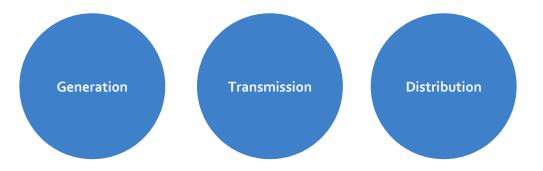
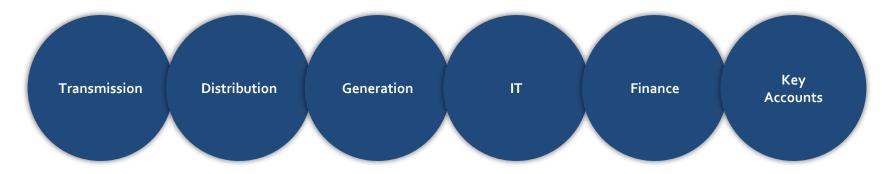
AVEVAWORLD


Driven by the Grid

An Industry in Flux

The electric utility and its service landscape are evolving rapidly

- For decades, the model was sound: Generation, transmission, and distribution worked as isolated organizations
- The shift to renewables and a growing load on Dominion Energy's system is posing new challenges that is demanding a transformation in the operating model
- More than 70% of the world's internet traffic flows through Dominion Energy's territory
- Data centers in Dominion Energy's footprint can account for up to 21% of our system loading
- By 2035, Virginia's data center demand will require as much power as New York City (16.5GW)



Dominion is Big... and Regulated

Fast-Paced Innovation is Tricky

- Like most big companies, we can suffer from a case of corporate segmentation and siloing of our data
- Conventional business units continue to focus on their functional and operational needs
- The challenges of an evolving system will not wait, but the regulations are here to stay
- We need to enable a data environment that allows for nimble development and greater accessibility to information while ensuring we meet the complex regulations of our industry

In an industry that avoids risk and change in the name of reliability, we had to take steps to build an environment that challenges decades of habit

Challenge

- Our SCADA historian was increasing in size and complexity
- · Thousands of new assets come online or get retired weekly
- Disparate business function means inconsistent data

Solution

• Dominion deployed an evergreen centralized model that combines data from multiple systems of record for an intuitive and easy to use experience

Results

- An automated AF that reduces data exploration and data cleansing exercises
- Enabled data analysis and data science capabilities by integrating with powerful modeling software (ESRI, Seeq, PredictiveGrid)
- More intelligent data-forward decision-making including CBM

