AVEVAWORLD

HINDUSTAN

ZINC

Christopher Kiddle - Cerebulb Jevin Makadia - CereBulb

Our Fully Integrated Operations

 \bigcirc

Mine

- Rampura Agucha Mine
- Sindesar Khurd Mine
- Rajpura Dariba Mine
- Zawar Group of Mines
- Kayad Mine

CEREBUL

Smelters & Refineries

- Chanderiya Smelting Complex (Pyrometallurgical Lead Zinc Smelter & Hydrometallurgical Zinc Smelter)
- Dariba Smelting Complex (Hydrometallurgical Zinc Smelter & Lead Smelter)
- Zinc Smelter Debari Hydrometallurgical Zinc Smelter
- Pantnagar (Zinc, Lead & Silver refinery)
- Wind Power

Our Capacities

Metal Production Volumes FY24

Protecting & Preserving for an AatmaNirbhar Bharat...

817 Kt Refined Zinc

746 MT Refined Silver

216 Kt Refined Lead

Zinc Portfolio – Amongst World's Largest

Our Diverse Product Portfolio

SUSTAINABLE

Lead

Features

Versatile metal with high malleability, Resistant to corrosion

Applications

Automotive batteries, Pigments, Cable sheathing

Features

Highest thermal conductivity & lowest contact resistance

Appiications

High- end Electronic devices, Printed circuits,

Production of mirror & coatings, Solar Technology

Why is Zinc the Game-Changer in the Metal Industry?

Protecting Critical Infrastructure | Strengthening Automobiles | Driving the Global Energy Transition | Amping Up Defence | Powering Modern Electrical and Electronic Systems | Fortifying Food Security

From Underground to Above the Ground

Ore extracted from mines

CEREBUL

Extracted ore being processed at smelters

Zinc ingots made at smelters

Zinc used across industries from aerospace to defence

SUSTAINABLE

Sustainability

S&P Global

The World's Most Sustainable Metals & Mining Company

as per S&P Global Corporate Sustainability Assessment 2023 & 2024 consecutively for the past 2 years

2.41 times Water Positive

70% of total energy needs to be sourced using Renewable Power by 2027 100% renewable power for Pantnagar Metal Plant, Uttarakhand

India's 1st all-women underground mine rescue team 1st underground BEV Producing Asia's only Low Carbon 'Green' Zinc - EcoZen Transforming the lives of 20 lakh people across 4,000 remote villages

۲

Digitalization Journey & AVEVA PI System

Applicability of AVEVA PI System

Data Efficiency

- Single source of truth
- Quicker response
- Automated shift reports
- Event based email notifications
- Easy to communicate with various DCS and ERP platforms to have end-to-end business visibility
- Mobility capability

People

- Data-based live feed discussions
- Manpower engagement to value-added work and future prospects
- Performance monitoring & training identification Analytical based capability
- measurement and appraisals

Asset

Data- & analysis-based RCA

Model-based predictive

Improved safety and

maintenance and material

reduction in unscheduled

•

planning

breakdown

Cost

- Real-time consumables tracking
- Cost control real-time consumables optimization
- Building cost consciousness
 to bottommost layer

Digital Architecture

Condition-Based Monitoring of Critical Assets

Performance Monitoring of Critical Assets

Challenge	Solution	Value			
 Operational Efficiency not known 	 Real time Monitoring of Efficiency based on analytics using theoretical performance curve Ideal vs Actual Power Consumption analysis 	Potential reduction in SpecificEnergy Consumption by 5%			
Smeller's Overview Sinter ISE Refinery Ros Assets Comparision 135,000 100,000 <t< td=""><td>star1 L&P.1 Cell House.1 Roster.2 L&P.2 Cell House.2 Roster.2 Roster.2</td><td>Inster-4 Roaster-5 L&P-DSC Cell House-DSC DSC Lead SO2 Blower Diff. Pres 457.68 mbar 1.00.49 PM 1d 3/19/2025 1:00.49 PM Lytropic Head (kL/kg) Actual Power 2.388.692 kW</td></t<>	star1 L&P.1 Cell House.1 Roster.2 L&P.2 Cell House.2 Roster.2	Inster-4 Roaster-5 L&P-DSC Cell House-DSC DSC Lead SO2 Blower Diff. Pres 457.68 mbar 1.00.49 PM 1d 3/19/2025 1:00.49 PM Lytropic Head (kL/kg) Actual Power 2.388.692 kW			
3/18/2025 1:00:49 PM 1d 3/19/2025 1:00:49 PM	M L L01,0 20,0 30,0 40,0 50,0 40,0 70,0 String 20,0 Str				

Operational Efficiency Improvement

Challenge	
-----------	--

 Process Capability and Score analysis are done offline Control Charts were not available on realtime basis

Solution

- CpK and Score card analysis done in PI AF. Real time dashboards developed along with SPC
- Charts Notification and deviation alerts configured

Value

- Potential Improvement throughput by 0.5-1% Improvement in Standard deviation of
- CTP/CTQ

