at: https://mediadl.musictribe.com/download/software/behringer/WING/WING_Firmware_1.13_GUI-Description.pdf

©Patrick-Gilles Maillot 179 WING remote protocols —V 3.0.6-4

Snaps (& Scopes)

A snap file contains the full set of WING parameters, optionally associated with Scopes that list the set of
parameters of interest at the time the Snap was created, thus limiting the effect of loading a Snap file to a
subset of parameters selected with the Scope.

Scopes can be changed at load time if needed. They can also be modified as needed and saved. Scopes will
apply at the time the snap file is loaded.

snap files are very important in for WING users as they are the simplest way to save their work (i.e. the full
state of the console) under a single file.

There may be differences though if saving a snap file on a WING and then loading it on a different type of
WING (Standard vs. Compact vs. Rack); Main differences are with the use of USER Layers and cc definitions
where there are obvious differences between the 3 WING console types. One has to assume USER layers and
CC definitions are save for a particular type of WING and will not show up on a different one;

Note that they will be ignored, not erased or overwritten; So for example, a snap file saved with Standard
WING layers can be loaded onto a WING Rack where new Layers definitions can be added and saved again as
a new Snap file which then will be valid on both types of consoles.

Snippets
A snippet file allows recording of any WING parameter changes as well as manually adding/removing of
parameters using the LIBRARY buttons ADD ITEMS and REMOVE ITEMS.

e REC Focus defines which parameters are observed during REC active.

e LOAD FocUs allows loading a parameter set from any existing snippet.

e When a snippet is saved or updated, the current values of all parameters (in FOCUS) are written to the
file and cannot be changed once recorded to INT or USB file.

Presets
A preset file allows recording of WING parameters specifically targeting FX or Channel attributes.

e FXand CHANNEL Presets

o Presets contain target Fx slot(s) and target channel/scope information; When used within a
Show, the Preset data is instantiated within the Show as a Scene, and the same Preset can be
used to load different FX engines / channels (with different scope). After adding a Preset to a
Show, just change settings and click UPDATE SCENE (don't forget to save the show).

o Ifyou set the target FX slot of a Channel Preset (one of the inserts) to NONE, the insert is
switched off when loading the Preset.

o Premium effects can only be loaded into FX engines 1-8.

e CHANNEL Presets
o Gain and Phantom power status which are part of the source associated to the channel used to
create the preset are saved with the Presets, but are not loaded by default when applying
the preset to another channel; You will have to enable/select the “conn” setting box (see red
arrow below) to ensure Gain and Phantom power are restored; This will also affect the source
to the destination channel.

©Patrick-Gilles Maillot 180 WING remote protocols —V 3.0.6-4

’ T, Loan

=
[=]
CWIG CUST MAIN, | NU ALL
At @| T
FILTER | DELAY BATE PAN FDR

o If you set the target Fx slot of a Channel Preset (one of the inserts) to NONE, the insert is
switched off when loading the Preset.

o Presets can contain insert effect data; Care must be taken when loading them, as effect
engines might be used in other Channels.

o Channel/Aux/Bus/Main/Matrix Presets can only be loaded into corresponding Channel of
course.

o Bus Presets contain Channel feeds into the bus (FEED scope).

e Old ROUTING Presets can be loaded as Snapshots (scope is set accordingly). For new routing Presets,
just use Snapshots and use Scope to limit loading to routing parameters only.

Audio Clips

WING show control enables using Audio Clips as Scene entities. One can therefore include a reference to a
.wav file from a USB stick or stored in WING’s internal file system as a Scene that can be part of a Show file.
Library navigation functions can be used to launch (load) Audio Clips that are part of a Show as they do for any
other Scene entity.

Controlling Scenes and Shows via CC buttons

When part of a Show, Scenes can be loaded using cC buttons, rather than using the console Show control
commands [GO, NEXT, PREV, GONEXT, GOPREV]. To achieve this, one must first assign a tag to Scene elements that
will be controlled using a cC button, using the EDIT TAG button under the SHOW screen, and assign a tag
beginning with “#” and followed with a number. When going to the cc controls, navigating to function SCENE
RECALL, it is possible to select a SCENE TAG corresponding to the tag assigned to the Scene to load.

Be aware loading a Scene can overwrite CC buttons, and therefore you must protect them from being
overwritten, either by unselecting cC in the Scene Scope (if applicable) or with using Global Safes to ensure
the cc area is left untouched when loading Show items.

Also, jJumping to a Scene using a cc will affect the order of your items a Show currently points to as you will
effectively ‘jump’ to that Scene in the Show. |.e. if you for example have Scenes 1, 2, 3 and 4 in a Show and are
currently at Scene 1, using the Go button to move from Scene to Scene. Using a cC to load Scene 3 will have the
same effect as skipping Scene 2 and directly go to Scene 3, and your current Show element will be Scene 3
with a G0 command moving to Scene 4.

©Patrick-Gilles Maillot 181 WING remote protocols —V 3.0.6-4

Controlling Scenes and Shows via MIDI

As mentioned in the MIDI chapter earlier in this document, Scenes and Show control can be managed using
MIDI commands sent to MIDI channels 7, 8 and 9 as below:

MIDI Scene Change (on MIDI Ch 7):
CH7 CCO (bank MSB), CH7 PC 1..128 > Scene B60000..B60008, C600..C67F
number 1..128 on bank MSB 0, number
129..256 on bank MSB 1, etc.

MIDI Show Control (on MIDI Ch 8 & Ch 9):
CH8 CCO (bank MSB), CH8 PC 1..128 > Scene B70000..B7007F, C700..C77F
tag #1..#128 on bank MSB 0, tag #129..#256 on
bank MSB 1, etc.

CH9 PC 1> Scene GO €800
CH9 PC 2-> Scene PREV €801
CH9 PC 3-> Scene NEXT €802
CH9 PC 4-> Scene GO PREV C803
CH9 PC 5 Scene GO NEXT C804

LIBRARY items/scenes can be recalled by their number with MIDI Patch Change commands (including Bank MsSB
when > 128) on MIDI Ch7 with SETUP-MIDI REMOTE CONTROL-SCENE CHANGE enabled. As a result, one can
address 128 Scenes by their number using Patch Change on MIDI ch7, and all 1000 Scene numbers above 129
via Bank/Patch Change on MIDI Ch7.

The use of ch7 Bank MSB (to select scene numbers > 128) is only valid when more than 128
scenes are present/included in an active show. When less than 128 scenes are present, any
combination/value of ch7 Bank MSB will revert to selecting scene numbers 1..128.

Therefore, and unless using a pure sequential recall of scenes with GONEXT/GOPREV in a Show, scene tags can
provide a better option for ensuring the right scene/item is selected/recalled.

ltem Tags
Scenes can be ‘tagged’, providing alternative MIDI or CC button recall options. Tags work as follows:

e Atagcan be added to any Library item (Scene, Snip, Clip, Presets or Audio Clip) from the
LIBRARY-SWOW screen.

e LIBRARY items/scenes can be recalled by their tag #1 .. #128 [to match with MIDI data e..ex7f] with
MIDI patch change commands on MIDI Ch8 with SETUP-MIDI REMOTE CONTROL-SHOW CONTROL enabled,
or with custom control buttons [using the SCENE RECALL setting for said buttons]. You can recall tags
#1..#16384 using the combination BankChange[MSB only],PatchChange; For example, B70000C702 is
targeting scene tag #3, B70001C700 is targeting scene tag #129, etc.

e Scene tags are not necessarily in the same order scene numbers and offer an alternate and more
secure method for recalling library items.

e Asame tag can be assigned to several Library items; In that case, WING doesn’t check for
exclusiveness of tags and the first one found in the list of Library items wins.

©Patrick-Gilles Maillot 182 WING remote protocols —V 3.0.6-4

Arbitrary MIDI data

Additionally, you can add/send arbitrary MIDI data with each Scene recall (use hexadecimal notation,
separator is optional, i.e. cee2 or Be,01,7F). This arbitrary MIDI data can be saved with an empty Snippet,
enabling a very flexible control of external MIDI devices directly from the console. This is achieved with using
the SEND MIDI button under the LIBRARY~SHOW screen, and enter arbitrary MIDI data in the EDIT MIDI TEXT
STRING window that opens on the console screen.

©Patrick-Gilles Maillot 183 WING remote protocols —V 3.0.6-4

Appendix: Scopes and Safes

Scopes are specific indicators that are used to focus (or restrict) an operation on certain parameter sets of the
console when dealing with Scenes or at INITIALIZE CONSOLE time.

Safes are specific indicators that are used to prevent the modification of selected parameter sets of the
console when dealing with Scenes

Library Scopes!1®

When editing scopes during a Library action, a list of icons displays on the screen as shown below:

CHANNEL SOURCE

— = CANCEL
©)

CONFIGURATION

OUTPUT

MUTEGROUP

MAIN

EERTE

MATRIX ,
&, UPDATE

()

Most of them are explicit, but some (listed below) regroup several items or parameters under a single icon
that can be selected or un-selected depending on the scope edit or recall operation the user wants to
perform. The paragraphs below list the different parameters that are covered by these icons.

CONTENTS Scopes (orange Icons)

CUST: Icon / Name / Color / Light on, off

TAGS: Custom Tags / DCA, Mute, Talk Tags

CONN: Source A, B / Main, Alt Status / Input Select Status
(No source Mute or Mono-Stereo-MS)

IN: Trim / Balance / Phase flip

FILTER: LPF / HPF / TILT (Max, AP90, AP180) with all settings

DELAY: On, Off Status / Delay Time

GATE: All settings of the gate (Type / Settings / Side chain ...)

DYN: All settings of the dynamic (Type / Settings / Sidechain ...)

