AVEVAWORLD PARIS

Harnessing AVEVA Advanced Analytics for Enhanced Quality Control

Powered by CONNECT at Coromandel International Limited

Agenda

- About Coromandel
- Project Approach
- Use cases Implementation
- Realtime Dashboards
- Benefits

Coromandel Reimagined

Coromandel: India footprint

- Pioneers & market leaders in Specialty Nutrients
- India's largest Single
 Super Phosphate (SSP)
 company
- 5th largest Crop Protection Indian company
- Worlds' largest Neem based Bio pesticide manufacturer
- No. 1 Organic Manure player in India
- Largest Rural Retail Chain in India

17 manufacturing locations (

~750 Retail centres

Presence across ~81 countries

~ 2,000+ strong market development team

₹ 29,628 crores

Over 13,650 employees worldwide

Partnering with over 2 crore farmers murugappa

OUR VISION, MISSION and VALUES

VISION

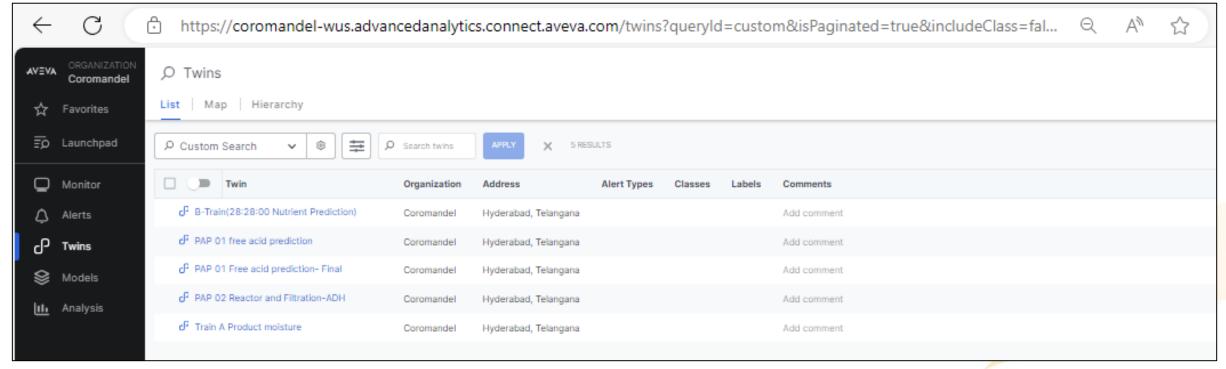
To be the leader in farm solutions business in geography of choice, consistently delivering superior value to stakeholders through highly engaged employees, with a strong commitment towards sustainability and our values.

MISSION

To enhance prosperity of farmers through quality farm solutions with sustainable value for all stakeholders.

VALUES AND BELIEFS

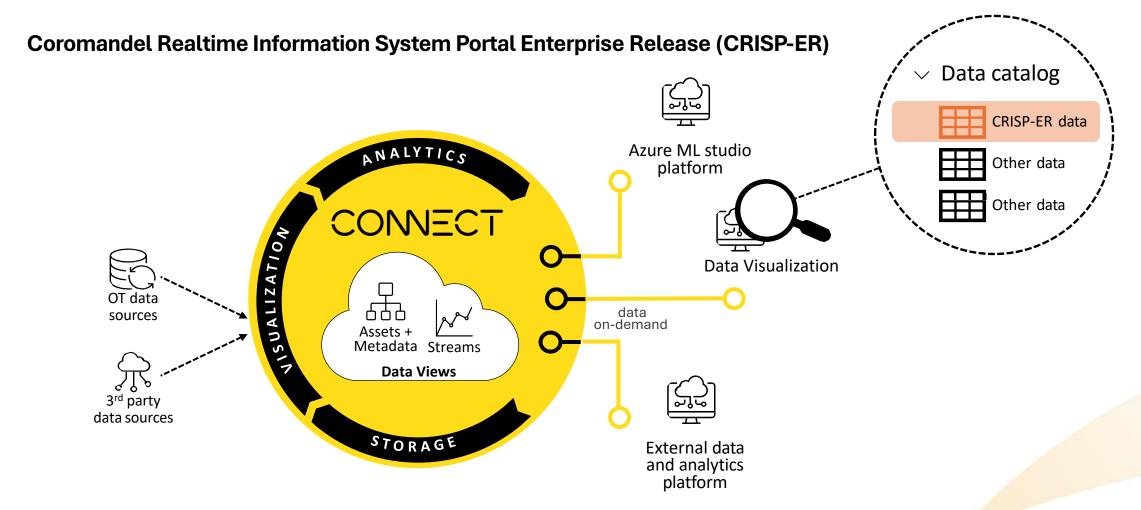
The fundamental principle of economic activity is that no man you transact with will lose then you shall not.



