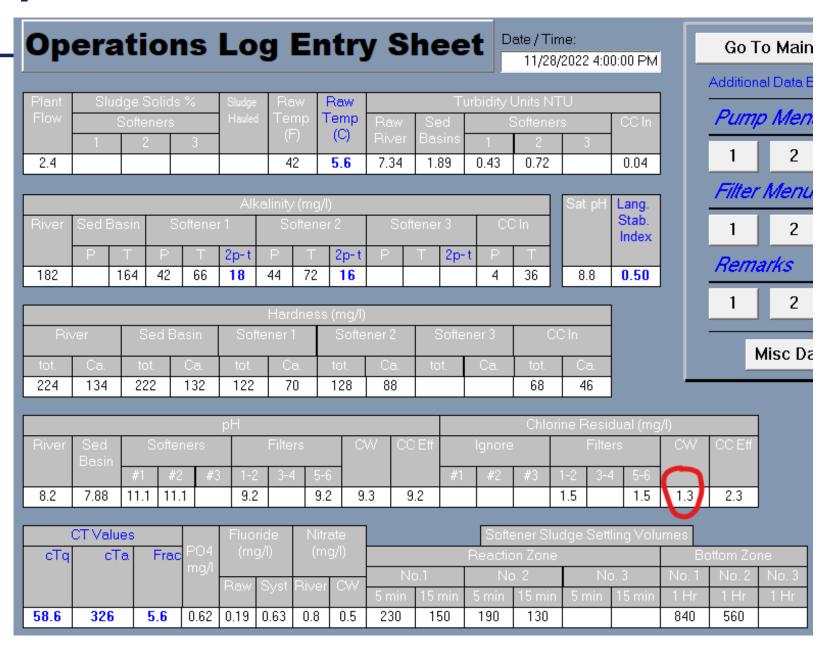
AVEVAWORLD

Process Improvement Project Manager with ENGIE at the University of Iowa's Water Treatment Plant

The University of Iowa and ENGIE

Began a 50 year public private partnership in January 2020

Both have been active PI users since the early 2000s



The core advantage of data is that it tells you something about the world that you didn't know before.

- Access database from 1990s
 - Confusing names
 - Broken links
 - Inaccurate constraints
 - What everyone was used to using