PRE: Assignment of the FX Plugin (without FX settings)

POST: Assignment of the FX Plugin (without settings), Automix Settings (X, Y, Amount)

EQ: All settings of the EQ (including type of EQ bands), TAP EQ Settings in Bus Sends

PAN: Pan and Width Settings

MAINI[1..4]: Levels/ On, Off Settings / Pre, Post Settings

SEND[Bus 1..16, Mtx 1..8]: Levels / Pan Settings / All status (On, Off / Mode Link / Send Pan / Send Mute /
Mode)

FDR: Fader Levels

110 Many thanks to Andy Lauer for providing these details.

©Patrick-Gilles Maillot 184 WING remote protocols —V 3.0.6-4

MUTE: Channel Mutes (no Source Mute)
CONFIG: Process Order / Tap Point / Solo Bus Status

CONFIGURATION Scopes (blue icons)

CONFIG CONFIGURATION

Monitor Page - Monitor Control: Mute Status, Output Status

Monitor Page - Talkback: — Talk Channel Assign, All Talkback Preferences

Monitor Page — Monitor A and B: All settings and Align options (Delay / EQ / Invert)

Setup — Audio: Main Link, DCA Mutegroups, Startup Main Mute, Automix X - Y
(enable status), Solo Mode, Channel Solo, Bus Solo, Main Solo, Matrix Solo,
Source Solo

Setup — Surface: Main Meter Dropdown, Main Meter Tap, Show Source On Scribble

SD Card: All settings except “Link Status”

RTA: Range, Decay, Detector, Autogain on/off, Fixed gain value

SFC

Setup — Audio: Mutegroup/SIP Override, Exclusive Solo, Solo Follows Select, Select Follows Solo, BUS/MAIN
SoF Activates Solo

Setup — Surface: All The “Lights” settings, Full Fader Paging, Channel Meters, Bus Meters, Main Meters, Matrix
Meters, DCA Meters, Screen Follows Ch Strip, Ch Autoselect, User Layer Link, Use F1- F3 As Custom
Controls, Right Section Sends On Fader, SOF Button, Show SOF Frame, Alternative SOF Mode, Sel Dbl
Click

PREFS

Setup — General: Show Meter Page When Locked, Use CRSR/WHEEL For Parameters, Touch Fader Select,
Touch Fader Res, Mouse Disables Touch, Mouse Speed value

Setup — Surface: Tap Tempo Flash, Fader Speed

Setup — Remote: Complete Midi Remote Control

Setup — DAW: All DAW Settings

L, C, R, CC, CMPCT, RCK, EXT, VRT
Refer to layers in the console. Some are specific to the Compact and Rack models.
CC refers to the Custom Controls that can be edited in your console.

Not Saved in Snapshots:

Monitor Page — Monitor Control: DIM and MONO Button, TALK A and TALK B Button

Setup — General: Console Name, Time Date, USB Host Speed, Confirm Library Load, Confirm Library Update

Setup — Audio: Audio Clock (Rate and Sync Source dropdowns), “INPUT SELECT” switch status, Startup Main
Mute, Global Input Select Override, USB AUDIO (In/Out dropdown)

Setup-Remote: HA Remote (All settings), Network Settings (dropdown incl. addresses), Remote Lock (OSC /
TCP)

4 Track Recorder: Settings (2/4 Ch — 16/24 Bit)

SD-Card: Link Status

©Patrick-Gilles Maillot 185 WING remote protocols —V 3.0.6-4

Console Init Scopestt!

In the INIT screen, a screen (like the Library Scopes one) will display the following, along with a large INIT
button.

CHANNEL SOURCE

CONFIGURATION

OUTPUT

CONTENTS

MUTEGROUP

MAIN

MATRIX

the following settings/parameters will only be initialized/“recalled” if you initialize the desk with ALL
parameters/settings selected. If anything is taken out of the initialization scope the settings below won’t be
initialized.

Clock rate and (sync) source

Global input select

USB Audio channel configuration

Startup main mute

Global input select override

HA Remote settings

The OSC Setting in Setup -> Remote -> Remote Lock

The DAW control preset.

The following settings will never be initialized/“recalled”.
Console Name
USB Host Speed
Clock
Everything in Setup -> Remote -> Network (IP Adress etc.)
The TCP Setting in Setup -> Remote -> Remote Lock
Talk, Headphone and Monitor level (physical knobs on the surface)
Monitor Mono and Dim (physical buttons on the surface)
Talk A and Talk B on/off (physical buttons on the surface)
Everything in the Library

11 From @sinste on the https://behringer.world forum

©Patrick-Gilles Maillot 186 WING remote protocols —V 3.0.6-4

Global Safes

At the top right of the “LIBRARY” screen, is a sign that can take one of the two following icons/colors:

, depending on the contents of the referring page. This is used for Global Safes.

CHANNEL SOURCE

Global Safes are a series of parameter | c;mumou
indicators that are used to prevent the
modification of the values of the
respective console parameters. They are
listed as a screen of icons as shown on
the right:

OUTPUT

They are grouped under classes such as ——
“CHANNEL”, “AUX”, “BUS”, “MAIN”,
“MATRIX”, “SOURCE”, “ouTPuT”, “DCA”,

VT

“MUTEGROUP”, “FX”, and “CONFIGURATION” i

When clicking on a parameter indicator, it will turn red and change the state/color of the Global Safes logo on
top of the screen, reminding you that at least one Global Safe is engaged.

Each parameter indicator represents all the parameters belonging to a CHANNEL, an AUY, ..., or an FX. Some
indicators will represent a set of configuration parameters, such as CONFIG, SURFACE, ..., CC [Custom Controls].

When selected [RED], they will prevent the update/modification of their respective section when executing a
scene LOAD operation (snap or snip), or one of the GO functions. As a result, Global Safes are a great way to

protect certain sections of your console while running a show and using the Show functions of the console.

Note that the RESTORE (in LIBRARY) and INITIALIZE CONSOLE (in sSETUP) functions do not take Global Safes into
account and will modify/re-initialize them.

©Patrick-Gilles Maillot 187 WING remote protocols —V 3.0.6-4

Appendix: WING Startup Control

During startup, the console will automatically load a Show, Snapshot or Snippet with the following name when
placed in a folder called STARTUP in the root of the internal data partition. This can be bypassed when holding
the LIBRARY button during power up. Files have to start with the letters “STARTUP”, such as

o STARTUP.show, Or STARTUP_myfile.show for ex.
O STARTUP.snap, Of STARTUP_myfile.snap for ex.
O STARTUP.snip, Or STARTUP_myfile.snip for ex.

©Patrick-Gilles Maillot 188 WING remote protocols —V 3.0.6-4

Appendix: MIDI DAW mode for REAPER Control Surface Use

This section is not directly related to programming, but can prove useful when it comes to using WING in a
studio, with REAPER™ as a companion DAW software.

The simplest and most complete way to connect all elements together is to use MIDI over USB, MCU mode.
This will not only provide a link for REAPER’s audio to be sent to WING for audio processing, but will also
enable several MIDI channels that can be called for using WING as a control surface and transport controls for
REAPER.

To achieve this, you will first make sure you have a USB connection between your WING and PC.

You can at any time flip between WING controls and MIDI DAW control using the DAW Remote Control button
circled in red below and situated left of the group of 8 buttons above the Jog Wheel:

wEMOT:
CONTROL

Shown above: the DAW Remote Control button, the Jog wheel, and the 4 directional keys mentioned in the
coming pages.

©Patrick-Gilles Maillot 189 WING remote protocols —V 3.0.6-4

REAPER Audio Setup

You then adjust REAPER ASIO interface (and WING setup) to get ASIO channels for audio. The routing on your
WING must map USB Inputs to your channel strips. Faders for channel strips should be ideally set to edB. Main
strip fader should for the time being be set to -oo.

The figure below shows an example for a 16 in/16 out ASIO setup (Options-Preferences~Audio-»Device).

@ REAPER Preferences T X
Paths A | Audio device settings
Ke.yboard/Muit]touch Alidic ASIO o
Project
Track/Send Defaults
Media ltem Defaults ASIO Driver: | WING-USB ASIO Driver v
Audio
Enable inputs:
MIDI Devices N PRI o
Buffering nest K
Mute/Solo last 16:1n 16 v
Playback
Seeking Output range:
Recording .
_ first 1:Out 1 v
Loop Recording s
Rendering last 16: Out 16 N
Appearance
Media D Request sample rate: 44100 ‘ D Request block size: 256
Peaks/Waveforms -
Fades/Crossfades ASIO Configuration...
Track Control Panels .
Editing Behavior D Pre-zero output buffers, useful on some hardware (higher CPU use)
Envelope Display I:‘ Ignore ASIO reset messages (needed for some buggy drivers)
Automation
Mouse Audio thread ASIO Default / MMCSS Pro Audio / Time Critical v
Mouse Modifiers
MIDI Editor |:| Allow projects to override device sample rate
Madia v
Find Cancel Apply

MIDI

MIDI includes two parts (besides the USB connection mentioned above). The first one is relative to setting
WING as a DAW control surface, the second one relates to transport controls.

REAPER DAW control surface is obtained through the SETUP»Remote screen. In the left part of the screen, you
will choose USB MIDI and MCU+2xExtenders for a full 24 strips DAW control.

WING MIDI setup

See below the corresponding WING setup screen which can be set from the SETUP->REMOTE WING screen. We
show here the setup for using a full 24 WING channel strips for MIDI remote control of REAPER, using the
MCU + 2 distinct extenders over USB MIDI. You can limit the surface to the controller or controller + 1
extender.

©Patrick-Gilles Maillot 190 WING remote protocols —V 3.0.6-4

AUDIO SURFACE REMOTE Mol

DAW CONTROL

DAW ENABLE o [l
CONNECTION LN USB
EMULATION

CONFIGURATION
MCU + 2x EXTENDER

Transport controls proposed here include REW, Fast Forward, Stop/Play/Pause, Scrub, Jog Wheel and more,
directly from the lower section of the WING controls. A simple/classic example of implementation is shown
below and the setup of these functions is performed after pressing the WING controls’ view button and
assigning keys one by one using the WING main LCD screen.