Coromandel Digitalization Journey

Project Summary:

- Nutrient prediction in 28:28:00 (N:P:K) grade fertilizer at Vizag plant B train
- Prediction of P2O5 loss in gypsum at Vizag PAP-2
- Free acid prediction in PA reactor to improve rock efficiency
- Evaporator C2 availability improvement



Coromandel Digitalization Journey (OT/IT Integration)

Coromandel Digitalization Journey

Coromandel CoE - Centre of Excellence

Enterprise Workbench

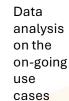
- Revenue growth
- Profitability
- Market share
- BU wise performance
- · Performance of new products
- · Farmer connects

Analytics COE: Functional Workbenches

Sourcing Workbench

- Spend analytics
- Compliance analytics
- Price predictions

Production Workbench


optimization Sustainability measures

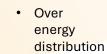
Production

schedule

Data Analytics Workbench

Automation Workbench

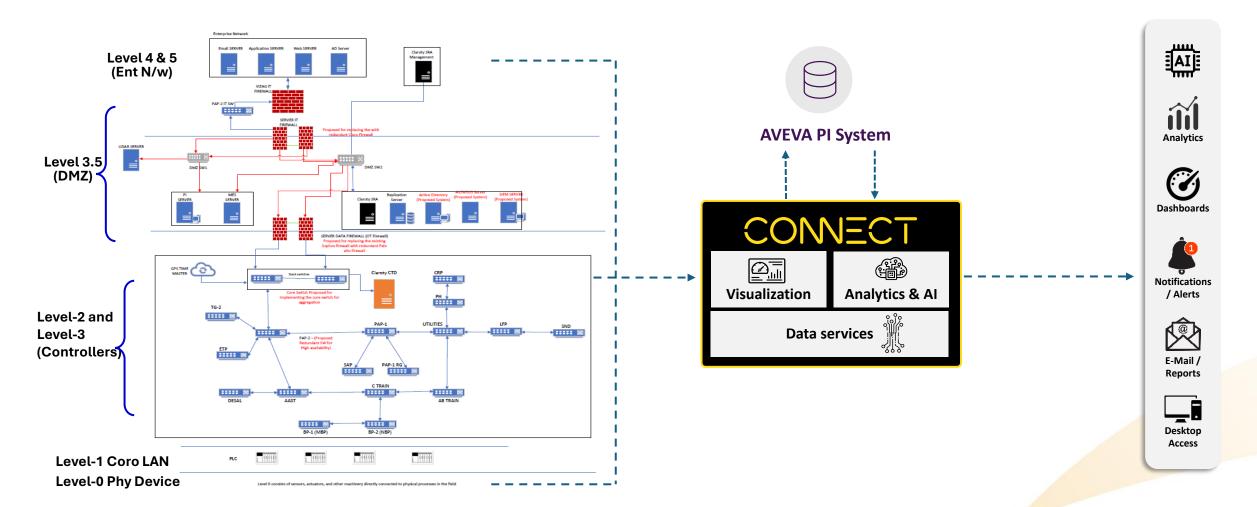
- Automation projects
- · On-going
- Planned projects



