AVEVAWORLD

Digital Transformation : Asset Performance Management

Adani Energy Solutions Ltd

Nihar Raj | Hitesh Patel | Jimesh Gajera 9th April 2025

- Introduction
- Business Challenge
- Driving Digital transformation
- Data driven decision
- Business Value

Adani Energy Solutions Ltd : Introduction

CEREBUL**B** At a Glance

CereBulb is a global company that helps organizations navigate the ever-evolving world of digital transformation. Our mission is to act as a catalyst, empowering businesses to leverage technology and data to achieve their goals

Evolving Business Challenges

- 1) How do we maintain **high availability of our assets** and ensure 24x7 Power to all stake holders
- 2) Climate change impacting electrical assets
- 3) Cost Optimization with no compromise on health of electrical assets
- 4) Decentralization of Data and Data visualization.
- 5) Need to have **Data based decision making**
- 6) Institutionalize our operational experience.
- 7) More visibility on health of distributed assets and prioritize maintenance actions.

 It is very vital for all utility to operate the Grid overcoming all above challenges and ensure 24x7 quality power for all the stake holders maintaining high level of Grid Security, Resilience and operate at high efficiency. adani

- Advanced condition monitoring, Data analytics, IoT sensorization, AI-ML, robotics, Remote – Secured- Reliable operations and strong communication network will be backbone for evolving grids.
- We maintain our Assets at an availability of more than 99.8%

New Process Flow with Adani APM

Business Value:

- 1) Creation of Data Dashboards
- 2) O&M review on dashboard
- 3) Saving of OPEX and CAPEX started...

adani

Adani APM : Data Rules

Business Challenges

- 1) Data naming non standardized, Critical need for having data rules
- 2) Data Integration / mapping in APM was a challenge. Team developing this solution for the first time.
- 3) Performance Model testing getting affected

Solution Implemented

- 1) Established standard names and text for tags / measuring points.
- 2) These measuring points have been in SAP, SCADA and PI System
- 3) Data Governance Rules now to be implemented right from engineering stage.

Solution Implemented

1) Established

Version No.	Date	Details of Change	Reason for Change
1	27-06-2024	New Document	-

	Name	Signature
Prepared By:	Naman Vyas	M.
SCADA, SAP, Pi and Asset Performance SMEs	Ranveer Singh Tawar	Bringh
and APM Super Users	Vijay Kumar Sharma	aloune
Reviewed By:	Supil Kumar Paval	Atab
Head – Protection	Sulli Kullar Kavar	Soute
Reviewed By:	Milao Popat	and ?
Head – O&M (SS and TL)	Milan Popac	Mar 1
Reviewed By:	Daviadra Atala	0
Head – O&M (SS and TL)	Ravinura Atale	an.
Reviewed By:	Sumpet Sharma	6.
Head – Automation and SCADA	Sumeet Sharma	/
Reviewed By:	Anul Calaaki	TAS
Lead - O&M Transformation	ALUI SUIAIIKI	NO.
Approved By:	Nibes Dei	JIN.
Head-O&M	Nindr Rdj	NoNUZZ
Issued & Controlled By:	Davias Kumas Custa	
Document Controller	Pavan Kumar Gupta	

APM : Transformer & Reactor Dashboard

- 1. All critical Transformer parameters monitored.
- 2. Oil analysis done based on inputs from 9 gases.
- 3. Critical gas ratio monitored
- 4. Health Index available for each transformer along with Confidence level as per CIGRE Standards.