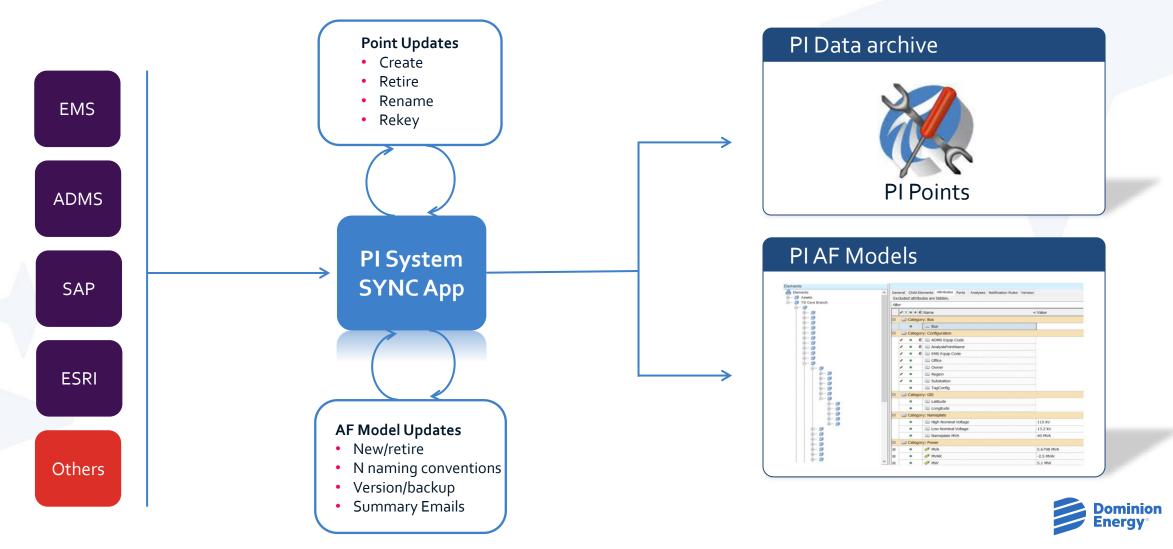
- 🗇 Line		Ē
🗉 🗇 Line Segments		
🗝 🗇 Reclosers	111	-8
- 🗇 Substations	111	8
🗝 🗇 Transformer Bank	111	8
Generation Core Branch	111	-6
TD Core Branch	111	2
- 🗇 Central	Ш	
OCLD HARBOR	111	T é
Battery	111	-8
COLD HARBOR-BAT 1		
Breaker	111	
- OLD HARBOR-CB152		Ē
- 🗇 COLD HARBOR-CB153		
— 🗇 COLD HARBOR-CB154	111	
- 🗇 COLD HARBOR-CB155	111	
- COLD HARBOR-CB155		G
— 🗇 COLD HARBOR-CB157		
⊞– 🗇 COLD HARBOR-CB158	⊕	18
— 🗇 COLD HARBOR-CB159		Ē
- 🗇 COLD HARBOR-CB160		
- OLD HARBOR-CB161	111	
- 🗇 COLD HARBOR-CB162 - 🕣 COLD HARBOR-CB163	111	
- COLD HARBOR-CB103	111	Ľ ĺ
- COLD HARBOR-CB104		
- COLD HARBOR-CB166		
- COLD HARBOR-CB167	€	
COLD HARBOR-CB168	111	-É
🖃 🗂 Bus		-2
— 👩 COLD HARBOR-BUS 4		1
⊞– 🗇 COLD HARBOR-BUS 5	111	
⊞– 👩 COLD HARBOR-BUS 7	ll e	<u>ال</u>
🖨 🗝 Capacitor Bank		-8
E- COLD HARBOR-CAP 1		
		Ē
th−		
□ □ Line □ □ COLD HARBOR-LINE 52		13
- OLD HARBOR-LINE 57		3
\blacksquare = \Box COLD HARBOR-LINE 58		3
\blacksquare \blacksquare COLD HARBOR-LINE 61		-2
🗊 🗇 COLD HARBOR-LINE 67	111	12
□ □ COLD HARBOR-LINE 68		
🖮 🗇 Transformer Bank		8
🗊 – 👩 COLD HARBOR-TX 1		8
— 🗇 COLD HARBOR-TX 2		
COLD HARBOR-TX 3	Ξ	Ē
		8
$\blacksquare - \Box IOVELAND$		LØ
E UCKNOW		6
	111	LK

Category: Configuration					
ADMS Equip Code	TX_2				
AnalysisPointName	COLD_HARBOR-TX_2				
EMS Equip Code	TX2				
Office	Lumon				
Owner	Т				
E Region	Central				
Substation	COLD_HARBOR				
TagConfig	COLD_HARBOR-TX_2				
Category: GIS	24				
💷 Latitude	40.3654 °				
💷 Longitude	-74.1672 °				
Category: LTC Attributes	//·····-				
🍼 Tap Position	1				
Category: Nameplate					
High Nominal Voltage	138 kV				
Low Nominal Voltage	69 kV				
Nameplate MVA	112 MVA				
Category: Power					
🛷 MVA	14.47 MVA				
🞺 MVA State Estimated	-17.434 MVA				
I MVAR	-2.80 MVAr				
MVAR State Estimated	-3.7817 MVAr				
nw	-13.60 MW				
nter State Estimated	-17.019 MW				
Category: SAP					
E FLOC	COLD HARBOR- TX 2				
Manufacture Year	2011				
Manufacturer	Lumon				
Model					
Primary SAP Equipment Description	Transformer, LTC				
Primary SAP Equipment ID	TX178				
Primary SAP Functional Lo	A				
Category: Status					
🎺 Bus Lockout	Dominion Energy®				
Cehydrating Breather Alar Energy					
Lockout					
nessure Relief					