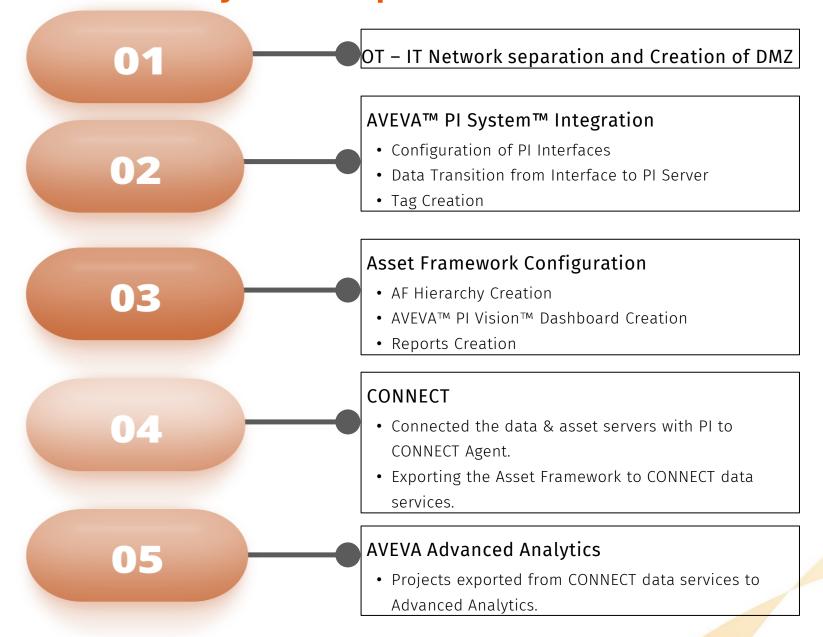
HR Workbench

Attrition

EMS Workbench

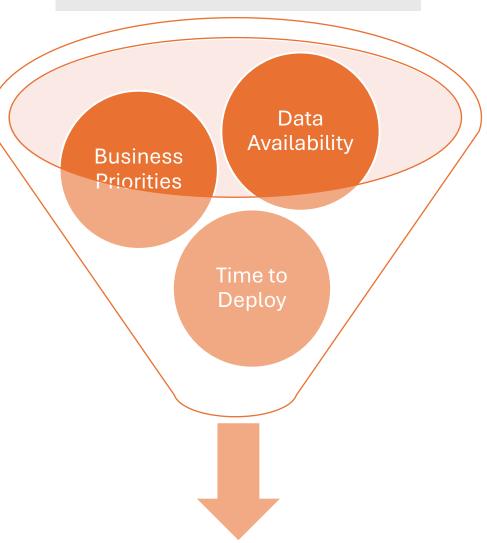

 Deviation analysis

CRISP-ER Architecture



Aveva PI System Implementation across CIL

Coromandel Digital Projects selection criteria



Total Potential use cases: 36

Data Availability: Identifying the parameters to build the shortlisted use cases and analyses the quality to further refine the potential use cases

Business Priorities: Understanding businesses and underlying process along with the pain areas to identify the potential Analytics use cases that could support the business to improve efficiency, time or cost

Time to Deploy: Finally, design a solution framerwork for the use cases to understand the complexisites and time to deploy and identify those use cases that will be quick wins for the businesses

