AVEVAWORLD

Precise Modeling Using Customization within APS

PATRICK VINCENT

Low-cost, low-carbon hydrogen & syngas using heat and globally abundant materials

OMC Thermochemistry

Britt Boughey MBA, MS, PE

Kent Warren PhD

Juan Inga PhD, PE

Jayaveera Muthusamy Patrick Vincent PhD

Liam Taylor

Existing H2 Production Technologies

	Legacy	Emerging	
	Steam Methane Reforming	Electrolysis	Autothermal Reforming
CO ₂ Emissions	High	None*	Low
Energy Efficiency	60-70%	70-80%	60-70%
Cost	\$	\$\$	\$\$\$
Large-Scale	\checkmark	Needs many small units	\checkmark
Chemistry	$CH_4 + H_2O \longrightarrow 3H_2 + \bigcirc CO_2$	H ₂ O \longrightarrow H ₂ + $\frac{1}{2}$ O ₂	$CH_4 + \frac{1}{2}O_2 + H_2O \longrightarrow 3H_2 + \underbrace{CO_2}$

The OMC Oxygen Carrier Platform

- Iron & aluminum
- Easily fluidizable, highly spherical powder
- Mechanically durable; highly resistant to poisons / fouling
- No unwanted side reactions for H2 / syngas production

FCC - Fluidized Catalytic Cracker

The OMC Process for Green H₂

	ОМС
CO ₂ Emissions	Low
Energy Efficiency	~90%
Cost	\$
Large-Scale	✓ (via FCC format)

(Alternate Step 2) Feed steam and CO_2 to produce syngas (CO + H₂) for upgrading into low-carbon fuels

The OMC Process for Methane-Driven H₂

	ОМС
CO ₂ Emissions	Low
Energy Efficiency	~85%
Cost	\$
Large-Scale	✓ (via FCC format)

(Alternate Step 2) Feed steam and CO₂ to produce syngas (CO + H₂) for upgrading into low-carbon fuels

Modeling Proprietary Material Behavior

MO = oxidized metal oxide M = reduced metal oxide

Some equipment not shown

MO = oxidized metal oxide M = reduced metal oxide

Some equipment not shown

OIL, GAS, AND ENERGY | COLORADO, UNITED STATES

OMC Thermochemistry advances novel lowcarbon hydrogen / syngas technology

Challenge

- Novel process requires customization of simulations to enable accurate modeling & technology development
 - Solids handling of proprietary iron aluminate "active material"
 - Non-stoichiometric reactions occurring between solid / gas phase
 - Custom first-principles enthalpy inputs

Solution

- Utilized flexibility of AVEVA[™] Process Simulation (APS)[™] to successfully model "Nth Plant" flowsheet
 - Unit economics
 - LCAs

Results

- Rigorously modeled class-leading efficiency & unit economics of technology
- Quantified >90% life-cycle emissions reductions for low-carbon hydrogen
- Optimized exotherm heat recovery to capture ~10% energy efficiency improvement

Next Steps