DAW LAYER 2

Once modified, the custom transport button layouts can be saved as WING presets. A simple REAPER Control
Surface preset is available for download at
https://drive.google.com/file/d/1WpAKkxgASSe-X6bl[Rm5-7QDyxriDRuR/view?usp=drive link, resulting in the
following “DAW LAYER 2” Control Section assignments!!?:

112 The 3 other layers, and the rest of the console settings, are left untouched

©Patrick-Gilles Maillot 191 WING remote protocols —V 3.0.6-4

REAPER MIDI setup

REAPER needs a few simple MIDI settings to correctly enable WING acting as DAW control surface.

When USB is connected, 4 WING MIDI devices appear in the REAPER MIDI devices panel, accessible under
Options-~Preferences~Audio~MIDI Devices. The MIDI ID values are managed by REAPER, but can be set as
needed, making sure active/enabled device numbers don’t duplicate from one active MIDI device to another.
This is shown below:

‘5? REAPER Preferences ! X

Key ich ~ | MIDI settings

Project MIDI inputs to make available (selectable as track inputs andior learnable or
;3:"?5"“5::?"5 Device Mode D

it Lallass 3-WING MIDI Control ~ <disabled> 0

Devica 3- WING MIDI Remote 1 <disabled> 5

MID! Devicas 3- WING MIDI Remote 2 <disabled> 6

Buffering 3- WING MIDI Remote 3 <disabled> 7

Mute/Sclo

Playback

Seeking

Recording

Loop Recordin joysti
Rendering # MIDI outputs to make available (selectable as track A oyerch M
Appearance Device Mode D

Media 3- WING MIDI Control <disabled> 0

Peaks/Waveforms 3- WING MIDI Remote 1 <disabled> 1

Fades/Crossfades 3- WING MIDI Remote 2 <disabled> 2

TrackGontrol Fanels. 3. WING MIDI Remote 3 <disabled» 3
Editing Beapiaviar Microsoft GS Waveta... <disabled> 10

Envelope Display

Automation

Mouse

mﬁsgdh‘.‘ﬂ::ﬂﬂels Restrict MIDI hardware output to one thread Reset all MIDI devices
Media o | Resetby: [All-notes-off [] Pitch/sustain Reseton: []Play []Stop/stopped seek
MinI

| Find

S

Apply

In the case of DAW control use, all WING MIDI devices above must remain <disabled> in the REAPER MIDI
Devices panel to be used as a control surface communication MIDI device; REAPER will report errors
otherwise.

Remember we have setup WING as USB/MIDI, MCU+2xExtenders to cover three times 8 faders, so the full set of
channel strips of WING can be used as surface control strips for REAPER.

In the REAPER control Surface panel (Options»Preferences-Conrol/0SC/Web), you will need to add three
separate MCU controllers, the first one is a Mackie Control Universal device. Controllers 2 and 3 are Mackie
Control Extender devices. Each device will connect to a WING MIDI remote device [1, 2, 3] respectively,
ensuring the surface offset parameter is set accordingly to its respective WING group of 8 channel strips.

The 4 figures below show an example of REAPER MIDI setup®.

) Control Surface Settings

Control surface Mackie Control Universal

MIDI input: |3- WING MIDI Remots 1

MIDI output: |3- WING MIDI Remote 1

Surface offset |n

Sizetweak: @ | (leave at 8 unless you know what you're

[Jignore fader moves when fader is not being touched

Map F1-F8 to go to markers
Igndre global bank offsets (always map to tracks specified)

X | |& control Surface Settings x

¥ Control surface

=]

Cancel

[Jignore fader moves when fader is not being touched

k=

Igndre global bank offsets (always map to tracks specified)

Mackie Control Extender ~

MIDI input: |3- WING MIDI Remota 2

MIDI output: |3- WING MIDI Remote 2 v

Surface offset [5

Sizetweak: @ | (leave at 8 unless you know what you're

F1-F& to go to markers

=]

Cancel

Note the “Surface offset” changes as we set MCU, MCE #1 and MCE #2

113 Note that you may have more than one set of WING MIDI remote control, 1, 2, and 3 showing depending on your configuration, or

depending on the system state at last reboot or MIDI drivers enable state.

©Patrick-Gilles Maillot

192

WING remote protocols —V 3.0.6-4

R e

Control surface Mackis Cantrol Extender -

MIDI input: 3- WING MIDI Remote 3 w
MIDI output: |3 WING MIDI Remote 3 ~

Surface ofiset |1s
Size tweak: ¢ ‘ (leave at § unless you know what you're

[Jignore fader moves when fader is not being touched

p F1-F8 to go 1o markers
[Igrfore global bank offssts (always map to tracks specified)

oK Cancel

@ REAPER Preferences
Sesking ~ Control surfaces/OSClweb control
Recording o
;Z:'z:f:; rding Mackie Gontrol (dev 5, 1)
| Mackie Control Extended (de\t 6.2)
PR amrica Mackie Control Extended (dev 7,3)
Media
Peaks\Waveforms
FadesiCrossfedes
Track Control Panels
Editing Bahavior
Envelope Display
Automation
Mouse
Mouse Modifiers
MIDI Editor
Media
MIDI
VideaimportiMisc
Plug-ins
x‘;’mmw Add Ecit Remove {changes will be applied

ReWire/DX = ;
ReaScript Control surface display update [15 | bz (oetaun: 15)

ReaMote [[] warn when erors opening surface MIDI devices

ControliOSChweb| [ciose control surface devices when stopped and not active application

External Editors -

i sl |

D . If the “ignore global bank offsets” flags are not checked in the REAPER MIDI surface control setup

panels above, using the and @ WING buttons will enable you to navigate left and right in the REAPER

tracks if more than 24 REAPER tracks are available.
The current global start index is shown at the top left of the DAW transport scribbles (‘01” circled in red

below)

Rf 4IND
¥ RKER

One last setting in REAPER consists in setting the fader scale to values matching WING -144dB—>10dB faders.
This can be done in the OptionssPreferencessTrack Control Settings panel by setting the min Volume fader
to -144dB, the max to +10dB and selecting a shape type of Default, as presented below:

©Patrick-Gilles Maillot 193 WING remote protocols —V 3.0.6-4

) REAPER Preferences >4

Mute/Soia ~ | Track control panel settings
Playback
Sesking Set track label background 1o custom track colors Tint track panel backgrounds
Recording

/] Align TCP controls when track icons are used
Loop Recording 9

Rendering Track grouping indicators: (@) Ribbons () Lines on edge (J) None

Appearance

Media WU meters

PeaksWaveforms Mster update frequency (Hz) (30 | Meter decay (dBisec: [120 |

Fades/Crossfades . | 1

R P Meter minimum valus (¢8) |-144 | Max valus 0|

E;‘“'g BE";““!' [Show track input when rsc-armed [] Make obvious that track input is clickable
nvelope Display

Aiitonaation [show dB scales on track meters Show dB scales on rec-armed track meters
Mouse [Show MIDI velocity en track VU Show MIDI output activity on track VU
Mouse Modifiers

MIDI Editor [sticky elip indicators [[] Reset meter peak indicators an playiseek.

Media [Track meters display pre-fader levels

MIDI

faders
Plug-ins Volume fader 144 10 +10 ‘ B, shape: [Defaut |
Compatibility

vsT Pan fader unit [100%L .. 100%R

ReWire/DX

ReaScript

ReaMote &
(Control/OSChuah |

[Find Cancel | Apaly

With the settings above, and WING DAW mode setup to USB MIDI, MUC+2xExtenders, you now have a 24
channel strips DAW surface control to manage REAPER tracks (Volume, Solo, Select, Mute)from your WING,
and vice-versa (i.e. changes made on a surface (WING or REAPER) will reflect on the other);

REAPER tracks’ pan control can be achieved using the 4 rotary knobs in the WING control zone, situated just
below the “Custom Controls” silkscreened text.

The uP and DOWN buttons on the left of the control zone can be used to navigate within REAPER strips as they
are mapped to the WING surface strips.

REAPER tracks Rec/arm is possible using the buttons from the lower row of buttons in the WING control zone.
The picture below shows Bass and A_Guit being armed for recording:

Pan indication

Pan control

CUSTOM CONTROLS
Rec/arm

The 4 directional keys located on the left of the Jog wheel will navigate into the REAPER audio window (i.e.
identical to moving the audio window elevators).

The WING Jog wheel will move the REAPER audio cursor left and right (sometimes with a slight lag), and if the
Play and Scrub buttons are simultaneously active, moving the wheel will scrub through audio after a small
timeout not moving the wheel.

©Patrick-Gilles Maillot 194 WING remote protocols —V 3.0.6-4

17.1.00

i T L N
~ T ~ g O NN o
OR =g ~ = uin
P

O A_Guitar %23 %4 @I

om FX ™) P trim

Flip to the WING audio standard controls and move the WING Main fader(s) to get some audio out, remember
all other active USB inputs should be set at edB.

Flipping back to DAW Remote mode and press the Play button. REAPER will start playing audio; the audio signal
will flow to WING using USB/ASIO drivers, and will be managed by the WING audio engines. The faders on
WING (in control surface mode) act as remote controls to REAPER track faders (and vice-versa) using USB
MIDI.

All set!

Important note on USB & MIDI: Changing the clock rate or number of USB Audio channels on WING causes
USB to disconnect for a few seconds (including MIDI). On certain operating systems, this may also reset
already active MIDI connections. This could happen when loading snapshots with different clock rate or USB
Audio configuration.

©Patrick-Gilles Maillot 195 WING remote protocols —V 3.0.6-4

Appendix: WING Icons

The table below gives the list of icons available with WING. Icon number ranges are listed to the right of the
icons.