Analytics Use case Categorization

Process Quality Asset Utilization
Optimization Improvement

7 14 15

Business Priorities

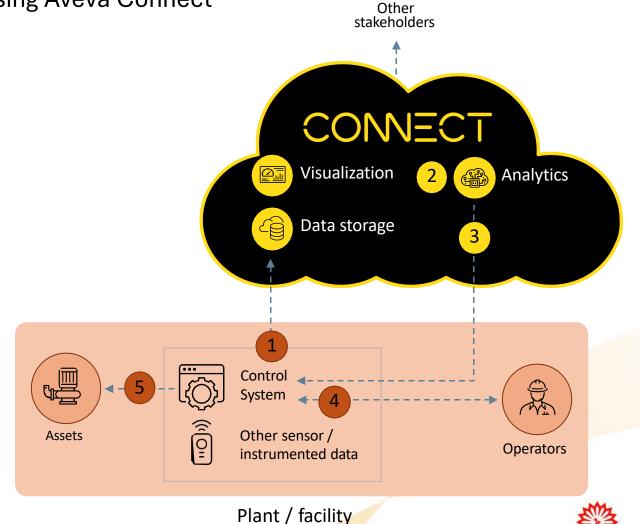
Analytics Use case Categorization										
Process Optimization	Quality Improvement	Asset Utilization								
4	10	8								

Data Availability

Analytics Use case Categorization										
Process Optimization	Quality Improvement	Asset Utilization								
3	6	5								

Time to Deploy

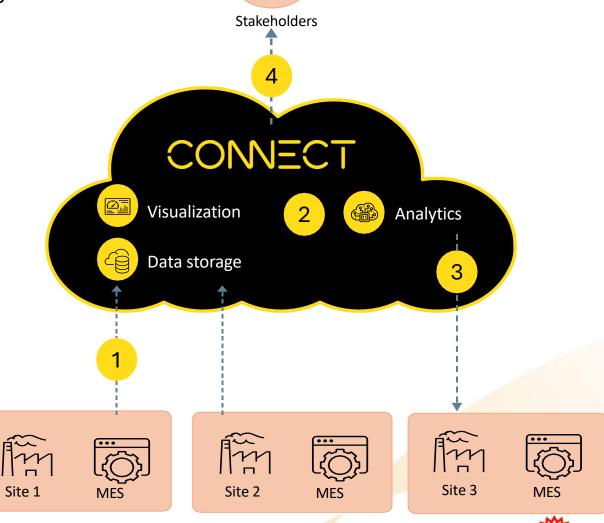
Al	Analytics Use case Categorization										
Proce Optimiz		Quality Improvement	Asset Utilization								
2		1	2								


Coromandel Digitalization Journey

- Use case: Prescriptive setpoint optimization using Aveva Connect
- 1. Aggregate control system and other instrumented data into CONNECT data services
- 2. Predict operations performance and propose set point adjustments using AI/ML models to achieve desired performance targets
- Suggested set point adjustments provided to the control environment
- 4. Accept set point guidance or make your own adjustment
- Adjust assets at preferred cadence to maintain performance balance

Results:

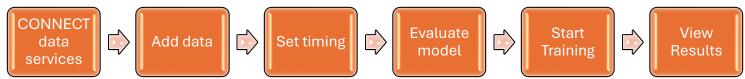
- Proactively manage energy use, performance parameters, product quality and other metrics through analytical guidance to operations
- Monitor and view data, trends and performance outcomes through CONNECT visualization or 3rd party tools


Coromandel Digitalization Journey

- > Use case: Predictive downtime alerts using Aveva Connect
- 1. Aggregate MES production data and other lab data into CONNECT data services.
- 2. Train AI/ML models on previous production runs to detect potential downtime causing conditions when producing a specific product.
- 3. Suggested corrective action to operations teams based on detected conditions.
- 4. Provide stakeholders with greater visibility to recommendations to avoid downtime when producing this product.