Business Challenge

Business Challenges

Developing new data capabilities was difficult for many reasons. We had to enable Dominion



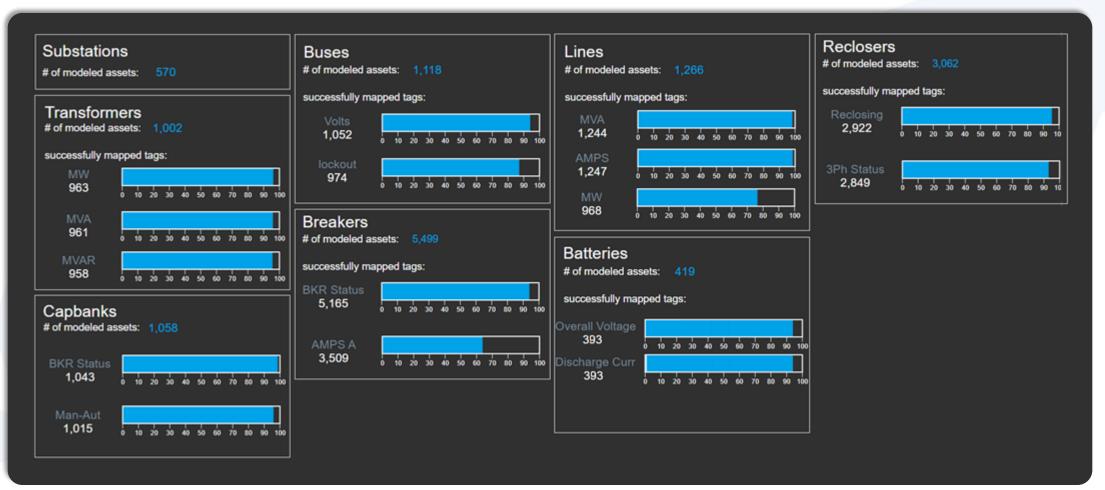
Solution and Implementation

Automated Point management and Model Updates

We have worked to overcome the obstacle of data access, data naming, and data misalignment

Growth of an Enabling Asset Framework

Asset Framework Today


- Templates: 53
- Analysis: 135K
- Elements: 27K
 - Substations: 634
 - Transformers: 1068
 - Circuits and Breakers: 7216
 - Capbanks: 1074
 - Lines: 1461
 - Reclosers: 3343
 - Batteries: 800
 - Buses: 216
 - Delivery Points: 301
 - Distributed Generation: 188

5.4 Million Points on PI Data Archive

54 VMS Across Prod, QA & Dev

Model Validation

Providing Proactive Vigilance

Creating a culture of awareness for admins and the business was critical for the growth and adoption of the AF

- The application runs daily as a service
- An email goes out to admins with all updates
- Model backups created daily