APM : Transformer & Reactor Dashboard

765kV_TRAFO_K	PI_TAN_DELTA	<u>duplicate</u>	Asset:	Select Asse	et 🔻						
adani 😔 🖞	🕆 Home 📺 A	larm Analy:	sis 🝥 Hea	alth Index 🟥	j Equipm	ents					
Region	Substation		Rating	Asset Nan	ne	SAP ID		Manufacturer		Serial Numbe	H r
Maharashtra	Akola		765	ICT_1_Y		20001	03516	нні		20103354TN	G002_003
- \ i i i	(KPI Name Tan Delta Bushing	KPI Score 4	Interpretation Good Confidence Level	Last Main 10/27/2024	tenance 12:00:00 AM	KPI Nan Tan Delta Winding	ne KPI Score 4	Interpretatio Good	on Last Main 10/27/2024 vel: 10	12:00:00 AM
		Measurin	g Points	Ideal Range	Value	Trend	Measu	ring Points	Ideal Range	Value	Trend
		% Tan Delta	HV 10KV	0 to 1	0.32 %		% Tan De	lta HV+IV-G 10kV	0 to 1	0.00 %	
		% Tan Delta	IV 10kV	0 to 1	0.30 %		% Tan De	lta HV+IV-LV+G 10	KV 0 to 1	0.00 %	
Tan Delta Bushing	Max Value	% Tan Delta		0 to 1	0.39 %		% Tan De	lta HV+IV-LV 10kV	0 to 1	0.16 %	
Tan Delta (%) HV at 10kV	0.20 %	% Tap Dolta		0 to 1	0.40 %				0 to 1	0.00 %	
Tan Delta Winding Tan Delta (%) of HV + IV to LV	Max Value at 10kV 0.16 %				0.07.0				0.10.1	0.00 %	
Annual Ris	se			0 to 1	0.37 %		% Tan De			0.00 %	
		C2 % Tan De	lta HV 1kV	0 to 1	0.31 %		% Tan De	lta LV-HV+IV 10kV	0 to 1	0.00 %	,
		C2 % Tan De	lta IV 1kV	0 to 1	0.30 %						
		C2 % Tan De	lta LV1 1kV	0 to 1	0.38 %						
		C2 % Tan De	lta LV2 1kV	0 to 1	0.39 %						
		C2 % Tan De	ita Neutral 1kV	0 to 1	0.39 %						
2/3/2025 1:28:24 PM										2	2/3/2025 1:38

- Each transformer parameter can be drilled for detailed analysis.
- 2. Actual values can be compared with the ideal range set in the software based on operational experience
- Trends based on past historian data can be seen for each parameter.

Adani APM : Fleet Analytics

Key Insights from Fleet Analytics

- To compare the performance of "MAKE OF EQUIPMENT" over lifetime.
- Compare the performance of make of transformer
 - At different voltage levels
 - Different Geographies
 - Different SPV
- Further Analytics on
 - What should be the change in maintenance strategy Age wise
 - What should be the changes specific to geography
 - What aspects to be taken care during design stage.
- This fleet analytics will be done for EACH Equipment (Trafo, Reactor, CB, CT, CVT, LA)
- Risk vs Importance criteria under preparation.

APM : Circuit Breaker Dashboard

- All important CB data and their respective trends visible on CB Dashboard.
- 2. Every Measuring point is drilled down.
- Asset manager now knows the exact issues just a click away...
- 4. Relative comparison of CB's common parameters is also possible.

APM : Circuit Breaker Dashboard

AVEV	A" PI Vision"							<u></u>	New Display		1908 🕜	
0	HEALTH INDEX ALL EQUIPM	ENT *										
	adani (©)	W.	Health Index	lealth Index 👫 Equipments							SAP	
881	Region	Substation	Rating	Asset Name		SAP ID		Manufacturer		Serial Number		
8	Maharashtra Koradi 7		765	65 701 CB Y PHASE		2000102201		ABB		80000016		
	≻		KPI Name Operating Mechanism (GE)		KPI Score 2		Interpretation Fair		Last Maintenand 24-10-2024	ce Confidence Level 8		
			Measuring	Points +	Ideal Range		Values		Trend	1		
	<u>a</u>	a	Close Veloc	ity DM-1	-0.15 to 0.15		3.33					
			Close Veloc	ity DM-2	-0.15 to 0.15							
	Operating Mechanicm (GE)	Max Confidence em	Closing Coil	l curent DM-1	-5 to 5		1.5					
	Open Velocity DM 1	Velocity DM 1 52		Closing Coil curent DM-2			1.6	1.6				
	Open velocity DM-1		Closing Coil resistance DM-1		-5 to 5		218	218				
	Operating Mechanism (GE)	Max Confidence Leve	Closing Coil	resistance DM-2	-5 to 5		215					
	Closing Coil resistance DM-2	215	IR of spring	charging motor DM-1	1000 to ∞							
	Operating Mechanism (GE)	Max Confidence Leve	IR of spring	charging motor DM-2	1000 to ∞							
	Closing Coil curent DM-2 1.6		Motor current during operation D_		-5 to 5		0.3					
			Motor curre	Motor current during operation D_		-5 to 5		0.28				
Ē												