Results:

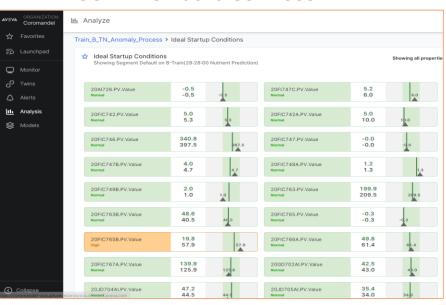
- Proactively manage production through analytical guidance to operations.
 Real-time alerts to and recommendations for avoiding downtime events.
- Monitor and view data, trends and performance outcomes through CONNECT visualization or 3rd party tools

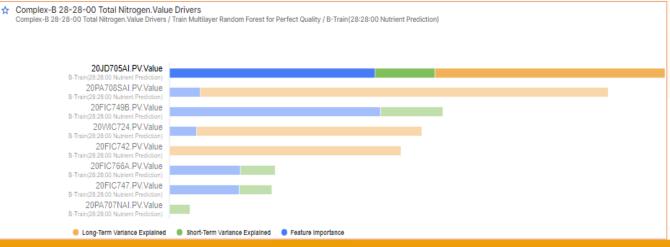

Nutrient Prediction in 28.28.00 Grade

Problem

- Needed to predict the hourly N&P nutrients in 28.28.00 grade based on critical operational parameters
- Needed proactive action by operators to avoid quality rejection

Measures undertaken


- 8 months data collected from November 2023 to June 2024.
- Critical process Parameter considered for model building.
- Considered plant stabilisation period i.e Ammonia flow > 3 TPH.
- Best Operating ranges and Alarm limits considered for better accuracy.
- Model training done and implementation under progress.



Results

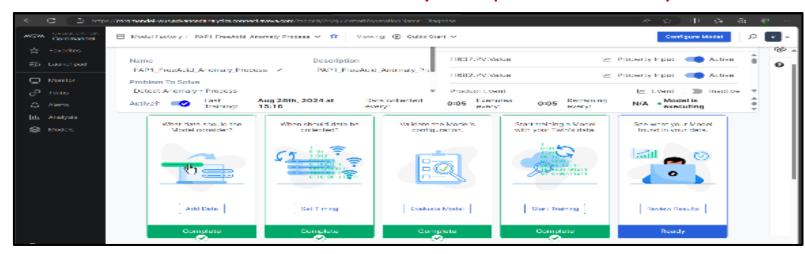
Potential benefit 2.75 CR/year

CONNECT data services

Prediction of Free Acid in Reactor Slurry of PAP1

Problem

- Needed to predict the free sulphate in the reactor slurry based on process parameter performance
- To avoid process upsets which ultimately lead to long shutdowns and impact phosphoric acid production and more P2O5 losses.


Measures undertaken

- Model developed with AVEVA Advanced Analytics
- 6 months data collected from July to Dec-23.
- 10 No's of influencing parameter considered for model building.
- Considered plant stabilisation period i.e SA flow > 550 LPM.
- EDA performed and feature engineering applied.
- Correlation heatmap analysis done.
- Linear regression accuracy 9.6%
- Decision tree regression accuracy 49%
- Random Forest regression accuracy 92%
- Model training completed and implementation under progress

Results

Potential benefit of 1.76 Cr/year

CONNECT data services & AVEVA Advanced Analytics template PAP 01 free acid prediction

We use cookies to make TwinThread's website a better place. Cookies help to provide a more personalized experience for you and improved web analytics for us. We promise to not share or sell your data. To learn more about the different cookies we're using, check out our Cookie Policy (bake goods not included).

P2O5 efficiency improvement in PAP-2

Quick Wins Initiative

Steam and Power balance dash boards in PI Vision

Power Factor Dashboard in Pl Vision.

Short Term Initiative

Installation of Steam flowmeters in Unaccountable places.

HP to LP make up line PCV replacement.

Linear Programming on Different scenario for optimum Power generation at given scenario

Medium Term Initiative

VAM installation in AHU for SAP-1&2,SAP-3, TG-2 Control Rooms.

Study on Extraction and Steam redistribution of networks on different scenario.