Information Shared Includes

- NEW assets includer
- RETIRED assets
- Point mapping success/errors

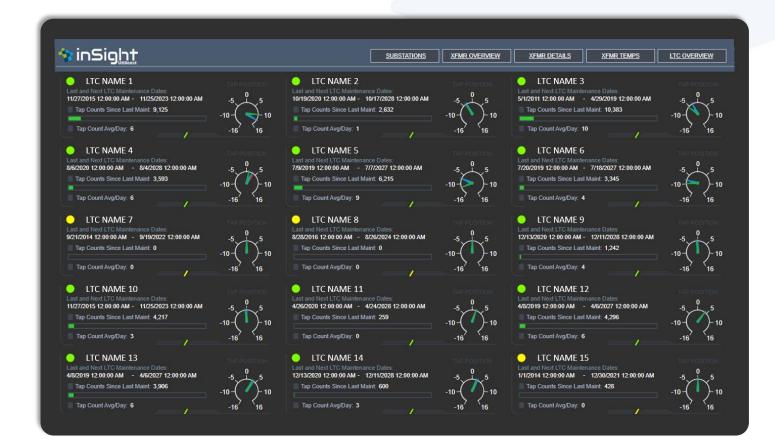
Sample Email Report

[PROD] AFsync Run Report

Bruno.Bachiega@dominionenergy.com To © Bruno Bachiega

Manual—Auto mapped: 1/1 LINES

Number: 1501 [NEW] LINE7 under COLD HARBOR Substation [NEW] LINE9 under ALLENTOWN Substation Line AMPS mapped: 1410/1497 Line MVA mapped: 1410/1497 RECLOSERS Number: 3222 Reclosing tags mapped: 9201/9237 Hot Line tags mapped: 9201/9237 BATTERIES Number: 1374 [NEW] DRANESVIL_BAT under DRANESVILLE substations **TX BREATHER ALARMS** Number: 576 [NEW] Alarm for ZURICH.TX1_BREATH_TROUB under TX Breather Alarms Execution completed in 01:22:25.5193267


Success Stories at Dominion

Supporting the Maintenance of Load Tap Changers (LTC)

Through the newly deployed asset framework, the Engineering Analytics & Modeling team helped model and visualize hundreds of transformer LTCs

- Integrated with maintenance system to forecast future maintenance dates
- Capture events and notify engineers on multiple alarms and events use cases
- Incorporated drill-down capabilities to help engineers diagnose and take action

The Larger Impact of VOLT VAR Control

The deployed AF Hierarchy enables disparate resources to co-exist.

Today, engineers can promptly find and visualize an array of assets including:

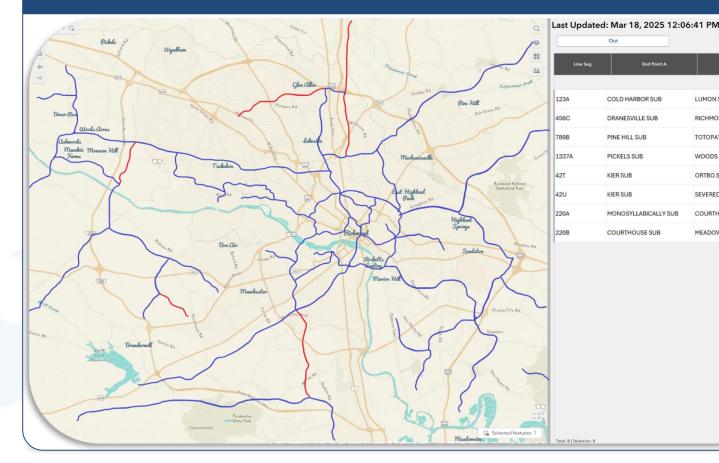
- Capbanks
- Transformers
- Buses

We now serve an increasingly complex set of use cases with greater expediency that allow experts to meet business requirements previously maintained manually (or left entirely unserved)

Keeping up with Growing Load

Dominion's system is slated to grow as much as 5% year over year. Executives and engineers want to keep up.

- Roll ups at multiple levels of the hierarchy
- Pre-calculation of computer intensive analysis for quicker view and reporting
- PI Vision allows for easy playback and backtrack


System Profile										
Current Load		Current	Generation							
DE Load 23,174.8	PJM Load Forecast 23,497.0 MW	Total Generation (MW) 21,429.8						System % Asset Us 41.73		
and a star and a star and a star and and a star and a s	PJM Min Load Forecast 15,166.0 MW						Ð	ystem Chai very 10 minutes 67.6		
میں اور	PJM Max Load Forecast 23,633.0 MW					System MVARS 21.88				
Data Center Alley (Loudoun County)		Generat	ion Source	5						
NOVA RAP Total Load Aggregate LAMAR 3, 113.7		Туре	Gas	<u>مُنْ</u> Nuclear	Ö Solar	Coal	Hydro	Wind	Biorr	
Temperatures		% of Total	48.69	17.30	1.49	8.96	12.90	0.65	0.	
PROJECTED	CURRENT		GAS	NUC	LEAR	SO	LAR	co	DAL	
32F 41F 50F 59F 68F 77F 86F 95F	Richmond Metro 31.0	4,000	0,435	1.500	2.00 2.00 -3.000	1,000	2000-2500	1,000	1,500 920	
System Frequency	59.996		`13,403		`4,002		3,400	ď	2,875	
		1,000	2,000 2,000 2,000 2,000 2,000 2,000 2,000	200	39 	*		-2,000		
PJMACE		DISTR	iiii AR	DOM TRANSMISSION SOLAR	TAD SYSTE	SOLAR 3M LOAD	RENEWABLE	55	cvow	
have have and	Warman	200-010	0 -1,000 ±	50 50 50 50 50 50 50 50 50 50 50 50 50 5	30, 20-1	20 es 10 10 10 10 10 10 10 10 10 10	20-4.0 10 0 % 1	70 4 -80 2- '90	-7.6	