- Access database from 1990s
 - Confusing names
 - Broken links

Date

01-Jul-78

22-Anr-96

22-Apr-96

23-Apr-96

24-Apr-96

25-Apr-96

25-Apr-96

- Inaccurate constraints
- What everyone was used to using

56.66 15 16 2.6

0.08

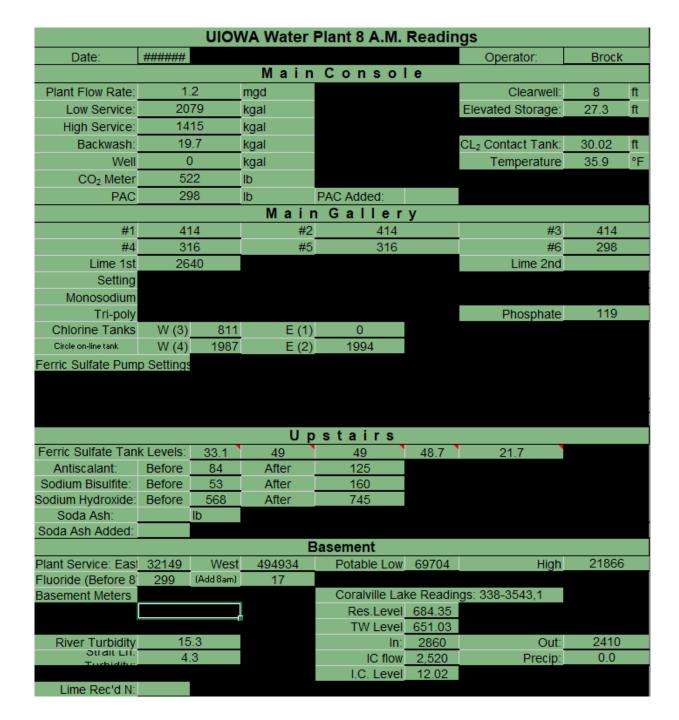
0.06

0.8 0.06

0.5 0.06


0.5 0.06

0.7 0.07


0.06 250 0.06 242

0.06 244

Inaccessible data

- Access database
- Excel spreadsheets
- Paper log sheets

tal for the Day

		UIOWA W	ater I	Plant 8 A.M. Readin	ngs		
Date:	#######				Operator:	Brock	(
		М	ain	Console			
Plant Flow Rate:	1.2	2 mgd			Clearwell:	8	ft
Low Service:	207	⁷⁹ kgal			Elevated Storage:	27.3	ft
High Service:	141	l5 kgal					
Backwash:	19.	.7 kgal			CL ₂ Contact Tank:	30.02	ft
Well	0	kgal			Temperature	35.9	°F

119

21866

2410 0.0

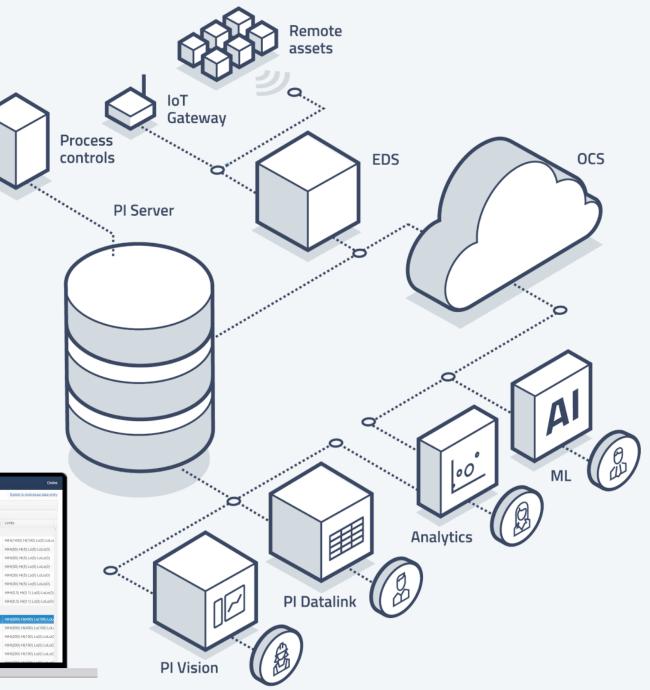
- Access database
- Excel spreadsheets
- Paper log sheets

University of Iowa Daily Water Produ Today is: 2/21/202	ction Log																
Flow Data		Totall ow	low a River	Jordan			Filter	Meters			Backwash	Por	table	Plant 9	Service	High Serv	414
		, oral con	1	Well X 100	No.1	No.2	No.3	No.4	No.5	No.6	× 100		High X 100				
Today's Readings		2079	#####	0	414	414	414	316	316	298	19.7	69704	21263	32149	416983	1415	
Yesterday's Readings	8:00 AM	0	#####	0	0	0	0	0	0	0	0	69570	21263	32135	416983	0	

Chemicals Used									
	Yesterday's	Todav's	Amount	Daily Use					
	Reading	Reading	Added	(LBS)					
	neading	neading	Auded	(0.00)					
00	0	522	0	522					
CO ₂	U	522		522					
CL Fort	1994	1994		0					
Cl _z -East				93					
Cl _z -West	2891	2798							
Cl ₂ -Total				93					
		405							
Antiscalant	84	125		41					
Sodium Bisulfite	53	160		107					
Sodium Hydroxide	568	745		177					
Fluoride	333.4	299	17	51.4					
Lime 1 st	0	2640	0	2640					
Lime 2 nd	0	0	0	0.0					
Total Lime				2640					
Mono Phos.	0	0		0					
Poly Phos.	0	119	0	119					
Total Phos.	0			119					
PAC	387	298		135					
Soda Ash	0	0		0					
B LOW SER	0	0		0					
B HIGH SER	0	0		0					
FeSO4 SFT	82.9	82.1	0	264					
FeSO ₄ IPM	121	119.4		528					