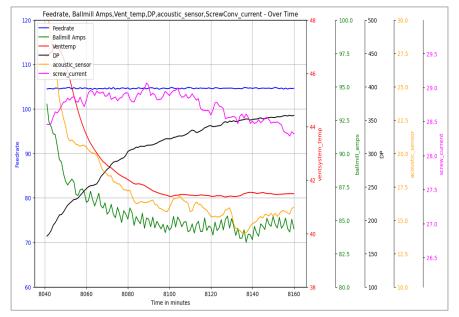
Long Term Initiative

Surplus power export to grid during stoppage of internal plants like TG, Complex etc..

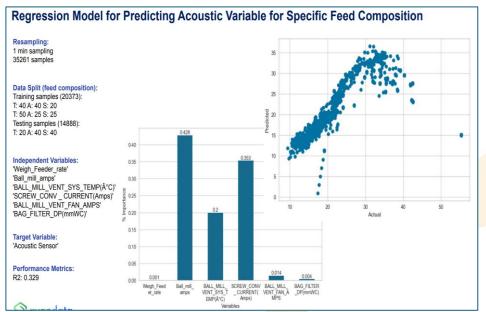
Project Tracker

			Floje	ct maci	KCI . FZ	.OJ elli	iciency	mprov	/emen	III FAF	-Z . VIZ		E									
S.NO	Milestone		Timelines																			
5.NU	.NO Milestone		W1	W2	y-24 W3	W4	W5	Jur W6	1-24 W7	W8	W9	Jul- W10	-24 W11	W12	W13	W14	-24 W15	W16	W17	Sep W18	-24 W19	W20
	Brainstorming with Plant Operations	Р		Ball Mil			Reactio			iltratio		1120	1122	*****	1120	1124	1120	1120	****	1120	1120	112
1	team/OIT&TECHNOLOGY/TSD																					
	Preliminary Data analysis with Different Rock	Р			Ball	Mill	Read	ction	Filtr	ation												
2																						
_	Historical data collection (Laboratory and real time	Р			Ball	Mill	Read	ction	Filtra	ation												
3	process parameters)	Α																				
4 Segregation of measured and unmeasured parameter	Р				Bal	l Mill	Rea	ction	Filtra	ation												
4	Segregation of measured and unmeasured parameters	Α																				
5	Data cleaning	P					Ball	Mill				Read	tion				Filtr	ation				
		A																	Ļ			
6	Process correlations	P						Ball	Mill				Read	ction				Filtra	ation			
		Α																	-	_		-
7	Validation of process correlations with practical and Theoretical basis	P A							Ball	Mill				Read	ction				Filtr	ation		
8	Identification of Controlled and Uncontrolled	P								Ball	Mill				Read	ction				Filtra	ation	
	resultant paramters,	A D								Ball	Mill				Post	ction				Filtra	ation .	
9	Preparation of models with different intervals	A .								Dall	PHILL				nead	ction				Fittire	ition	
	Building asset Analytics and Model Deployement in										Ball	Mill			Read	ction				Filtra	ation	
10	AVEVA-PI	A									Date	T IIICC			nca	Ction				11111	action:	
											Ball	Mill			Read	ction				Filtra	ation	
11	Dashboard creation in PI vision	A																				
40	5 (F . IN	P									Ball	Mill			Read	ction				Filtra	ation	
12	Creation of Events and Notifications	Α																				
13	Automation initiatives	P																				
		A D																				
14	Budget Proposals -	A																				