General:
[0...14]

Vocals and Mics:
[100...114]

Drums and Percussions:
[200...224]

« % (| OO

Strings and Winds:
[300...319]

B A QRfR® 0 A & 0

NS & 4Q

©Patrick-Gilles Maillot 196 WING remote protocols —V 3.0.6-4

Keys;

= [400...409]

& =

psers.
Specials:
[600...614]

9
§ 0O
o

©Patrick-Gilles Maillot 197 WING remote protocols —V 3.0.6-4

Appendix: WING Colors

WING colors are used in several areas such as channel strip color, scribble color, etc. The known colors are

shown below and indexed as values 1 to 12:
7 8 9 10 11 12

gray blue
medium blue
dark blue
turquoise
green
olive green
yellow
orange
red

coral

pink
mauve

O 00 O Ul b WN

o
N -2 O

©Patrick-Gilles Maillot 198 WING remote protocols —V 3.0.6-4

Appendix: WING GPIOs:

Description

The WING digital mixing console is offering 4 GPIOs (General Purpose Input/Output)** which can be very
useful in the studio or live situations. This paragraph shows how to use them in different modes. Let’s look at
what GPIOs can offer.

At the rear of the console, two TRS jack sockets provide connections to 4 GPIOS. Each of the TRS sockets is
depicted below. Lug L3 is common to the 2 GPIOs supported by each socket. Lugs L1 and L2 are respectively
used for GPIO 1 or A, 2 or Bor 3 or C, 4 or D, depending on the socket used.

N0 12/28/4D

O L3 /Common 2 4
1 GPIO numbers -3

L—J \/—O L1/1-A/3-C

WING GPIO ‘mode’ settings can be any of the following: TGLNO, TGLNC, INNO, INNC, OUTNO, OUTNC. These are
represented by OSC patterns /$ctl/gpio/1..4/mode, and correspond to:

TGLNO Toggle, Normally Opened
TGLNC Toggle, Normally Closed
INNO Input, Normally Opened
INNC Input, Normally Closed
OUTNO Output, Normally Opened
OUTNC Output, Normally Closed

WING GPIO ‘state’ values can be O for open/OFF (light off), or 1 for close/0N (light on). These correspond to
OSC patterns /$ctl/gpio/1..4/gpstate.

Electrical connections

e INNO / INNC: The console provides approx. 5V between A/B/C/D and Common. The application of a
short, dropping voltage to OV will change the state of the respective GPIO between open and close,
depending on the NO/NC mode.

e OUTNO / OUTNC: The console provides approx. 5V between A/B/C/D and Common; The voltage
presented by the console goes from near 5V to OV depending on the state (open or close) and the
NO/NC mode of the respective GPIO.

e TGLNO / TGLNC: This is to toggle the internal state of the GPIO. The console provides approx.. 5V
between A/B/C/D and Common; changing the state of the respective GPIO does not change the
voltage provided by the console.

1142 GPIOs for the Compact model.

©Patrick-Gilles Maillot 199 WING remote protocols —V 3.0.6-4

As a general statement, care should be taken when connecting external devices to console. A partial circuit of
GPIO implementation is shown here for reference:

I3 A5

m
(=1
= =
AV
Daz F4
EXT GPIO STAT 3¢ H = > EXT GPIO 3
BAV1O3 0.54 i
o 7.8
O <N §

R.57
EXT_GPIO SW 3[_>

REL

From the schematic above, we can see a 470 Ohm resistor in series with a diode and a 500mA poly-fuse going
to the GPIO port. A max current of approx. 100mA is therefore available for connecting a small relay or an
LED. TVS diode D70 protects against electrostatic discharge (ESD).

Power-on delay

Wing GPIOs can be set to provide a one-time Power-on delay of up to 30s that can be used with OUTNO /
OUTNC modes. This can be quite useful when one needs to power sync external gear with the console.

Note nevertheless GPIOs will always turn oN for a short period of time while powering on and booting up,
before getting to their respective programmed state and a possible delay applies.

GPIO precedence on USER/LAYER CC GPIO function

The programming of GPIO takes precedence on a possible USER CC GPIO setup; If for example you have set
GPIO 1/A to MODE ouT-NC and with a FLAG set to DELAY 10s for example, a further USER/LAYER CC button
programming with FUNCTION set to GPI0 will have no effect. If GPIO 1/A is programmed to MODE ouT-NC and
has a FLAG set to A-TOGGLE or A-PUSH for example, then a further USER/LAYER CC button programming with
FUNCTION set to GP10 will work when pressing the respective button as toggle or push, as programmed for
the USER/LAYER CC button (i.e. GPIO 1/A can be FLAG A-TOGGLE and work as A-PUSH if the USER/LAYER CC
button is set so GPIO 1/A can be FLAG A-PUSH and work as A-TOGGLE if the USER/LAYER CC button is set so).

©Patrick-Gilles Maillot 200 WING remote protocols —V 3.0.6-4

Multiple, simultaneous actions, using GPIOs

Thanks to a clever use of GPIOs, it is possible to manage simultaneous or temporary/fugitive actions on WING
and without the help from external applications!®, by assigning different actions to separate GPIOs, and then
electrically attach said GPIOs to a single switch. When actioning the switch, the multiple GPIOs will become
active or unactive (depending on their individual setting) and will carry on with their attached action on WING.
Using this, it is possible from a single footswitch to load up to 4 separate snippets, or to mute a set of
channels while unmuting others, or any combination that will help you in your mixing routines.

There are drawbacks though, such as the limit to the number of simultaneous actions that can be achieved
and the impossibility to set two actions (one for ON state and a different one for oFf state) per GPIO.

115 wee or wxfade (https://x32ram.com/products) are example of applications that enable multiple simultaneous or
temporary/fugitive actions, from a CC button/encoder, MIDI command, or GPIO.

©Patrick-Gilles Maillot 201 WING remote protocols —V 3.0.6-4

Appendix: W-Live/SD card Sessions

Recording data format

The SD-card recording format is optimized for write speed ensuring long 32 channel recordings of 48 kHz / 32-
bit PCM data, with minimal risk for audio drop-outs on a large variety of SD or SDHC cards. Class-10 cards
(guaranteed 10MB/s write speed) are recommended.

To achieve optimum write performance, all tracks (8, 16 or 32) are written into a single file. The file format is
32-bit PCM multi-channel WAV. The supported card file system is FAT32 (royalty free) thus limiting file sizes to
4GB.

Recording 32 tracks of 48 kHz uncompressed 32-bit audio requires 360MB of memory/storage per minute.
Hence, a 4GB file will hold less than 11.9 minutes at maximum audio bitrate, taking into account the necessary
file header. To allow for longer consistent recording time, WING creates a so-called Session (i.e. a folder)
containing one or more files (or takes), each file being up to 4GB in size.

Separating recorded sessions into individual wave files, or creating individual audio stems for playback require
the use of external utilities''® or can be managed directly from most DAW software (for separating sessions
info individual files).

Session name coding

Recording a session on an SD card with WING will automatically create a subfolder underneath "X-LIVE",
named by the 32-bit timestamp of the recording start as an 8-character hex-string, e.g. "4ACE72B1". The
Console will read the folder name and display the corresponding timestamp as the session name, unless it was
given another name (see below).

Session name (a timestamp) coding is done on 32 bits, and is represented by a string of 8 hexadecimal
characters. The format “Year-Month-Day-Hour-Minute-Second” is detailed below:

Y [v Iy [y [v [y [y [m[m[m[m[p [D[D[D[D[h [h [h[h [h[m[m][m[m[m[m]s [s [s [s s |
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Years are counted starting at 1980
Seconds are divided by 2

Naming & sorting your existing sessions

Unless you rename them or give them a user-friendly name, your recorded sessions will only display their
creation date and the number of channels the recording is made of.

116 | jve Sessions (https://www.behringer.com/product.html|?modelCode=0603-AEN) in the software downloads,

Live2Wav and Wav2Live (https://sites.google.com/site/patrickmaillot/x-m-w-live),

or Wave Agent (https://www.sounddevices.com/product/wave-agent-software/) are applications that provide both ways conversions.
Live SD Splitter (https://sites.google.com/view/x32-stuff-here/home) provides splitting capability.

©Patrick-Gilles Maillot 202 WING remote protocols —V 3.0.6-4

You can rename or provide a user-friendly name to your recorded sessions with using the option on the
WING SD card screen. This information is saved in the SE_L0G.BIN file in the session directory and will not
change the session name per-se; It is used by WING to correctly display your recording name.

WING sessions are displayed and sorted by their creation date; You can change/set the order in which your
recorded sessions will display by renaming your sessions using a PC for example, abut you must respect the

hexadecimal format used for session naming.

The pictures below show the effect of changing the name of WING sessions on the displaying order of these.

& SESSIONS

DELETE

2024-09-28
18:14:14 8-CH

2024-05-04 = Prises Oh Mon Fi
13:40:36 8-CH

2022-01-03 = XrdsSMPTEtst
09:58:24 8-CH

2020-04-04 | CC Hard Candy F
10:16:36 32-CH

4F7E6608 3/14/2 y
58A46D12 5/ 2 — e

503B9F61

File folder

2020-01-27 = CC Mr Jones
19:59:02 32-CH

File folde

File folder

File folder 2019-11-30 = Crossroads
File folder 12:48:16 8-CH

File folder

54234F4C
596990C3
50845212

By renaming Session 503B9F61 into 54214F4C, we change the timestamp change for “CC Mr Jones”, resulting
in a change in the songs displaying order:

SESSIONS

2024-11-09
18:06:06

2024-09-28
18:14:14 8-CH

2024-05-04 = Prises Oh Mon Fi
13:40:36 8-CH

2022-01-03 = XrdsSMPTEtst
09:58:24 8-CH

2022-01-01 = CC Mr Jones
09:58:24 32-CH
4F7E6608 3/

58A46D12
593C91C7

e f:j 2020-04-04 | CC Hard Candy F
S 10:16:36 32CH

; Q0AM File folde 2019-11-30 | Crossroads

596990C. 12:48:16 8-CH
50845212

File folder

©Patrick-Gilles Maillot 203 WING remote protocols —V 3.0.6-4

While effective, the above implies recoding timestamps and results in the loss of the original timestamp for
your SD recordings. It may or may not fit with your needs and using an external application!'’ for displaying or
selecting your SD records to play/launch may be a better approach.

