AVEVAWORLD

PARIS

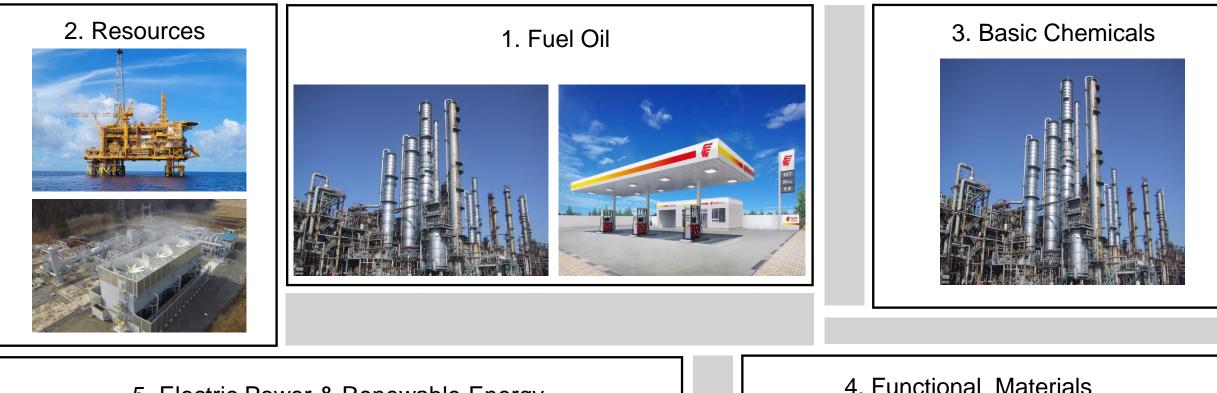
OCTOBER 16,2024

Approach to schedule automation utilizing SAIA by Idemitsu

Idemitsu Kosan Co., Ltd. Akiyoshi Kamada

Agenda

01	Company Overview
02	Background and Purpose of Schedule AI Assistant
03	Target State of the Production Scheduling system
04	Implementation schedule
05	System Functionality
06	Anticipated Benefits from the Schedule AI Assistant
07	Implementation progress - Achievements
08	Enhanced Scheduling: example of capabilities deployed and outcome
09	Validation: Crude Schedule Generation
10	Path Forward: Blueprint for Success

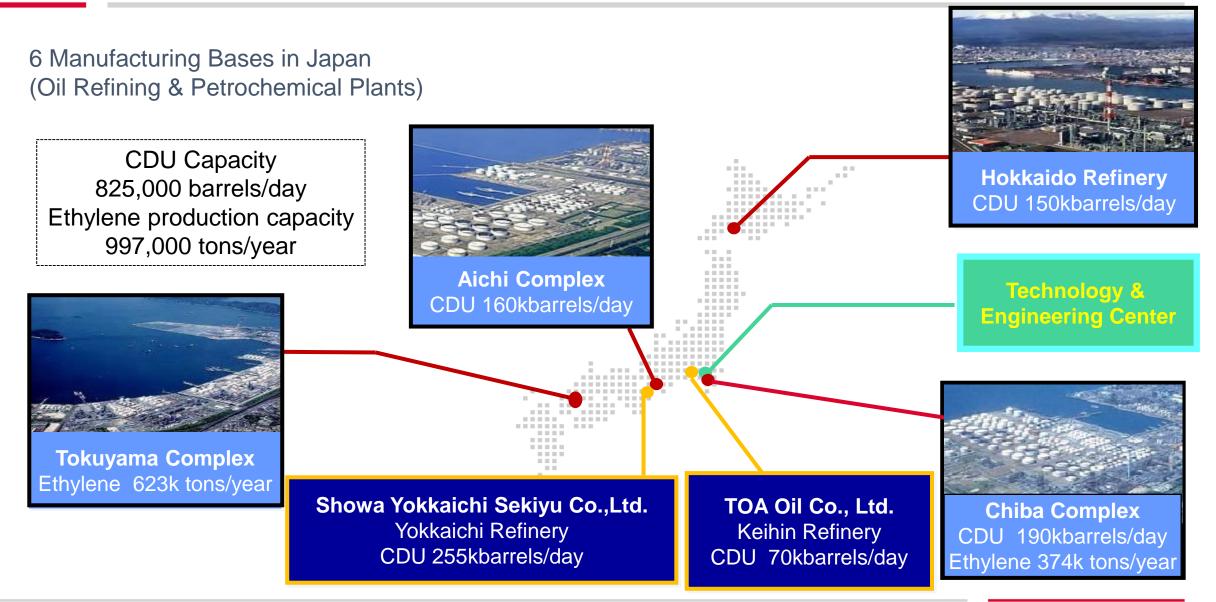


OT Company Overview

Company Name	Idemitsu Kosan Co.,Ltd.				
Head Office	Chiyoda-ku, Tokyo, Japan				
Representative Director & Chief Executive Officer	Shunichi Kito				
Date Established	March 30, 1940				
Capital Stock	JPY 168.3 billion				
Net sales	JPY 8.7 trillion				
Fiscal Term	From April 1 to March 31				