Water Level in St	Weather and River					
@ 8:00 AM	Stage					
Clearwell	8.0	Max Air				
Elevated Storage	27.3	Temp	0			
Ground Storage	0	Min Air				
Chlorine Contact	30.02	Temp	0			
Water Temp - River	35.9	Precip.	0			
Water Temp - CW		Dam Disch.	2410			
Treatment Summary X1	000 Gals.					
Total Low Service		2079				
low a River			2079			
Jordan Well			0			
Filter Effluent			217.2			
Backwash		1.97				
Potable Low	1.34					
Potable High			0			
Plant Service			14			
High Service			1415			
From 8 AM		******				
To 8 AM			******			

PI Manual Logger



PI Vision

Asset Framework

PI Manual Logger

PI Vision

Asset Framework

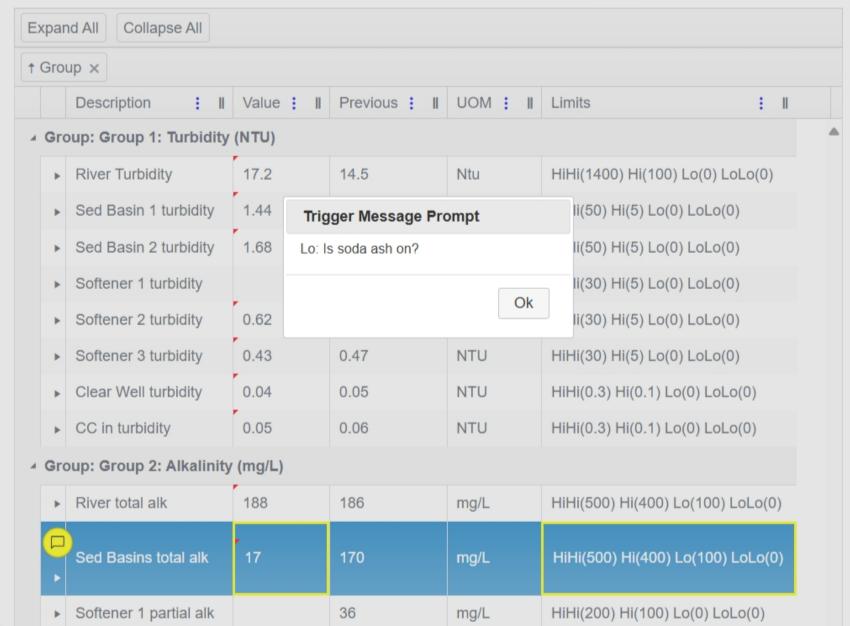
Water Plant Chemistry Main Tour: Tuesday, April 8, 2025 4:00:00 PM

Switch to individual data entry

rou	Description : II	Value : II (NTU)	Previous :	UOM : II	Limits : II
▶ F		(NTU)			
		,			
> 5	River Turbidity	17.2	14.5	Ntu	HiHi(1400) Hi(100) Lo(0) LoLo(0)
	Sed Basin 1 turbidity	1.44	0.97	NTU	HiHi(50) Hi(5) Lo(0) LoLo(0)
> 5	Sed Basin 2 turbidity	1.68	1.42	NTU	HiHi(50) Hi(5) Lo(0) LoLo(0)
> 5	Softener 1 turbidity		0.51	NTU	HiHi(30) Hi(5) Lo(0) LoLo(0)
> 5	Softener 2 turbidity	0.62	0.57	NTU	HiHi(30) Hi(5) Lo(0) LoLo(0)
> 5	Softener 3 turbidity	0.43	0.47	NTU	HiHi(30) Hi(5) Lo(0) LoLo(0)
• (Clear Well turbidity	0.04	0.05	NTU	HiHi(0.3) Hi(0.1) Lo(0) LoLo(0)
• (CC in turbidity	0.05	0.06	NTU	HiHi(0.3) Hi(0.1) Lo(0) LoLo(0)
rou	up: Group 2: Alkalinity	(mg/L)			
▶ F	River total alk	188	186	mg/L	HiHi(500) Hi(400) Lo(100) LoLo(0)
> 5	Sed Basins total alk		170	mg/L	HiHi(500) Hi(400) Lo(100) LoLo(0)
> 5	Softener 1 partial alk		36	mg/L	HiHi(200) Hi(100) Lo(0) LoLo(0)