117 Such as wplayer (https://sites.google.com/site/patrickmaillot/wing#h.asfjltealgzl) for example

©Patrick-Gilles Maillot 204 WING remote protocols —V 3.0.6-4

Appendix: MCU [DAW BUTTONS] commands list

0SC MCU action MIDI 0SC MCU action MIDI
(port 4) (port 4)

Tl STOP 90, 5D, 7F/00 V7 BUSES (VIEW) 90, 43, 7F/00
T2 PLAY 90, 5E, 7F/00 V8 OUTPUTS (VIEW) 90, 44, 7F/00
T3 RECORD 90, 5F, 7F/00 V9 USER (VIEW) 90, 45, 7F/00
T4 REWIND 90, 5B, 7F/00 V10 MIX (VIEW)
T5 FAST FWD 90, 5C, 7F/00 V11 EDIT (VIEW)
T6 MARKER 90, 54, 7F/00 V12 TRANSPORT (VIEW)
T7 NUDGE 90, 55, 7F/00 V13 MEM/LOC (VIEW)
T8 CYCLE 90, 56, 7F/00 V14 STATUS (VIEW)
T9 DROP 90, 57, 7F/00 V15 ALT (VIEW)
T10 REPLACE 90, 58, 7F/00 AU1 READ/OFF (AUTOM) 90, 4A, 7F/00
T11 SCRUB 90, 65, 7F/00 AU2 WRITE (AUTOM) 90, 4B, 7F/00
T12 SHUTTLE AU3 TRIM (AUTOM) 90, 4C, 7F/00
T13 RETURN TO ZERO AU4 TOUCH (AUTOM) 90, 4D, 7F/00
T14 GO TO END AU5 LATCH (AUTOM) 90, 4E, 7F/00
T15 IN AU6 OFF (AUTOM)
T16 ouT AU7 FADER (AUTOM)
T17 PRE AU8 PAN (AUTOM)
T18 POST AU9 MUTE (AUTOM)
T19 ONLINE AU10 | SEND (AUTOM)
T20 QUICK PUNCH AU11 | SEND MUTE (AUTOM)
N1 UP (NAV) 90, 60, 7F/00 AU12 PLUG-IN (AUTOM)
N2 DOWN (NAV) 90, 61, 7F/00 Syl SHIFT 90, 46, 7F/00
N3 LEFT (NAV) 90, 62, 7F/00 SY2 OPTION 90, 47, 7F/00
N4 RIGHT (NAV) 90, 63, 7F/00 SY3 CTRL 90, 48, 7F/00
N5 Z00M 90, 64, 7F/00 SY4 ALT 90, 49, 7F/00
N6 BK < 90, 2E, 7F/00 SY5 SAVE 90, 50, 7F/00
N7 BK > 90, 2F, 7F/00 SY6 UNDO 90, 51, 7F/00
N8 CH< 90, 30, 7F/00 SY7 CANCEL 90, 52, 7F/00
N9 CH> 90, 31, 7F/00 SY8 ENTER 90, 53, 7F/00
Al TRACK (ASSIGN) 90, 28, 7F/00 SY9 EDIT MODE
A2 SEND (ASSIGN) 90, 29, 7F/00 SY10 EDIT TOOL
A3 PAN (ASSIGN) 90, 2A, 7F/00 oT1 FLIP 90, 32, 7F/00
Ad PLUG-IN (ASSIGN) 90, 2B, 7F/00 oT2 GROUP 90, 4F, 7F/00
A5 EQ (ASSIGN) 90, 2C, 7F/00 073 NAME/VALUE 90, 34, 7F/00
A6 INST (ASSIGN) 90, 2D, 7F/00 oT4 TIME/BEATS 90, 35, 7F/00
A7 SEND A (ASSIGN) oT5 CLICK 90, 59, 7F/00
A8 SEND B (ASSIGN) oT6 SOLO 90, 5A, 7F/00
A9 SEND C (ASSIGN) oT17 FOOTSW A 90, 66, 7F/00
A10 SEND D (ASSIGN) oT8 FOOTSW B 90, 67, 7F/00
All SEND E (ASSIGN) 0T9 DEFAULT
Al12 INPUT (ASSIGN) 0T10 SUSPEND
Al13 OUTPUT (ASSIGN) oT11 BYPASS
Ald ASSIGN (ASSIGN) 0T12 RECRDY ALL
A15 SHIFT (ASSIGN) E1 CUT (EDIT)
Al6 MUTE (ASSIGN) E2 COPY (EDIT)
F1 F1 90, 36, 7F/00 E3 PASTE (EDIT)
F2 F2 90, 37, 7F/00 E4 SEPARATE (EDIT)
F3 F3 90, 38, 7F/00 ES CAPTURE (EDIT)
F4 F4 90, 39, 7F/00 E6 DELETE (EDIT)
F5 F5 90, 3A, 7F/00 E7 ASSIGN (EDIT)
F6 F6 90, 3B, 7F/00 E8 COMPARE (EDIT)
F7 F7 90, 3C, 7F/00 E9 BYPASS (EDIT)
F8 F8 90, 3D, 7F/00 E10 INS/PARAM (EDIT)
V1 GLOBAL (VIEW) 90, 33, 7F/00 SP1 FADER TOUCH [MUTE]
V2 MIDI (VIEW) 90, 3E, 7F/00 SP2 V-POT CTRL [SEL/SOLO]
V3 INPUTS (VIEW) 90, 3F, 7F/00 SP3 RECRDY CTRL [SEL]
A2 AUDIO TRACKS (VIEW) 90, 40, 7F/00 SP4 AUTO [SEL]
V5 INSTRUMENT (VIEW) 90, 41, 7F/00 SP5 V-SEL [SEL]
V6 AUX (VIEW) 90, 42, 7F/00 SP6 INSERT [SEL]

©Patrick-Gilles Maillot 205 WING remote protocols —V 3.0.6-4

Appendix: MCU [DAW V-POTS] commands list

0SsC MCU action MIDI 0SC MCU action MIDI
(port 4) (port 4)
M1P V-POT M1 Push 90, 20, 7F/00 M1 V-POT M1 BO, 10, 01/41
M2P V-POT M2 Push 90, 21, 7F/00 M2 V-POT M2 BO, 11, 01/41
M3P V-POT M3 Push 90, 22, 7F/00 M3 V-POT M3 BO, 12, 01/41
M4p V-POT M4 Push 90, 23, 7F/00 M4 V-POT M4 BO, 13, 01/41
M5P V-POT M5 Push 90, 24, 7F/00 M5 V-POT M5 BO, 14, 01/41
M6P V-POT M6 Push 90, 25, 7F/00 M6 V-POT M6 BO, 15, 01/41
M7P V-POT M7 Push 90, 26, 7F/00 M7 V-POT M7 BO, 16, 01/41
M8P V-POT M8 Push 90, 27, 7F/00 M8 V-POT M8 BO, 17,01/41
E1P V-POT EXT1 Push E1l V-POT EXT1
E2P V-POT EXT2 Push E2 V-POT EXT2
E3P V-POT EXT3 Push E3 V-POT EXT3
E4P V-POT EXT4 Push E4 V-POT EXT4
ESP V-POT EXTS Push ES V-POT EXT5
E6P V-POT EXT6 Push E6 V-POT EXT6
E7P V-POT EXT7 Push E7 V-POT EXT7
E8P V-POT EXT8 Push E8 V-POT EXT8
E9P V-POT EXT9 Push E9 V-POT EXT9
E10P V-POT EXT10 Push E10 V-POT EXT10
E11P V-POT EXT11 Push E11 V-POT EXT11
E12P V-POT EXT12 Push E12 V-POT EXT12
E13P V-POT EXT13 Push E13 V-POT EXT13
E14P V-POT EXT14 Push E14 V-POT EXT14
E15P V-POT EXT15 Push E15 V-POT EXT15
E16P V-POT EXT16 Push E16 V-POT EXT16
JOG JOG WHEEL BO, 3C, 01/41
©Patrick-Gilles Maillot 206 WING remote protocols —V 3.0.6-4

Appendix: MCU [DAW REMOTE MCU] commands list

0SC MCU action MIDI (port 4)
M1 V-POT M1 BO, 10, 01/41
M2 V-POT M2 BO, 11, 01/41
M3 V-POT M3 BO, 12, 01/41
M4 V-POT M4 BO, 13, 01/41
M5 V-POT M5 BO, 14, 01/41
M6 V-POT M6 BO, 15, 01/41
M7 V-POT M7 BO, 16, 01/41
M8 V-POT M8 BO, 17, 01/41
E1 V-POT EXT1

E2 V-POT EXT2

£3 V-POT EXT3

E4 V-POT EXT4

ES V-POT EXT5

£6 V-POT EXT6

E7 V-POT EXT7

ES V-POT EXTS

£9 V-POT EXT9

E10 V-POT EXT10

E11 V-POT EXT11

E12 V-POT EXT12

E13 V-POT EXT13

E14 V-POT EXT14

E15 V-POT EXT15

E16 V-POT EXT16

JOG JOG WHEEL BO, 3C, 01/41

©Patrick-Gilles Maillot

207

WING remote protocols —V 3.0.6-4

Appendix: WING Snapshot and JSON Data Structure:

A WING snapshot file (also called Snapfile when saved to a file) is organized as a collection of classes,
sub-classes and objects regrouping attributes and values in logical groups. These can be represented as a
hierarchical tree. A 3soN*'® notation is used to describe and store the hierarchical tree.