	Roaster-4 Process Score Card												
												Overall Score	
SN	Parameter 🔺	Score	Weightage	PV LSL	PV Ave	PVJUSL	PV CpK	PV	PV	PV LCL	PVJUCL	30 40 50 60 70 96 100.00 % 92 92 92 92 92 96 92 92 96 92 92 96 92 92 96 92 96 97 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97	
14	Acid concentration of FAT	100	5	98.2	98.7502	99	0.76656	98.7834	%	98.5808	99.0554	20 100 00 80 -88 90.00 %	
11	Acid concentration of IAT	100	5	98	98.7477	99	0.51602	98.7691	%	98.3814	99.1975		
4	Bed pressure	100	5	1600	1832. <mark>4</mark>	2300	1.15352	1749.93	mmwc	1619.76	1877.19	0 100 2/26/2025 10:48:38 AM 30d 3/28/2025 10:48:38 AM	
16	Calcine sieve (+52)	100	10	0	1.21776	3	0.04699	1.3	%	-9.60449	14.4732	Control Charts	
17	Calcine sieve (-250)	100	10	80	79.2579	90	-0.11956	78.6	%	48.7676	104.562		
12	Convertor 1st Bed	100	5	420	441.361	460	0.59784	434.661	°C	412.934	471.846	Acid concentration of FAT Acid concentration of IAT	
7	Drum cooler O/L temp	100	5	0	158.92	200	0.47768	170.049	°C	87.6104	239.727	99.1 98.9 98.78 % 98.77 %	
1	Moisture in Concentrate	100	5	9.8	9.64497	11	-0.01742	9.7	%	9.15101	10.4268	PV[LSL 98.5 98.20 Log 4 98.00	
10	PGCT O/L temp	100	5	0	35.0241	39	0.57568	31.9232	°C	23.7338	43.1111	98.3 98.1 PV/USL 98	
15	R4 Sulphide Sulphur	100	10	0.2	0.43103	0.45	0.46043	0.34	%	0.13458	0.56654	3/21/2025 10:48:38 AM 7d 3/28/2025 10:48:38 AM 99.000 3/21/2025 10:48:38 AM 7d 3/28/2025 10:48:38 AM 99.000	
2	Roaster airflow	100	5	55000	56588. <mark>4</mark>	86000	1.65505	56319.7	nm3/hr	56364	60528.4	Bed pressure Calcine sieve (+52)	
5	Roaster bed temp	100	5	850	962.245	970	-0.11912	1026.4	°C	900.549	1058.23	C2.500 ↓ • PV	
6	Roaster O/L temp	100	5	850	947.815	1000	0.53286	981.414	°C	836.876	1049.71	2,000	
3	Secondary airflow	100	5	0	12702.4	25000	22.0281	15736	nm3/hr	15187.8	16040	PV[LSL -1.5 PV[LSL -1.5 PV[LSL -1.5 PV]LSL -1.5 PV]LSL -1.5 PV[LSL -1.5 PV]LSL -1.5 PV[LSL -1.5 PV]LSL	
13	SO2%	100	5	7	8.2509	9.5	0.13378	8.59634	%	2.82685	12.4621	Pyjust 0 Pyjust	
18	Stripper water acidity	100	10	0	5.87936	10	0.71518	6.2	gpi	3.9404	11.0063	3 3/21/2025 10:48:38 AM 7d 3/28/2025 10:48:38 AM 2:300 3/21/2025 10:48:38 AM 7d 3/28/2025 10:48:38 AM 5	

Operational Efficiency Improvement

Challenge	Solution		Value
Process Capability and Score analysis are done offline Control Charts were not available on real-time basis	 CpK and Score card analysis done in Real time dashboards developed alc Charts Notification and deviation ale 	 PI AF. Potential In Improvements configured 	nprovement throughput by 0.5-1% ent in Standard deviation of CTP/CTQ
99.1 -98.9 -98.8 -98.7 -98.6 -98.5 -98.4 -98.3 -98.2	Control Chart: Acid Concentration of	FAT	+ PV 98.79 % PV[LSL 98.000
<u>3/22/2025</u> <u>3/23/2025</u>	3/24/2025 3/25/2025	3/26/2025 3/27/2025	SUSTAINABLE