PI Manual Logger

PI Vision


Asset Framework

Water Plant Chemistry Main Tour: Tuesday, April 8, 2025 4:00:00 PM

Switch to individual data entry

PI Manual Logger

PI Vision

Asset Framework

AVEVA™ PI Vision™

0

Water Plant Sample Results

+-×=

맓

뻥

Turbidity Alkalinity Hardness pH Chlorine Solids Shift Iron/Mn

Backwash

Home

Langelier Saturation Index 0.34

3/28/2025 8:00:00 AM

Input Link

CT Values

CT Required total 133 3/28/2025 8:00:00 AM

CT Calculated total 621 3/28/2025 8:00:00 AM


CT Ratio total 13.8 3/28/2025 8:00:00 AM

Hydroxide Alkalinity

Softener 2 18 mg/L 3/28/2025 8:00:00 AM

Softener 3 18 mg/L 3/28/2025 8:00:00 AM

3/21/2025 10:20:55 AM

3/28/2025 10:20:55 AM

U

7d

PI Manual Logger

PI Vision

Asset Framework

PI Manual Logger

PI Vision

Asset Framework

PI Manual Logger

PI Vision

Asset Framework

Langelier Saturation Index Calculation

$$LSI = pH - pHs$$

```
Where:
```

```
pHs = Saturation pH, estimated using the following pHs = [(9.3 + A + B) - (C + D)] pHs = (9.3 + ((Log_{10}[TDS] - 1) / 10) + (-13.2 \times Log_{10}[Temperature(°C) + 273] + 34.55)) - ((Log_{10}[Ca_{+2} as CaCO_3] - 0.4) + (Log_{10}[Alkalinity as CaCO_3]))
```

```
WP\_WC\_pH\_LSI = WP\_WC\_pH\_CCIn - [9.3 + ((Log_{10}[WP\_WC\_TDS\_CCIn] - 1) / 10) + (-13.2 \times Log_{10}[WP-CAM.PAC.WaterTempInput\_C + 273] + 34.55)) - ((Log_{10}[WP\_WC\_HardCa\_CCIn] - 0.4) + (Log_{10}[WP\_WC\_AlkT\_CCIn])]
```


- Pulled CT equations from an engineering report
- Plugged in both sample data and online process data
- Utilized PI Web API to pull process and sample data, run calculations, and then write the results to new tags