A complete WING default snapfile is close to 800000 bytes and 33895 lines, containing a rather complex
hierarchical list of more than 30000 object identifiers [WING parameters] and their associated values.

A WING snapfile does not contain read-only objects; i.e. there are more parameters available than the ones
listed/saved in a snapfile!

Wing Snapfile

A snapfile is divided in sections as shown below:

"type": "snapshot.9",

"creator fw": "2.1-117-gbfb74b9%5:develop"”,
"creator sn": "NO_ SERIAL",

"creator model": "wing",

"creator version": "SX45-XU2",

"creator name": "HMS-01",

"ecreated™: "2024-08-02 12:58:09",

"active show": "",

"active scene": "I:/FOLDER 1/SCO-NEW.snap",
"ae data": {

"ce data": {

"ae globals": {

"ce globals": ({

"scopes": |

"updated": "2024-08-02 13:05:34"

ae_data and ce-data are representing WING Audio engine and Console Engine data
ae_globals and ce-globals consist of global data affecting WING Audio and Console Engines

Description

description: This small section contains (as its name suggest) a description for the snapshot, including name,
and elements corresponding to the WING that generated the snapshot. “created” lists the date and time of
the creation of the snapfile, while “updated” will retain the date and time of the most recent update made to
the file.

“type”: string, snapshot signature/version

“creator_fw”: string, FW used when creating the snapshot

“creator_sn”: string, Serial number of the WING the snapshot was created with
“creator_model”: string, Model of console

“creator_name”: string, Name given to the console

“created”: string, date time,

“active_show”: string, name of the currently opened show file

“active_scene”: string, name of the current, active scene

“updated”: string, date time,

118 JavaScript Object Notation: an efficient way to represent structured objects. Also used as a data-interchange format.

©Patrick-Gilles Maillot 208 WING remote protocols —V 3.0.6-4

scopes

scopes: A large set of Boolean {“+’,” ’}values to list what has been ‘marked’ at snapshot time. This can be
used as a reminder of the initial purpose of the snapshot.

The scopes class contains the following objects:

ch, aux, bus, main, mtx, dca, mute, fx, source, output, area, custom, setup, contents, mainsend, bussend;

For example:
"scopes": {

"ch': "+tdttttt Attt Attt bttt bttt bttt bttt A,

"aux": "++++++++",

"bus": "+++++++++++++4+4++",

Hmainﬂ: "++++H’

"mtx": "++t+tr+",

"deca": "+++++++++++++444+",

"mute": "++++++++",

"Ex": "ttt A+,

"source": {
"LCL": "++++++++++++++++++++4+4+4+4",
"AUX": "+tttttt+",
"AM: Mttt t ottt Attt bttt bttt bttt bttt bt AT,
"B'": Mttt ottt ottt Attt ottt bttt bt bttt bttt bttt A,
"CM: Mttt dt ottt Attt bttt bttt bttt At bttt bt E AT,
O R T o o L o e S 2 0 SR a ot 2k o o o o o o o o SR
"USB": "4+t Attt A At Attt At At At A A A A A A A A,
"CRD": "++++ttttt Attt bttt ottt bttt bttt bttt bttt bttt bt A,
"MOD" : "HAA A+ttt At A A A A A A A A F A,
"PLAY": "++++",
"AES": YI++",
"USR": "++++ttt Attt ottt bttt bttt bt bttt bttt bttt A,
"OSC": YI++ L

},

"output": {
"LCL": "++++++++",
"AUX": "+4++++4+",
R o S o o o S o 0 A S o0 S 0 o o S S A o o S o O S O A a0 S A S o
"B": Mttt dt ottt Attt bttt ottt bttt bttt bttt bttt A,
"CM: Mttt t ottt Attt bttt bttt bttt bttt AT,
"SC": Mtt+t+ttttFttttt Attt A+,
"USB": "4+ttt Attt Attt At A At A A A A A A A A A A A,
"CRD": "++t+ttttttt ottt bttt ottt bttt bttt bttt bttt bttt bt A,
"MOD" : "HAA A+ttt At A A A A A A A A F A,
"REC": "++++",
"AES": H++"

},

"area": {
"LEFT": "+++++++++",
"CENTER": "+++++++++",
"RIGHT": "+++++++++"

}s

"custom'": "+++++++++++++Htt+E+HEA+E",

"Setup": YI+++YI,

"contents": "++++++++++++++4",

"mainsend": "++++",

"bussend": "+++++++++++++++tHtt+ErE+"

}

Scopes are not elements that can be programmed/changed. They are only set at snapshot time using the
console main LCD. As mentioned above, they are optionally saved at save time to notify what was targeted for
save/update.

©Patrick-Gilles Maillot 209 WING remote protocols —V 3.0.6-4

ae data

ae_data stands for “Audio Engine”, and regroups a rather large set of attributes and values aimed at
registering all main settings of the WING audio engine, such as Routing, Channel EQ settings, FX parameter
values, etc., as shown in the figure below:

"ae data™: {
"ofg"s: {
Tio"= |
mEh"E |
Taux"s |
"bus®z 4
"main": {
"mEx"e
rdeam s |
"mgrp™: {
Wil of
"cards"™: {
"play™: {
Ureets o

by

Expanding one (or any) of the blocks of parameters listed above will provide the respective WING parameters
of that block, along with their value(s). Understanding what parameters are present in each block is a good
way to better grasp and understand the vast range of capabilities WING offers. It is also a good way to
envision the parameter list one can get and set using wapi (described earlier in this document) as the JsoN
structure parameters matches the tokens used by the API for wapi get () and set() functions.

Indeed, all tokens related to the audio engine can be directly coded from the 3soN description, for example,
the C-like token notation for the 3SON cfg.mon. 1.pan element is named CFG_MON_1_PAN.

We show in the following pages, the contents of the JSON tree structure after a console reset, so only default
values are listed. In order to reduce the number of pages the 3SON structure description would take; the
following notation is used:

“abc”: {}, means that “abc” uses the same structure definition as the previous
member in the JsoN file, and:

“27:(}.”n”: {}, means that objects “2” to “n” use the same structure definition as
the previous member in the JsoN file.

"ae_data": {
"cfg": {
"mainlink": "OFF",
"dcamgrp": true,

"mon": {
"1 {
"inv": false,
"pan": @,
"wid": 100,
"eq": {
"on": false,
"lsg": o,
"lsf": 60.13883591,
"1g": ©

2
"1f": 129.8763428,
"1q": 1.995881796,
"2g": 0,
"2f": 299.2471619,
"2q": 1.995881796,

©Patrick-Gilles Maillot 210 WING remote protocols —V 3.0.6-4

"3g": 0,
"3f": 699.4875488,
"3q": 1.995881796,
"4g": 0,
"4f": 1499.78833,
"4q": 1.995881796,
"5g": 0,
"5f": 2992.470947,
"5q": 1.995881796,
"6g": 0,
"6f": 6013.883789,
"6q": 1.995881796,
"hsg": 0,
"hsf": 11999.27344
bs
"lim": o,
"dly": {
"on": false,
"m": 0.100000001
3
"dim": 20,
"pfldim": 12,
"egbdtrim": o,
"srclvl": o,
"srcmix": -144,
"src": "MAIN.1",
"tags": ""
s
"2": {},
"solo": {
"mode": "LIVE",
"mon": "PH",
"mute": false,
"chtap": "PFL",
"bustap": "AFL",
"maintap": "PFL",
"mtxtap": "PFL",
"srcsolo": "OFF"
s
"rta": {
"rtasrc": 0,
"rtatap": "IN",
"rtadecay": "MED",
"rtadet": "PEAK",
"rtarange": 30,
"rtagain": 0,
"rtaauto”: true,
"eqdecay": "MED",
"eqdet": "PEAK",
"egrange": 30,
"eggain": @,
"egauto": true
s
"mtr": {
"scopesrc": 0,
"scopetap": "IN",
"mtrsfc": {
"in": "PRE",
"bus": "POST",
"main": "POST",
"mtx": "POST",
"dca": "PRE"
s
"mtrpage": {
"in": "PRE",
"bus": "POST",

©Patrick-Gilles Maillot 211

WING remote protocols —V 3.0.6-4

"main":

"POST",

"mtx": "POST",
"dca": "PRE"

}s

"mainmtr":
"mainpos":
s
"talk": {
"assign":
"A": {
"mode" :
"mondim"
"busdim"
"indiv":

"MAIN.1",
"AUTO"

"OFF",

"AUTO",
. 0,
. 0,
false,

"B1": false,
"B2": false,
"B3": false,
"B4": false,
"B5": false,
"B6": false,
"B7": false,
"B8": false,
"B9": false,
"B10@": false,
"B11": false,
"B12": false,
"B13": false,
"B14": false,
"B15": false,
"B1l6": false,
"MX1": false,
"MX2": false,
"MX3": false,
"MX4": false,
"MX5": false,
"MX6": false,
"MX7": false,
"MX8": false,
"M1": false,
"M2": false,
"M3": false,
"M4": false

s
"B": {},
"amix": {

x": true,

y": true
}

}s

"io": {

"altsw": false,

"autoaltovr":

"in": {
"LeL": {
"1 {
"mode"

true,

S oMY,

"g": @,

"vph":
"mute”
"pol":
"col":
"name"
"icon"
"tags"
"rmt":

"rcvc":

©Patrick-Gilles Maillot

false,
: false,
false,
1,

Qo
01,
o
"OFF",
false

212

WING remote protocols —V 3.0.6-4

"mode”: "M",
"mute": false,
"pol": false,
"col": 1,
"name": "",
"icon": 2,

1" {

"mode" :

)

"

g": o,

"vph

"mute":

"pol":
"col":

"name" :
"icon":
"tags":

"rmt":

"rcvc":

false,

false,
false,
1,

nn
3

9,

no
"OFF",

false

"mode”: "M",
"mute": false,
"pol": false,
"col": 1,
"name": "",
"icon": 9,

"mode": "ST",
"mute": false,
"pol": false,
"col": 8,

"name": "USB 1/2",
"icon": 605,

"CRD": {
1" {

"mode" :
"mute":