Company Overview: Main Business

5. Electric Power & Renewable Energy


4. Functional Materials

Company Overview: Manufacturing Base

Description of SAIA (Schedule Al Assistant)

1. Background

- Production scheduling requires know-how related to operations, and great deal of knowledge and experience.
- Because the environment is changing rapidly, Schedulers are always focused on reviewing current schedules.
 So, they have no time to consider better schedule.

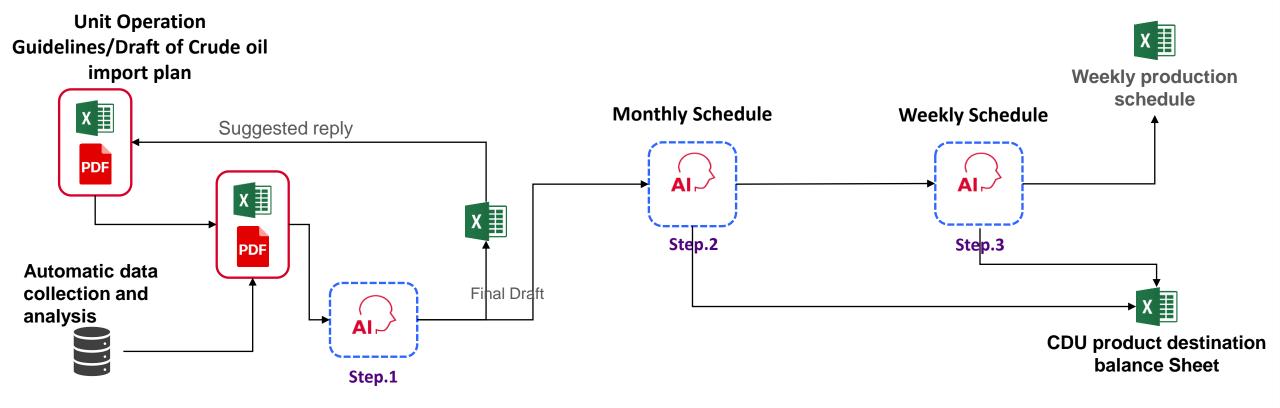
2. Purpose of SAIA

 In order to support the knowledge and experience, develop the function to automatically make optimal schedule, and reducing opportunity loss through rapid response.