PAP 02 Golden batch Monitoring

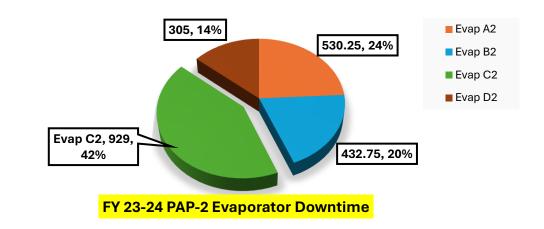


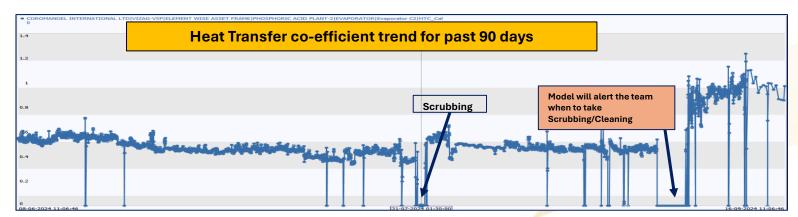
P2O5 efficiency improvement in PAP-2: Ball mill-Descriptive Analysis


Results

Ball mill – Descriptive analytics shown that

- Developing a ball mill efficiency improvement model and based on historical data after segmented to rock ratio wise found strong cross corelation between
 - 1. <200micron size Vs Ball mill vent fan amps
 - 2. Ball mill vent system temperature Vs Ball mill amps
 - 3. Ball mill vent fan amps Vs Screw conveyor amps
- At a constant feed rate ,observed different patterns of critical parameters Ball mill Amps, Vent system temp, Acoustic sensor, Bag filter DP ,Screw Conveyor Current.
- Potential benefit 2.98 Cr/year


Evaporator Availability improvements


Problem

 Evaporator downtime FY 23-24 is almost 42% of the entire plant.

Measures undertaken

- Overall heat transfer coefficient has been calculated to monitor the rate of heat transfer to give anomaly on scrubbing.
- Carried out analysis for incorporating scrubbing date info dashboard for easy monitoring. Collected operational parameters and meta data from critical equipment and configured an asset framework (AF) template in AVEVA PI System.
- Developed Dashboards for Plant Operations
 Maintenance team to enable real time monitoring of KPIs and for data insights.
- Incorporated Heat transfer coefficient and various KPIs into dashboard for ease in decision making and performance monitoring.
- Created event frame notification for various KPIs alerts levels.

Coromandel Achieves Potential benefits of 3.7 M\$ through Process improvement

Challenge

- Process upsets leading to long shutdowns and impacting phosphoric Acid production and more P2O5 losses
- Evaporator downtime FY 23-24 is almost 42% of the entire plant.
- Loss of product produced due to non maintenance of target quality parameters

Solution

 Development of advanced analytics models on enterprise data management model to process production and process anomalies using AVEVA PI system, AVEVA AAA and CONNECT Platform

Results

SI.No	Use Cases	Target	Business Impact/year- Curren Scope- Under Vetting
1	P2O5 Efficiency Improvement & P2O5 loss reduction	Rock Efficiency Improvement by 0.3%	4.09 Crores
2	Quality Prediction & reduce rework	900 MT	5.4 Crores
3	Digital Twin for Evaporator C2	Reduction of 50% downtime of past 3 years yearly average downtime of 750.67 hrs	2.05 Crores
		Total Business Impact(Rs Crores/Year) =	Rs 11.54

Digitalization Partners

CEREBULB

Questions?

Please wait for the microphone. State your name and company.

Please remember to...

Navigate to this session in the mobile app to complete the survey.

Thank you!

Chemical / India

Coromandel Achieves Potential benefits of 1M\$ through Process improvement

Challenge

- Process upsets leading to long shutdowns and impacting phosphoric Acid production and more P2O5 losses
- Evaporator downtime FY 23-24 is almost 42% of the entire plant.
- Loss of product produced due to non maintenance of target quality parameters

Solution

 Development of advanced analytics models on enterprise data management model to process production and process anomalies using AVEVA PI system, AVEVA AAA and CONNECT Platform

Results

- Reduced Asset downtime by 50%.
- Reduction Raw material usage by 10%
- Improved non compliance of production batches through real time monitoring of quality parameters and timely corrective direction.

THANK YOU