U

Now

adani

APM : Checking the trend of Tan delta

APM : CVT, Isolator, NGR

APM : Substation level dashboard

Every station head, gets a unique dashboard to identify the equipments with high risk. This helps to prioritize substation level maintenance.

Transformer Line Dash Boards

All tower assets health condition is available on single dashboard. State wise, SPV wise and Line wise performance can be checked by asset manager, to prioritize the asset health

Transformer Line Dash Boards

Possible to analyze each tower and also compare the health score for any 2 selected towers

Transformer Line Dash Boards

adani

AHI Comparison at subcomponent level is also possible. This is <u>UNIQUE and FIRST time</u> done in Linear assets for electrical utility. This helps asset manager to compare the degradation on account of climate change / geographical aging

Transformer Line RISK Dash Boards

Risk profiling helps to monitor the inventory aspects and also plan prioritization of maintenance by asset manager.

Transformer Line Fleet Analytics

adani

Data Quality Dash Boards

adani

Monitoring the trends of CPU, disk free space, memory utilization. Notifications for activity violations

Data Quality Dash Boards – "Connectivity Status"

adani

Monitoring the data connectivity status with failure events, failure duration and total uptime for connectivity

Data Quality Dash Board

Data Quality Dash Board

Use Case -1 Risk Identification – ATIL

Business Problem

1. Acetylene gas trend increase in HVDC Converter transformer.

adani

2. Risk of Power interruption

Solution Adopted

- Central monitoring of data in APM. Gas violation detected on set rules.
- 2. Transformer put on critical monitoring zone. OEM consulted.

Business Benefit

- 1. Early risk identified and monitoring aspects implemented.
- 2. Early decision making and avoiding failure of nearly 2500 MW of power

Use Case – 2 Failure Avoidance

Business Problem

1. 765kV reactors had abnormal gas increase.

adani

2. Huge cost incurred in FY 22-23 & FY 23-24;

Solution Adopted

- 1. Continuous monitoring of assets on APM by SME (All critical gases)
- 2. Adapting operation strategy based on asset condition
- 3. Discussion with OEM on identified risks

Business Benefit

- 1. No failure in FY 24-25. Avoiding cost overrun
- 2. System availability of nearly 99.87%

Way Ahead for Adani Energy Solutions Ltd

- 1) Ramping up **Technology inclusion and proliferation**.
- 2) Enabling high system "Availability", integrating ESG
- **3)** Ramping our digitalization journey. Evolving maintenance strategies to overcome climate change issues

adani

- 4) More inclusion of **Digital work force** (BOTS) and **continuous upskilling** of our workforce.
- 5) More, Data driven decision making
- 6) Creating resilient networks incorporating IT and OT security
- 7) Creating more **insights from Data**
- 8) Making O&M, "In a BOX Solution".

Adani Energy Solutions enables faster decisionmaking to optimize reliability and profitability

Challenge

- To maintain high availability of assets and 24x7 power to all stakeholders
- Retain and systematize operational experience of its aging and transient workforce
- To increase visibility on the health of distributed assets and prioritize maintenance actions
- To optimize costs without compromising the health of electrical assets

Solution

• Uses AVEVA[™] PI System[™] as the core of its centralized scheduling monitoring system to enable comprehensive asset performance and alarm analytics across its complex distribution network.

Results

- Improved operational efficiency and enabled data-driven decisions
- Early risk identified and monitoring aspects implemented
- Early decision making and avoiding failure of nearly 2500 MW of power
- Continuous monitoring means failure avoidance, with no failure in FY 24-25. Avoiding cost overruns.
- System availability of nearly 99.87%

adani

Thank You !