Target State of the Production Scheduling system

2

Determine the Feasibility of the crude oil import schedule

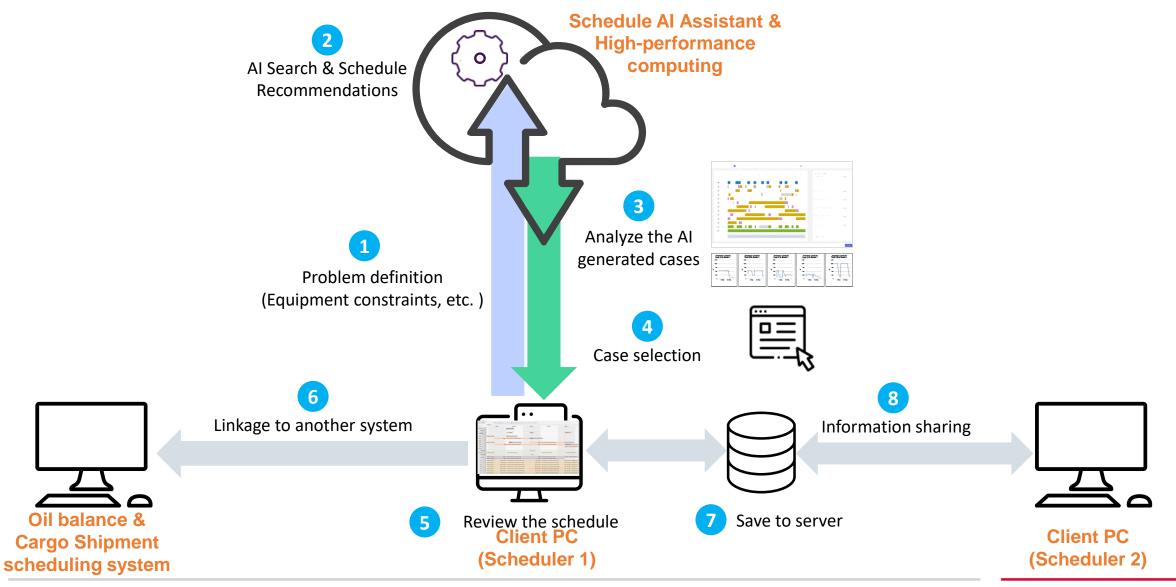

Create a monthly production schedule

According to consistency with monthly company supply plan.

Create a weekly production schedule

3

Determine the actual weekly production schedule

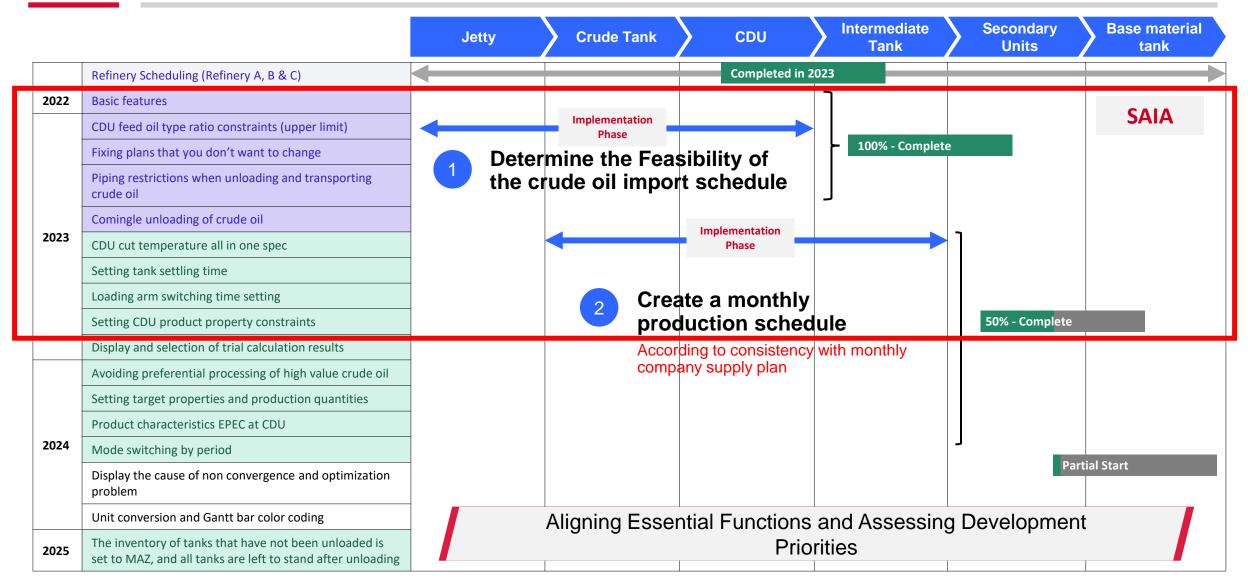


Began updating each refineries to Spiral scheduler from 2017 and finished in 2021 In 2019 we began developing SAIA with AVEVA in parallel

	2017	2018	2	019	202	20	2021	2022	2023	2024
Chiba site scheduler update		Implementation		In use				In use		
Hokkaido site scheduler update				Implementati on			In use			
Aichi site scheduler update						Implei	mentation		In use	
SA Development				Agile d	levelopm	ient & Ir	nplementation	1	In	use
Chiba chemical Scheduler Implementation				Imj	plementa	ation		In	use	

55 System Functionality

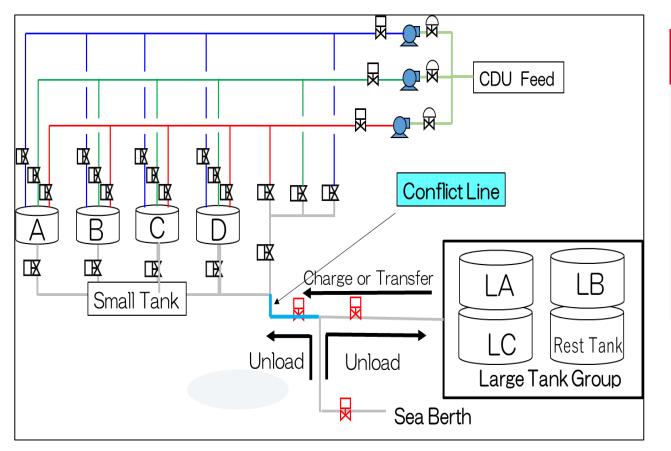
🚝 idemitsu


Copyright © Idemitsu Kosan Co., Ltd. All Rights Reserved.