CT_{calculated}:

```
CT<sub>calc</sub> Filters = Cl<sub>2CW</sub> x 1440 x 0.75 x (.10 x (# filters in service / 6)) / (Flow<sub>CW</sub>)
CT<sub>calc</sub> CW = Cl<sub>2CW</sub> x 1440 x 0.32 x 7.4805 x (3352 x CW level - 9884) / (1,000,000 x Flow<sub>CW</sub>)
CT_{calc} CC Tk = Cl_{2CC} x 1440 x 0.29 x (0.374 x CC Tk level / 13) / (Flow<sub>Finished</sub>)
CT<sub>calc</sub> = CT<sub>calc</sub> Filters + CT<sub>calc</sub> CW + CT<sub>calc</sub> CC Tk
Where:
Cl<sub>2CW</sub> is the concentration of free chlorine leaving the clear well. WP WC Cl2 CW
     Minimum of the previous 4 hrs.
Cl<sub>2CC</sub> is the concentration of free chlorine leaving the chlorine contact tank. WP WC Cl<sub>2</sub> CCEf
     Triggering event, entered every 4 hrs.
Flow<sub>CW</sub> is transfer pump flow + Backwash Pump 1 and Pump 2 flows. WP-CAM.PAC.XFP FIC5000 PV +
     Peak flow of the previous 4 hrs.
Flow Finished is the finished water flow leaving the chlorine contact tank. WP-CAM.PAC.MainFlowAvg
     Peak flow of the previous 4 hrs.
CW level: Level of Clear Well (1) WP-CAM.PAC.ClearWell1Level
     Minimum of the previous 4 hrs.
Chlorine Contact Tank level: WP-CAM.PAC.CL2ContactLevel
     Minimum of the previous 4 hrs.
# filters in service: Read off of WP-FLT-12(34, 56).PAC.FLTx_FE_FM_815x_FLOW (x=filter #).
     Minimum number of the previous 4 hrs. Not less than 3
                                                           CT<sub>required</sub>:
If the temperature is < 5 °C:
CT_{reg} Filters = 0.36 x (pH<sub>CW</sub><sup>2.69</sup>) x (Temp<sub>CW</sub><sup>-0.15</sup>) x (Cl<sub>2CW</sub><sup>0.15</sup>) x 0.5
CT_{reg} CW = CT_{reg} Filters
CT_{rea} CC Tk = 0.36 x (pH_{CC}^{2.69}) x (Temp_{CCTk}^{-0.15}) x (Cl_{2CC}^{0.15}) x 0.5
If the temperature is ≥ 5 °C:
CT_{reg} Filters = 0.2828 x (pH<sub>CW</sub><sup>2.69</sup>) x (0.933<sup>(Temp</sup><sub>CW</sub><sup>-5)</sup>) x (Cl<sub>2CW</sub><sup>0.15</sup>) x 0.5
CT_{reg} CW = CT_{reg} Filters
CT_{reg} CC Tk = 0.2828 \times (pH_{CC}^{2.69}) \times (0.933^{(Temp}_{CCTk}^{-5})) \times (Cl_{2CC}^{0.15}) \times 0.5
CT_{reg} = CT_{reg} Filters + CT_{reg} CW + CT_{reg} CC Tk
Cl<sub>2CW</sub> is the concentration of free chlorine leaving the Clear Well. WP WC Cl2 CW
          Minimum of the previous 4 hrs.
Cl<sub>2CC</sub> is the concentration of free chlorine leaving the Chlorine Contact Tank. WP WC Cl2 CCEf
          Triggering event.
pHcw: WP WC pH CW
          Maximum of the previous 4 hrs.
pHcc: WP WC pH CCEf
          Maximum of the previous 4 hrs.
Temp<sub>cw</sub>: WP WC Temp CW
          Last temp entered manually.
Temp<sub>CCTk</sub>: WP WC Temp CCIn
          Last temp entered manually.
                                                       Inactivation Ratio:
CT<sub>ratio</sub> Filters = CT<sub>rate</sub> Filters / CT<sub>req</sub> Filters
CT<sub>ratio</sub> CW = CT<sub>calc</sub> CW / CT<sub>reg</sub> CW
CT<sub>ratio</sub> CC Tk = CT<sub>calc</sub> CC Tk/ CT<sub>req</sub> CC Tk
CT<sub>ratio</sub> = CT<sub>ratio</sub> Filters + CT<sub>ratio</sub> CW + CT<sub>ratio</sub> CC Tk
```


- Pulled CT equations from an engineering report
- Plugged in both sample data and online process data
- Utilized PI Web API to pull process and sample data, run calculations, and then write the results to new tags
- Created a simplified interface for operators to access results in PI Vision