"pol":
"col":

"name" :
"icon":
"tags":

©Patrick-Gilles Maillot

."48": {}

"

false,
false,
1,

9,

213

WING remote protocols —V 3.0.6-4

"PLAY": {

1" {
"mode" :
"mute":
"pol":
"col":
"name" :
"icon":
"tags":

"AES": {

1" {
"mode" :
"mute":
"pol":
"col":
"name" :
"icon":
"tags":

"USR": {

1" {
"mode" :
"mute":
"pol":
"col":
"name" :
"icon":
"tags":
"user":

"grp"

"in":

"tap"

"lr":

"

: false,
: false,
.1,

. 0,

"ST",
false,
false,
8,
"2TR",
608,

)

"

false,
false,
1,

9,

e

false,
false,
1,

nn
3

9,

-

{

: "OFF",
1,

: "PRE",
"L+R"

"2".. "48": {}

"0sC": {

1" {
"mode" :
"mute":
"col":
"name" :
"icon":
"tags":
"osc":

©Patrick-Gilles Maillot

"
false,
1,

nn
3

9,

nn
3

{

214

WING remote protocols —V 3.0.6-4

"lvl": -6,
"mode": "SINE",
"f": 999.9920044

s
"out": {
"LeL": {
"1 {
"grp": "BUS",
"in": 1

"in": 1

"grp": "OFF",
in": 1

"2"..0"32" {}

"grp": "OFF",
"in": 1

"grp": "OFF",
"in": 1

"2".."e4": {}

"grp": "OFF",

©Patrick-Gilles Maillot 215 WING remote protocols —V 3.0.6-4

"in": {
"set": {
"srcauto": false,
"altsrc": false,
"inv": false,
"trim": 9,
"bal": @,
"dlymode": "M",
"dly": ©.100000001,
"dlyon": false
s
"conn": {
"grp": "LCL",
"in": 1,
"altgrp": "OFF",
"altin": 1
}
s
"1t {
"lc": false,
"lcf": 100.2374573,
"hc": false,
"hcf": 10018.26074,
"tf": false,
"mdl": "TILT",
"tilt": o

}s

"clink":

"col":
"name" :
"icon":
"led":
"mute”:
"fdr":
"pan":
"wid":

true,
1,

nn
3

9,
true,
false,
-144,
0,
100,

"solosafe": false,

mon":
"proc":
"ptap":
"peq":

"on":
"1g":

"1f":
"1q":
"2g":
"2f":
"2q":
"3g":
"3f":
"3q":

}s

"gate":

"A,
"GEDI",
nge
{
false,
9,
99.68543243,
0.997970223,
9,
999.2504883,
0.997970223,
9,
10016.52734,
0.997970223

{

©Patrick-Gilles Maillot 216

WING remote protocols —V 3.0.6-4

"on": false,
"mdl": "GATE",
"thr": -40,
"range": 40,
"att": 10,
"hld": 10,
"rel": 199.4042816,
"acc": 0,
"ratio": "1:3"

s

"gatesc": {
"type": "OFF",
"f": 1002.37439,
"q": 1.995881796,
"src": "SELF",
"tap": "IN"

3

"eq": {
"on": false,
"mdl": "STD",
"mix": 100,
"lg": @,
"1f": 80.19641876,
"1q": ©.997970223,
"leq": "SHV",
"1g": o,
"1f": 200,
"1q": 0.997970223,
"2g": o,
"2f": 601.3883667,
"2q": 0.997970223,
"3g": 0,
"3f": 1499.78833,
"3q": 0.997970223,
"4g": @,
"4f": 3990.524414,
"4q": 0.997970223,
"hg": o,
"hf": 11999.27539,
"hq": 0.997970223,
"heq": "SHV"

s

"dyn": {
"on": false,
"mdl": "COMP",
"mix": 100,
"gain": @,
"thr": -10,
"ratio": 3,
"knee": 3,
"det": "RMS",
"att": 50,
"hld": 20,
"rel": 152.5651855,
"env": "LOG",
"auto": true

s

"dynxo": {
"depth": 6,
"type": "OFF",
"f": 1002.37439

3

"dynsc": {
"type": "OFF",
"f": 1002.37439,
"q": 1.995881796,

©Patrick-Gilles Maillot 217 WING remote protocols —V 3.0.6-4

©Patrick-Gilles Maillot

"src": "SELF",
"tap": "IN"

"on": true,
"lvl": o,
"pre": false

1" {
"on": false,
"lvl": -144,
"pon": false,
"ind": false,
"mode": "PRE",
"plink": false,
"pan": ©

s

"2".."16": {},

"MX1": {

"on": false,
"lvl": -144,
"pon": false,
"ind": false,
"mode": "PRE",
"plink": false,
"pan": ©
s
"MX2".."MX8": {}
3
"tapwid": 100,
"postins": {
"on": false,
"mode": "FX",
"ins": "NONE",
"w": 0
s
"tags":

"2". .40 {}
"aux": {

"in": {

"set": {
"srcauto": false,
"altsrc": false,
"inv": false,
"trim": o,
"bal": @,
"dlymode": "M",
"dly": ©.100000001,
"dlyon": false

s

"conn": {
"grp": "USB",
"in": 1,
"altgrp": "OFF",
"altin": 1

218

WING remote protocols —V 3.0.6-4

}
}s

"clink": true,

"col": 1,

"name": "2TR",

"icon": @,

"led": true,

"mute": false,

"fdr": -144,

"pan": O,

"wid": 100,

"solosafe": false,

"mon": "A",

"eq": {
"on": false,
"mdl": "STD",
"mix": 1009,
"lg": o,
"1f": 80.19641876,
"1q": ©.997970223,
"leq": "SHV",
"1g": @,
"1f": 200,
"1q": ©.997970223,
"2g": o,
"2f": 601.3883667,
"2q": 0.997970223,
"3g": 0,
"3f": 1499.78833,
"3q": 0.997970223,
"4g": @,
"4f": 3990.524414,
"4q": 0.997970223,
"hg": @,
"hf": 11999.27539,
"hq": 0.997970223,
"heq": "SHV"

3

"dyn": {
"on": false,
"thr": -36,
"depth": 12,
"fast": false,
"peak": false,
"ingain": 40,
"cpeak": o,
"cmode": "COMP"

3

"preins": {
"on": false,

ins": "NONE"

3
"main": {
"1 {
"on": true,
"lvl": o,

pre": false

"on": false,
"lvl": -144,
"pon": false,
"ind": false,

©Patrick-Gilles Maillot 219 WING remote protocols —V 3.0.6-4

"mode": "PRE",
"plink": false,
"pan": @

s

"2".."16": {},

"MX1": {
"on": false,
"lvl": -144,
"pon": false,
"ind": false,
"mode": "PRE",
"plink": false,
"pan": ©

s

"MX2".."MX8": {}

"in": {
"set": {
"inv": false,
"trim": 9,
"bal": ©

}
3
"col": 10,
"name": "",
"icon": @O,
"led": true,
"busmono": false,
"mute": false,
"fdr": -144,
"pan": 0O,
"wid": 100,
"mon": "A",
"busmode": "PRE",
"eq": {
"on": false,
"mdl": "STD",
"mix": 100,
"lg": @,
"1f": 60.13883591,
"1q": 0.997970223,
"leq": "SHV",
"1g": o,
"1f": 129.8763428,
"1q": 0.997970223,
"2g": o,
"2f": 299.2471619,
"2q": ©.997970223,
"3g": 0,
"3f": 699.4875488,
"3q": 0.997970223,
"4g": 0,
"4f": 1499.78833,
"4q": 0.997970223,
"5g": 0,
"5f": 2992.470947,
"5q": 0.997970223,
"6g": @,
"6f": 6013.883789,
"6q": ©.997970223,

©Patrick-Gilles Maillot 220 WING remote protocols —V 3.0.6-4

"hg": @,

"hf": 11999.27539,
"hq": 0.997970223,
"heg": "SHV",

"tilt":
}s
Ildynll : {

0

"on": false,

"mdl": "COMP",
"mix": 100,
"gain": @,
"thr": -10,
"ratio": 3,
"knee": 3,
"det": "RMS",
"att": 50,
"hld": 20,
"rel": 152.5651855,
"env": "LOG",
"auto": true

¥

"dynxo": {
"depth": 6,
"type": "OFF",
"f": 1002.37439

¥

"dynsc": {
"type": "OFF",
"f": 1002.37439,
"q": 1.995881796,
"src": "SELF",
"tap": "BUS"

¥

"preins": {
"on": false,

ins": "NONE"

"send": {

1" {
"on": false,
"lvl": -144,
"pre": false

s

"2".."16": {},

"MX1": {
"on": false,
"lvl": -144,
"pre": false

I8
"MX2".."MX8": {}

3

"postins": {
"on": false,

ins": "NONE"

s

"dlyt: |
"on": false,
"mode": "M",

©Patrick-Gilles Maillot 221

WING remote protocols —V 3.0.6-4

"dly": ©.100000001

"2".."1e": {}

inv": false,
trim": o,

"col": 1,

"name": ""

"icon": @,

"led": true,

"busmono": false,

"mute": false,

"fdr": -144,

"pan": O,

"wid": 100,

"mon": "A",

"eq": {
"on": false,
"mdl": "STD",
"mix": 1009,
"lg": o,
"1f": 60.13883591,
"1q": ©.997970223,
"leq": "SHV",
"1g": @,
"1f": 129.8763428,
"1q": 0.997970223,
"2g": 0,
"2f": 299.2471619,
"2q": 0.997970223,
"3g": 0,
"3f": 699.4875488,
"3q": 0.997970223,
"4g": @,
"4f": 1499.78833,
"4q": 0.997970223,
"5g": @,
"5f": 2992.470947,
"5q": 0.997970223,
"6g": 0,
"6f": 6013.883789,
"6q": 0.997970223,
"hg": o,
"hf": 11999.27539,
"hq": ©.997970223,

