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*assumes renewable electricity is used .7
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I Existing H2 Production Technologies

Emerging
Steam Methane Reforming Electrolysis Autothermal Reforming
COz Emissions High None* Low
Energy Efficiency 60-70% 70-80% 60-70%
Cost N $S SSS
Large-Scale v Needs many small units v

Chemistry CH4 + H2O — 3H>2 + ‘ H20 — H2+% O2 CH4 + %02 + H2O — 3H2 +



The OMC Oxygen Carrier Platform

FCC - Fluidized Catalytic Cracker

Iron & aluminum

Easily fluidizable, highly spherical powder

Mechanically durable; highly resistant to poisons / fouling

No unwanted side reactions for H2 / syngas production



I The OMC Process for Green H>

0.5 (&
CO2 Emissions Low
Energy Efficiency ~90%
Cost
140, + N, :
Large-Scale v’ (via FCC format)

(Alternate Step 2) Feed steam and CO, to produce syngas
(CO + H,) for upgrading into low-carbon fuels



I The OMC Process for Methane-Driven H>

OMC
CO2 Emissions Low
Energy Efficiency ~85%
Cost
CO +2H, 0S S
— ‘/ .
Water Large-Scale (via FCC format)
Gas Shift
CO, + 3H,

(Alternate Step 2) Feed steam and CO, to produce syngas
(CO + H,) for upgrading into low-carbon fuels



Simulation Cases
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I Modeling Proprietary Material Behavior
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MO = oxidized metal oxide

M = reduced metal oxide Some equipment not shown

I Mass Balances for Non-Stoichiometric Reactions

1
Real: M + H,0 -» MO + H, Real: MO_)M+E 0,

1
Simulation: H,0 - EOZ + H, Simulation: % 0, —>§ 0,
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MO = oxidized metal oxide

- reduced metal oxide Some equipment not shown
M = reduced metal oxid :"
I Heat Balances for Non-Stoichiometric Reactions
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OIL, GAS, AND ENERGY | COLORADO, UNITED STATES

OMC Thermochemistry advances novel low-
carbon hydrogen / syngas technology

Challenge
* Novel process requires customization of simulations to enable accurate modeling &
technology development
* Solids handling of proprietary iron aluminate “active material”
* Non-stoichiometric reactions occurring between solid / gas phase
* Custom first-principles enthalpy inputs

Solution

* Utilized flexibility of AVEVA™ Process Simulation (APS)™ to successfully model “Nth
Plant” flowsheet
* Unit economics
* LCAs

Results

* Rigorously modeled class-leading efficiency & unit economics of technology

* Quantified >90% life-cycle emissions reductions for low-carbon hydrogen

* Optimized exotherm heat recovery to capture ~10% energy efficiency improvement

© 2025 AVEVA Group Limited or its subsidiaries. All rights reserved.




I Next Steps
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