## End of Chapter Answer Guide: Numerical Answers

## Chapter 1 - ASME Code Calculations:

## Cylindrical Components

1. 1.84 mm
2. thickness of boiler steam header $=15.18 \mathrm{~mm}$
$\mathrm{d}_{\text {max }}=29 \mathrm{~mm}$
$\mathrm{d}_{\text {opening }}=100 \mathrm{~mm}$
Because $d_{\text {opening }}>d_{\text {max }}$ the head requires additional compensation.
3. 8.37 mm
4. 26.55 mm
5. Because the finished opening $d$ is 93 mm , which is less than $d_{\max }(110.08 \mathrm{~mm})$, the opening is inherently compensated, and no additional reinforcement is necessary.
6. $\quad 4.208 \mathrm{MPa}$

# Chapter 2 - ASME Code Calculations: Stayed Surfaces, Pressure Relief Valves <br> AND FURNACES 

1. 193.2 mm
2. $5395.2 \mathrm{~m}^{3}$
3. 15.85 mm

## Chapter 8 - Linear Motion

1. Final velocity $=110 \mathrm{~m} / \mathrm{s}$, Total distance $=1200 \mathrm{~m}$
2. 50 N
3. b) $500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
4. 50 kJ
5. 674 mm
6. $75 \mathrm{~m} / \mathrm{s}$
7. a) 227.42 m
b) 11.91 seconds
c) 1031.4 m

## Chapter 9 - Angular Motion

1. $20.94 \mathrm{rad} / \mathrm{s}$
2. 50 Nm
3. $150 \mathrm{rpm}=2468 \mathrm{~J}, 350 \mathrm{rpm}=13399 \mathrm{~J}$
4. $94.9 \%$
5. 7.476 kW
6. 77.6 mm
7. $\mathrm{r}=50 \mathrm{~mm}$, The compensating mass is placed in the opposite direction to the unbalance mass.

## Chapter 10 - Friction

3. 98.1 N
4. $F=W \tan (\alpha+\phi)$

## Chapter 11 - Static and Dynamic Forces

1. $\mathrm{R}_{1}=2300 \mathrm{~N}, \mathrm{R}_{2}=1700 \mathrm{~N}$
2. 1591.09 kPa
3. a) 89.286 MPa
b) $3.968 \times 10^{-4}$
c) 1.984 mm
d) 517.86 MPa
4. a) 19.35 kN
b) 30 studs
5. Steel $=30.29 \mathrm{MPa}$, Copper $=60.58 \mathrm{MPa}$
6. 6 kN load at free end, 8 kN load at midpoint
7. 149.7 RPM
8. 7 bolts required

## Chapter 12 - Fluid Mechanics

1. $6.28 \mathrm{~m}^{3}$
2. Force on the bottom of $\operatorname{tank}=58.86 \mathrm{kN}$, force on the long side of $\operatorname{tank}=14.715 \mathrm{kN}$, force on short side of tank $=9.81 \mathrm{kN}$
3. $5.45 \mathrm{~m}^{3}$
4. $603 \mathrm{~m}^{3} / \mathrm{min}$
5. b) $7.95 \mathrm{~m} / \mathrm{s}$
6. $19.90 \mathrm{~m} / \mathrm{s}$
7. $217.9 \mathrm{~L} / \mathrm{s}$
8. 0.88
9. The centre of pressure is 3.414 m measured from the surface of the water.
10. 517 kg