"heq": "SHV",
"tilt": o

}s

IldynlI: {

"on": false,
"mdl": "COMP",

"mix": 1009,
"gain": @,
"thr": -10,
"ratio": 3,
"knee": 3,
"det": "RMS",

©Patrick-Gilles Maillot 222 WING remote protocols —V 3.0.6-4

"att": 50,
"hld": 20,
"rel": 152.5651855,
"env": "LOG",
"auto": true
s
"dynxo": {
"depth": 6,
"type": "OFF",
"f": 1002.37439
s
"dynsc": {
"type": "OFF",
"f": 1002.37439,
"q": 1.995881796,
"src": "SELF",
"tap": "BUS"
s
"preins": {
"on": false,
"ins": "NONE"
s
"send": {
"MX1": {
"on": false,
"lvl": -144,
" false

pre":
"MX2".."MX8": {}

"postins": {
"on": false,
"ins": "NONE"
s
"dly": {
"on": false,
"mode": "M",
"dly": ©.100000001
3
"tags":

mtx": {
"1 {
"in": {

"set": {
"inv": false,
"trim": 9,
"bal": ©

}

3

"dir": {
"on": false,
"lvl": -144,
"inv": false,
"in": "OFF"

"col": 1,

name": "",
"icon": @,

"led": true,
"busmono": false,
"mute": false,
"fdr": -144,
"pan": O,

©Patrick-Gilles Maillot 223 WING remote protocols —V 3.0.6-4

"wid": 100,
"mon": "A",
"busmode": "PRE",
"eq": {
"on": false,
"mdl": "STD",
"mix": 1009,
"lg": o,
"1f": 60.13883591,
"1q": ©.997970223,
"leq": "SHV",
"1g": @,
"1f": 129.8763428,
"1q": 0.997970223,
"2g": o,
"2f": 299.2471619,
"2q": 0.997970223,
"3g": 0,
"3f": 699.4875488,
"3q": 0.997970223,
"4g": @,
"4f": 1499.78833,
"4q": 0.997970223,
"5g": @,
"5f": 2992.470947,
"5q": 0.997970223,
"6g": 0,
"6f": 6013.883789,
"6q": 0.997970223,
"hg": o,
"hf": 11999.27539,
"hq": ©.997970223,

"heq": "SHV",
"tilt": o

s

"dyn": {
"on": false,
"mdl": "COMP",
"mix": 1009,
"gain": @,
"thr": -10,
"ratio": 3,
"knee": 3,
"det": "RMS",
"att": 50,
"hld": 20,
"rel": 152.5651855,
"env": "LOG",
"auto": true

3

"dynxo": {
"depth": 6,
"type": "OFF",
"f": 1002.37439

s

"dynsc": {
"type": "OFF",
"f": 1002.37439,
"q": 1.995881796,
"src": "SELF",
"tap": "BUS"

3

"preins": {
"on": false,
"ins": "NONE"

s

©Patrick-Gilles Maillot 224 WING remote protocols —V 3.0.6-4

"postins": {
"on": false,
"ins": "NONE"
3
Ildlle: {
"on": false,
"mode": "M",
"dly": ©.100000001
s
"tags":
s
"2".."8": {}

s
"dca": {
"1 {

"name": "",
"col": 1,
"icon": @,
"led": false,
"mute": false,
"fdr": -144,
"mon": "A"

II1II: {
"name": "MGRP.1",
"mute": false

"1 {
"mdl": "NONE",
"fxmix": 100

wlive": {
"sdlink": "IND",
"autoin": "OFF",
"meters": true,
"auto_stop": "KEEP",
"auto_play": "KEEP",
"auto_rec": "KEEP",
"1 {
"cfg": {
"rectracks": "32",
"playmode"”: "PLAY"

play”: {
"repeat": true

rec": {

"resolution”: "24",
"channels": "2"

©Patrick-Gilles Maillot 225 WING remote protocols —V 3.0.6-4

ce data

ce_data contains all 3SON structure elements representing the “Control Engine” settings for WING. The
ce_data class contains objects as shown below:

"ee data": {
"efg™: |
"layer": {
"user": {
"gpio": {
"safes": {
"daw": {
"magi™ e
Yose™: {

"1ip": {}

by

Note that for ease of access and programming using the native interface or OSC remote protocol, the ce_data
JSON tree structure is appended to the ae_data tree structure.

"ce_data": {
"cfg": {
"lights": {
"btns": 25,
"leds": 990,

"meters": 40,
"rgbleds": 25,

"chlcds": 60,
"chlcdctr": 50,
"chedit": 80,
"main": 80,
"glow": O,
"patch": @,
"lamp": ©

}s

"rta": {

"homedisp": "1/3",
"homecol": "BL50",
"hometap": "IN",
"eqdisp": "1/4",
"eqcol": "BL75",
"cheqtap": "PRE",
"chflttap": "PRE"
s
"muteovr": true,
"soloexcl": true,
"selfsolo": true,
"solofsel": false,
"sof2solo": false,
"layerlinkl": false,
"layerlinkr": false,
"autoview": false,
"csctouch": true,
"autosel L": false,
"autosel _C": false,
"autosel R": false,
"fdrbanking": false,
"soffdr": "L/C",
"sofbutton": "AUTO",
"sofframe": true,
"sofmode": false,
"seldblclick": "BUSFX",
"usrmode": "BUS",

©Patrick-Gilles Maillot 226 WING remote protocols —V 3.0.6-4

"mfdr": "MAIN.1",
"cscmode": "BUS",
"rackmode": "CH",
"busspill”: false,
"mainspill”: false,
"mtxspill": true,
"dcaspill": false,
"showfdr": true
s
"layer": {
"L {
"sel": 1,
"1 {
"ofs": 0,
"name": "CH1-12",
1" {
"type": "CH",
"i'. 1,
"dst": 1

2".."24": {}

"ofs": 0,
"name": "DCA",
"1 {

"type": "DCA",

"i": 1,

"dst": 1

2".."16": {}

"ofs": @,
"name": "MAIN",
"1 {
"type": "BUS",
"iv: 17,
"dst": 1
s
"2".."16": {}
3
"2 0" {3
}
s
"user": {
"sel": 1,
"mode": "MGRP",
"cmode": "PAN",
"gpio”: {
"1 {
"bu": {
"mode": "OFF",
"name": "GPIO 1"
¥
s
"2".."4t {3}

©Patrick-Gilles Maillot 227 WING remote protocols —V 3.0.6-4

¥
"user": {
"1": {
llbulI: {

"mode" :
"name" :

"bd": {

"mode" :
"name" :

}
¥,
nyu ugn.
}s
"dawl": {
"1": {
llbulI: {

"mode" :
"name" :

"btn":

¥
"bd": {

"mode" :
"name" :

"btn":

"OFF",

"OFF",

{}

"DAWBTN",
"STOP",
-

"DAWBTN",
"REWIND",
wrq"

"daw2".."dawd": {},

"1 {
" {

"led": false,
"col": 1,

"enC": {

"mode" :
"name" :

}s
"bu": {

"mode" :
"name" :

¥
"bd": {

"mode" :
"name" :

"OFF",

"OFF",

"OFF",

"2".."16": {3},

"gpio": {
"1 {

"mode": "TGLNO",

"gpstate":

"safes": {
nehts o m
"aux": "
"bus": "
"main": "
"mtx": "
"dca": "
"mute": "

©Patrick-Gilles Maillot

false

228

WING remote protocols —V 3.0.6-4

"fxt " "
"source": {
"LCL": " "
"AUX": " "
g,
ngu.
new.

ngen, m "

"usB": "
"CRD": "
"MOD": "
"PLAY": " ",
"AES": " ",
"USR": " ",
"osc": "

}s

"output": {
"LCL": " "
TAUX": " "
npm. w
ngr. w
nen. w

"sctr "

"usB": "
"CRD": "
"MoD": "
"REC": " "
"AES": " "

area": {
"LEFT": " ",
"CENTER": " "
"RIGHT": " "
s
"custom": " ",
"setup": " "
s
"daw": {

on": false,
"conn": "USB",
"emul": "MCU",
"config": "MSTR",
"ccup": false,
"disjog": true,
"preset": "-"

s

"midi": {
"enchctl": "OFF",
"enfxctl": "OFF",
"encustctl": "OFF",
"ensysex": "OFF",
"enmidicc": "OFF",
"enscenes": "OFF",
"enshowctl": "OFF",
"enscenetx": "OFF"

"osc": {
"ronly": false

}s
"lib": {}
s

©Patrick-Gilles Maillot 229

WING remote protocols —V 3.0.6-4

globals

ae_globals and ce_globals contains 3SoN elements globally affecting the “audio” and “control” engines
settings for WING. The objects are shown below:

"ae_globals": {
"clkrate": 48000,
"clksrc": "INT",
"startmute": false,
"usbacfg": "48/48",
"sccfg": "AUTO",

"harmt": {
"a": false,
"b": false,
"c": false

s

"custsync": {
"a": false,
"b": false,
"c": false

}

}s

"ce_globals": {
"fdrsel": false,
"fdrres": "AUTO",
"fdrspd": "MED",
"mousetchdis": false,
"mousespd”: 1.769999981,
"tapflash”: "ON",
"srcdisp": true,
"lockmtr": false,
"cf_load": true,
"cf_upd": true,
"usewheel": true,
"timefmt": "24H",
"datefmt": "YMD"

}s

More JSON files

WING desk provides more 3soN files. Indeed, 350N format is also used to save/store channel, library, and effect
presets. These files are created as you save presets and libraries that help you setup your system faster down
the road.

©Patrick-Gilles Maillot 230 WING remote protocols —V 3.0.6-4