Anticipated Benefits from the Schedule AI Assistant

No.	Key considerations for AI Assistant	Anticipated Benefit
1	Reduced number of crude property changes	Reduced LGO leakage to Residue
2	Optimize the crude unload to tanks and from tanks to CDU taking into consideration the Residue properties	Switching to cheaper crude oil by making separate Residue for RHDS/VDU
3	Preventing surplus or off spec CDU products (from being converted into SLOP)	SLOP reprocessing cost reduction
4	Operation adjustments when trouble occurs	Reduction of demurrage fees and multiple port unloading for crude oil tankers (VLCC)
5	User configurable operating experience and constraints	Anyone can create schedules, even if they have no experience
6	Faster search and automated optimized schedule generation	Time to create one months' crude schedule from scratch

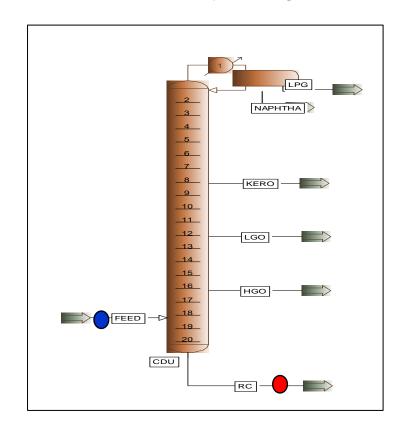
Implementation progress - Achievements


Implementation progress - Achievements

		Jetty Crude Tank CDU Intermediate Secondary Base mater Tank Equipment tank	ial							
	Refinery Scheduling (Refinery A, B & C)	Completed in 2023								
2022	Basic features									
	CDU feed oil type ratio constraints (upper limit)	CDU feed oil type ratio constraints (upper limit)								
	Fixing plans that you don't want to change									
	Piping restrictions when unloading and transporting crude oil	Fixing plans that you don't want to change								
	Comingle unloading of crude oil	Piping restrictions when unloading and transferring crude oil								
2023	CDU cut temperature all-in-one spec									
	Setting tank settling time	Comingle unloading of crude oil								
	Loading arm switching time setting	CDU out tomporature all in one spec								
	Setting CDU product property constraints	CDU cut temperature all in one spec								
	Display and selection of trial calculation results	Setting tank settling time								
	Avoiding preferential processing of high-value crude oil									
	Setting target properties and production quantities	Loading arm switching time setting								
	Product characteristics SPEC at CDU	Loading arm switching time setting								
2024	Mode switching by period	Setting CDU product property constraints								
	Display the cause of non convergence and optimization problem									
	Unit conversion and Gantt bar color coding	Aligning Essential Functions and Assessing Development								
2025	The inventory of tanks that have not been unloaded is set to MAX, and all tanks are left to stand after unloading	Priorities	/							

Enhanced Scheduling: example of capabilities deployed & outcome

Function 1: Single use constraint setting (unloading pipe is also used for CDU feed line.)


Create groups of asset and lines and set exclusivity

	Group						
No.	Asset	Line					
1	Large Tank Group	Unload Line (Large Tank Group)					
2	Large Tank Group	Unload Line (small tank A)					
3	Large Tank Group	Unload Line (small tank B)					
4	Large Tank Group	Unload Line (small tank C)					
5	Large Tank Group	Unload Line (small tank D)					

No more scheduling infeasible combinations of supplying CDUs and unloading from ships

Helps in ensuring all operational constraints are considered while AI generates the recommendations

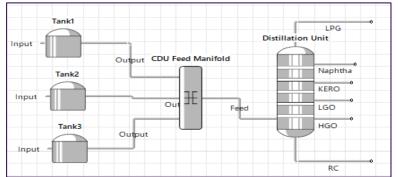
Function 2: Allowable range of changes in feed and product properties when inflow changes **Example:** Property changes in CDU feed and products