Dominion Customers Out Customers Out Percentage 6,349 Interchang Percent of Generation Interchange (MW) Exporting Importing 6000 MV 6000 M Tie Lines FIRST ENERGY AEP Name Interchange (MW) Line ZURICH 6 557 55 ORTBO LUMON LEGACY 558 EAGAN REPLICA 559 241 HELENA MDR 257 560 ALLENTOWN 258 LEONORA 561 2101 HARMONY COBEL 563 DRUMMOND 567 COLD HARBOR 564 DUK CAIRNS 565 LUCKNOW Line Name Interchange (MW 566 123 BAIRD 225 QUARTERLY PERFORMANCE 267 1231 SEVERED REFININC PERPETUITY • 172 281 295 GOAT

Enabling a Geo-Spatial Capability

ARCGIS to Track a Physical System

From asset monitoring to loading heat maps, AF is helping EA&M deploy new geospatial capabilities for its customers

End Point B J∱ Sement asc : 2Ξ

LUMON SUB

RICHMOND SUB

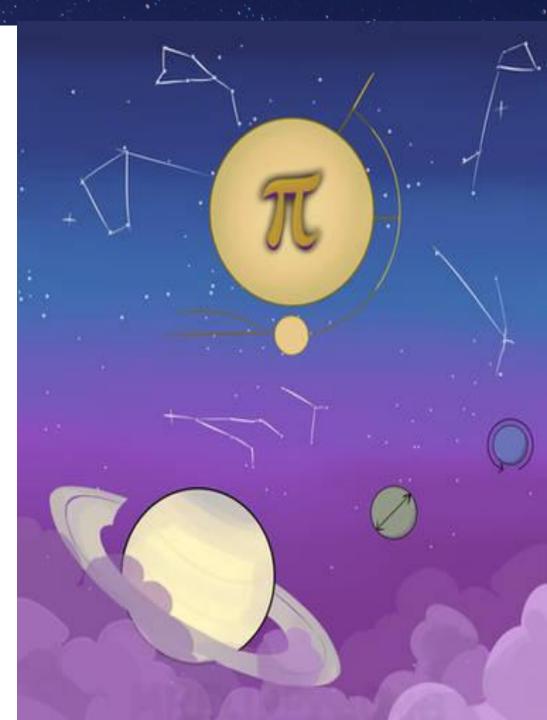
TOTOPATOMY SUB

WOODS ACRE SUB

ORTBO SUB

SEVERED SUB

COURTHOUSE SUP


MEADOWVILLE SUB

The deployment of an AF based entirely on templates provided a seamless means for an ESRI integration

Next Steps

- Full ESRI integration
- Implementation of more business use cases (large backlog)
- Roll out and training for a growing user-base
- Full-time Engineering Analytics Team set to grow from 4 to 16 by the end of 2025

Seth Milchick

MANAGER, MACRO DATA REFINEMENT

The automation of the PI System has bestowed upon our team the extraordinary boon of alleviating laborious tasks related to creating points and maintaining a digital twin in AF.

Furthermore, this august innovation also helped reduce the technical debt from the manual methodologies that were in place before the automation, whose inefficiencies now stand as mere relics of a less enlightened epoch.

As a result, our esteemed colleagues have now the latitude to engage in pursuits of greater consequence.

Josh M

Staff Engineer, Operations Analytics Dominion Energy

joshua.m.mellen@dominionenergy.com

Bruno B

Power and Utilities Consultant

Utilicast

bbachiega@utilicast.com