Soft Sensor for Predicting P80 in Mills

Challenge	Solution	Value		
No visibility of P80 in the mills (P80: Fineness of the ore; acts as key performance indicator in grinding section in milling process)	Developed an AI/ML model (Regression) using the key operational parameters. PI System being used for: •Data collection & validation using PI Datalink (Training) & PI WebAPI (Live-Data) •Deployment of Model into Control system using PI WebAPI via Python scripting Dashboarding using PI Vision	Grinding Media & Power Specific Consumption reduction		
AVEVA [™] PI Vision [™]	New Display II HZL01\590094			
Agucha Stream-4 P80 Dashboard Image: Current Val 61.382 Image: Current Val 61.382	Last 4 hours Average 59.261 µm Current Day Average 60.411 µm P80 - Trend			
DIC 5112 PI 5116 L 1st St. Cyc. Density 1st St. Cyc. Press 1st S 1.72 3/17/2025 6:14:00 PM	IC 5115 DIC 5119 PI 5123 LICA 5117 FIC 5120 BM Power FIC 5118 Solids WIC 5100 FIC 5101 SM Speed FIC 5111 To Cyc. Sump. 2nd St. Cyc. Density2nd St. Cyc. Pres. 2nd St. Cyc. Sum Ball Mill Foed Water Ball Mill Foed Water Ball Mill Sump Water Cyclone OF Solids Process Feed Rate SAG Mill Feed W. Sag Mill Motor Sp. Sag Mill Motor Sp. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Motor Sp. Sag Mill Motor Sp. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Motor Sp. Sag Mill Sump W. Sag Mill Motor Sp. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Sump W. Sag Mill Motor Sp. Sag Mill Sump W. Sag Mill Motor Sp. Sag Mill	DO PM		

Energy Management System

SAFE IIIIIII

SMART

Challenge								Solution	Val	ue	Way Forward				
Huge Dev Load Scho	viation in edule re	Actua sulting	l vs Plar in Pena	nned • Ilty	 Integration of Energy Monitoring devices across HZL with PI System 								saving	Automatic Scheduling based on Load forecast	
withdrawa	al and ini	iection	nuei	•	Real	time das	shboard c	of actual po	actual power consumption				nth	Solar power generation	
		,		•	Auto	alerts co	onsidering	, g 15-Min blo	ock schedu	le deviation	on	prediction			
	SD PMP	SOLAR	1												
							ZSD-Er	nergy Moni	toring						
Name			Value	Units Av	rage	Minimum	Maximum	ZSD Incoming Power							
132 KV Main Inc	comer Current	t	198.28	A	202.66	137.81	235.26			44.09 MW			1		
132 KV Main Inc	comer Power		44.09	MW	45.65	31.39	52.86	Name	Name Value		Units	Average	Minimum	Maximum	
132 KV Main Incomer Voltage 131.46 KV					132.22	127.93	136.09	132 KV M	132 KV Main Incomer Power		MW	45.65	31.39	52.86	
Accot	and Connet Francisco Dourse		Dowor	r Factor Voltago		132 KV M	132 KV Main Incomer MVA 45.20 MVA			46.40 31.6		4 54.04			
KIDLOSKAD 1	509	- FIEQ	19 92	2.62	rower	-0.29	11 12								
KIRLOSKAR-1	738	3 21	49.52	10.62		0.76	10.95								
BHEL-1	721	21 28 49.85		13.69	13.69 0.		11.18	R2 Load R3 Load				ching Load	M&C Load		
BHEL-2	895	5.02	49.85	17.03	17.03 0.98 11.01		11.01	1,521	1.0 KVV	0371.	90 K	vv 092.	74 (()	130	0.00KW
Description	V	/alue	Units	Name		Value	Units							36	
AJAX Furnace P	ower	451.51	kW	STG Total		4.938	5 MW	Accet 4			DC C	urront	Rec Total		
DEMAG Furnace	e Power	462.08	kW		(T 1	· . .	14		AC POwer	DC voltage	DUU				7.07 MW
Holding Furnace Power 37.05 kW		Rect C/	t C/T Inlet Temperature			RECTIFIER-T	16.06 MW	814.00	v v	18.93 KA					
Induction Furnac	Induction Furnace Power 44		kW	20.97 %	.97 °C			DECTIFIER 2	RECTIFIER-2 15.21 MW 865.56 V			17.08 KA 41.994			Aux Load.Value
Rec 27					C Out	tlet Tem	perature	RECTIFIER-3	NECTIFIER-3 10.72 MWV 003.39 V			>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MWL	14.102 kW	

Potential Benefits Industries can target using AVEVA PI System

Deployment of PI System Across HZL

Change Management Across Workforce

Android, IOS & windows-based App development

Notification Counter & Closure Analysis

Automated PI Vision display development

Mail subscriptions with exported display in PDF format

Pareto Chart & other advance visualization capability in PI Vision

In-built AI/ML based Analytical Engine

MMM | India

<u>к</u>О

Ĩ

Ø

Rock to Revenue: HZL's Future Ready Plant

Challenge

- Data Silos & Lack of Real-Time Visibility
- Inefficient Asset Performance Monitoring & Maintenance
- Energy Management & Sustainability Compliance
- Manual Reporting & Change Management

Solutions

- End to End Plant Digitization from Mines to Metal Processing
- Integration with Multiple OEM Data Sources.
- Integration with SAP for Production Output Management

Result

- Increase in Process efficiency by **5-10%**
- Asset Productivity output boosted by 10-15%.
- OEE Improved by **10-15%.**

Website: <u>www.hzlindia.com</u> Email: <u>infohzl@vedanta.co.in</u>

Ö

CEREBUL