Maximum Property Change $^{\sim}$ Apply maximum property change between adjacent events on an inflow stream + Create Maximum Property Change Lower Upper Title Editable Value Asset Property UoM Increment Limit Limit Sale Sulphur for Residue * (Total) 0 4 0.05 CDU ... Sulfer(%) (%) Unit Resudue CDU Feed CDU \checkmark API * 0.1 1 4 ... Unit API Change

Improves stability and efficiency of CDU operations

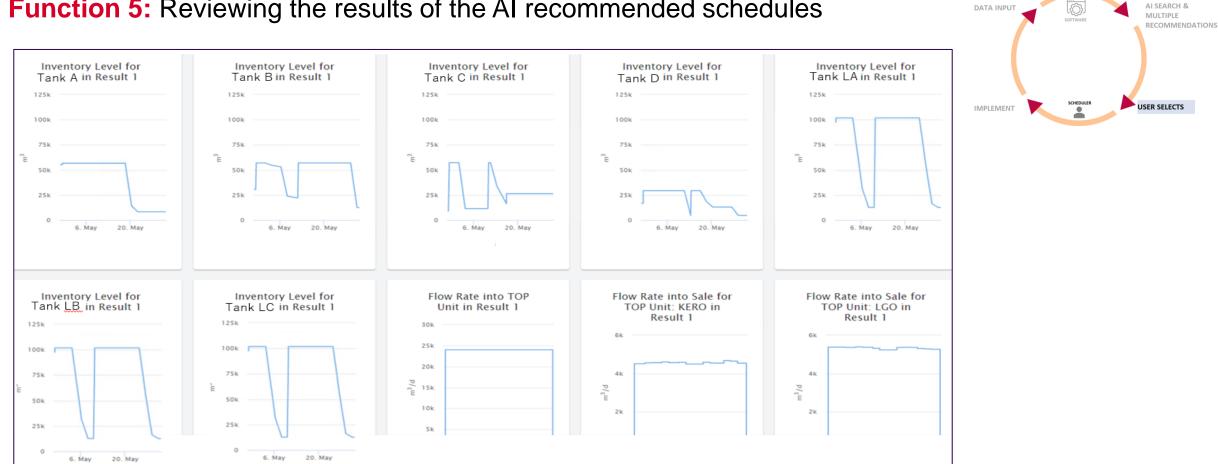
Function 3: Setting minimum duration for activities

Example: Minimum duration before switching CDU feed conditions


- Feed tank change
- Feed tank ratio change
- Feed amount change

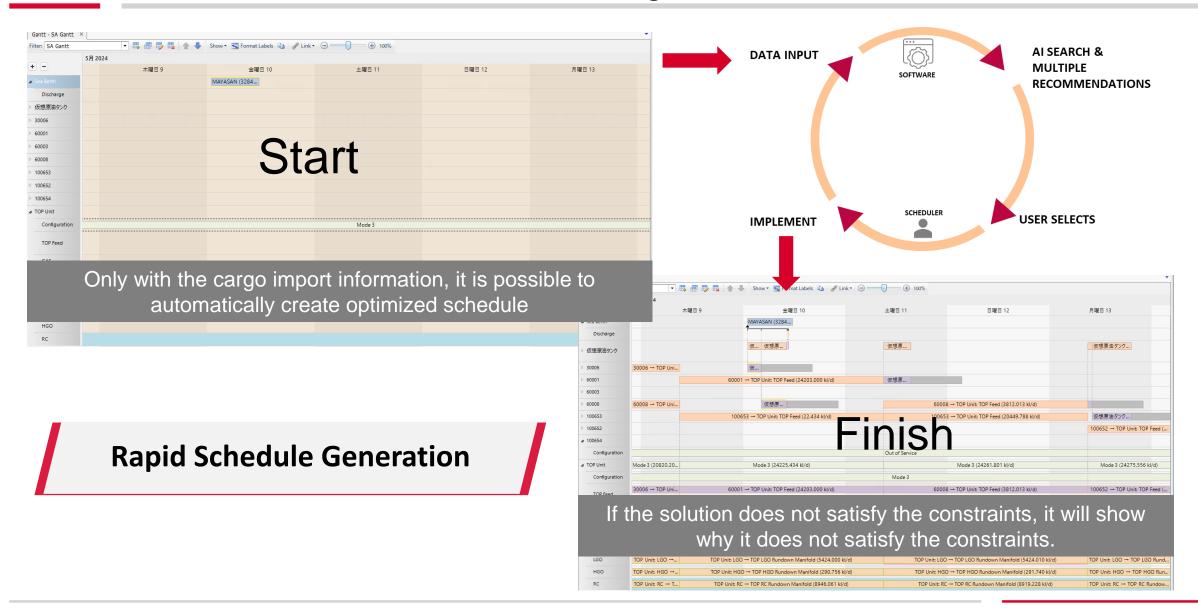
DATA INPUT

This makes it possible to minimize the effort required for switching crude oil and product loss


Function 4: Setting facility input/output constraints Set constraints on the supply to and output from the equipment.

Example: Setting constraints on maximum number of feed tanks that can be lined up for processing in CDU

Helps in ensuring all operational constraints are considered while AI generates the recommendations



Function 5: Reviewing the results of the AI recommended schedules

Helps in faster review and selection of schedule to be implemented

Validation: Crude Schedule generation

Path Forward: Blueprint for Success

		Jetty	Crude Tank	CDU	Intermediate Tank	Secondary Units	Base material tank			
	Refinery Scheduling (Refinery A, B & C)	Avoiding preferential processing of high value crude oil								
2022	Basic features									
	CDU feed oil type ratio constraints (upper limit)	2024	Setting target properties and production quantities							
	Fixing plans that you don't want to change		setting target properties and production quantities							
	Piping restrictions when unloading and transporting crude oil		Product characteristics SPEC at CDU							
	Comingle unloading of crude oil		Mode switching by period							
2023	CDU cut temperature all-in-one spec									
	Setting tank settling time		Display the same of new convergence and entimization							
	Loading arm switching time setting		Display the cause of non convergence and optimization							
	Setting CDU product property constraints		problem							
	Display and selection of trial calculation results									
	Avoiding preferential processing of high-value crude oil		Unit conversion and Gantt bar color coding							
	Setting target properties and production quantities									
	Product characteristics SPEC at CDU	2025	The inventory of tanks that have not been unloaded is set to							
2024	Mode switching by period	2025	MAX, and all tanks are left to stand after unloading							
	Display the cause of non convergence and optimization problem									
	Unit conversion and Gantt bar color coding		Prioritizing requirements with an Agile deployment approach:							
2025	The inventory of tanks that have not been unloaded is set to MAX, and all tanks are left to stand after unloading	Maximizing immediate benefits from newly developed features								

Transforming Schedule Operators to Value Chain Strategists

Challenge

- Environment (Operations and Market) changing so rapidly, focus is on reviewing current schedules
- No time to search for better and optimal operational schedules

Solution

- Partnership approach with AVEVA, developed and deployed AVEVA's Schedule AI Assistant (SAIA)
- Gradually digitized the operating experience, knowledge and constraints - equipment and operational, that are easy to configure and requires no coding

Results

- Rapid AI assisted Crude scheduling (from receipts to CDU operation) while considering unique operating complexity and constraints
- What would have taken days of work can be completed in few minutes with increased business agility and improved profits by optimized decision-making
- Currently work in progress on automated monthly production schedule generation

Thank you for your attention.

This presentation may include predictions, estimates, intentions, beliefs and other statements that are or may be construed as being forward-looking. While these forward-looking statements represent our current judgment on what the future holds, they are subject to risks and uncertainties that could result in actual outcomes differing materially from those projected in these statements. No statement contained herein constitutes a commitment by AVEVA to perform any particular action or to deliver any particular product or product features. Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect our opinions only as of the date of this presentation.

The Company shall not be obliged to disclose any revision to these forward-looking statements to reflect events or circumstances occurring after the date on which they are made or to reflect the occurrence of future events.

ABOUT AVEVA

AVEVA is a world leader in industrial software, providing engineering and operational solutions across multiple industries, including oil and gas, chemical, pharmaceutical, power and utilities, marine, renewables, and food and beverage. Our agnostic and open architecture helps organizations design, build, operate, maintain and optimize the complete lifecycle of complex industrial assets, from production plants and offshore platforms to manufactured consumer goods.

Over 20,000 enterprises in over 100 countries rely on AVEVA to help them deliver life's essentials: safe and reliable energy, food, medicines, infrastructure and more. By connecting people with trusted information and AI-enriched insights, AVEVA enables teams to engineer efficiently and optimize operations, driving growth and sustainability.

Named as one of the world's most innovative companies, AVEVA supports customers with open solutions and the expertise of more than 6,400 employees, 5,000 partners and 5,700 certified developers. The company is headquartered in Cambridge, UK.

Learn more at www.aveva.com