CT_{calculated}:

```
CT<sub>calc</sub> Filters = Cl<sub>2CW</sub> x 1440 x 0.75 x (.10 x (# filters in service / 6)) / (Flow<sub>CW</sub>)
CT<sub>calc</sub> CW = Cl<sub>2CW</sub> x 1440 x 0.32 x 7.4805 x (3352 x CW level - 9884) / (1,000,000 x Flow<sub>CW</sub>)
CT_{calc} CC Tk = Cl_{2CC} x 1440 x 0.29 x (0.374 x CC Tk level / 13) / (Flow<sub>Finished</sub>)
CT<sub>calc</sub> = CT<sub>calc</sub> Filters + CT<sub>calc</sub> CW + CT<sub>calc</sub> CC Tk
Where:
Cl<sub>2CW</sub> is the concentration of free chlorine leaving the clear well. WP WC Cl2 CW
     Minimum of the previous 4 hrs.
Cl<sub>2CC</sub> is the concentration of free chlorine leaving the chlorine contact tank. WP WC Cl2 CCEf
     Triggering event, entered every 4 hrs.
Flow<sub>CW</sub> is transfer pump flow + Backwash Pump 1 and Pump 2 flows. WP-CAM.PAC.XFP FIC5000 PV +
     Peak flow of the previous 4 hrs.
Flow Finished is the finished water flow leaving the chlorine contact tank. WP-CAM.PAC.MainFlowAvg
     Peak flow of the previous 4 hrs.
CW level: Level of Clear Well (1) WP-CAM.PAC.ClearWell1Level
     Minimum of the previous 4 hrs.
Chlorine Contact Tank level: WP-CAM.PAC.CL2ContactLevel
     Minimum of the previous 4 hrs.
# filters in service: Read off of WP-FLT-12(34, 56).PAC.FLTx_FE_FM_815x_FLOW (x=filter #).
     Minimum number of the previous 4 hrs. Not less than 3
                                                          CT<sub>required</sub>:
If the temperature is < 5 °C:
CT_{reg} Filters = 0.36 x (pH<sub>CW</sub><sup>2.69</sup>) x (Temp<sub>CW</sub><sup>-0.15</sup>) x (Cl<sub>2CW</sub><sup>0.15</sup>) x 0.5
CT_{reg} CW = CT_{reg} Filters
CT_{reg} CC Tk = 0.36 \times (pH_{CC}^{2.69}) \times (Temp_{CCTk}^{-0.15}) \times (Cl_{2CC}^{0.15}) \times 0.5
If the temperature is ≥ 5 °C:
CT_{reg} Filters = 0.2828 x (pH<sub>CW</sub><sup>2.69</sup>) x (0.933<sup>(Temp</sup><sub>CW</sub><sup>-5)</sup>) x (Cl<sub>2CW</sub><sup>0.15</sup>) x 0.5
CT_{reg} CW = CT_{reg} Filters
CT_{reg} CC Tk = 0.2828 \times (pH_{CC}^{2.69}) \times (0.933^{(Temp}_{CCTk}^{-5})) \times (Cl_{2CC}^{0.15}) \times 0.5
CT_{reg} = CT_{reg} Filters + CT_{reg} CW + CT_{reg} CC Tk
Cl<sub>2CW</sub> is the concentration of free chlorine leaving the Clear Well. WP WC Cl2 CW
          Minimum of the previous 4 hrs.
Cl<sub>2CC</sub> is the concentration of free chlorine leaving the Chlorine Contact Tank. WP WC Cl2 CCEf
          Triggering event.
pHcw: WP WC pH CW
          Maximum of the previous 4 hrs.
pHcc: WP WC pH CCEf
          Maximum of the previous 4 hrs.
Temp<sub>cw</sub>: WP WC Temp CW
          Last temp entered manually.
Temp<sub>CCTk</sub>: WP WC Temp CCIn
          Last temp entered manually.
                                                      Inactivation Ratio:
CT<sub>ratio</sub> Filters = CT<sub>rate</sub> Filters / CT<sub>req</sub> Filters
CT_{ratio} CW = CT_{calc} CW / CT_{reg} CW
CT<sub>ratio</sub> CC Tk = CT<sub>calc</sub> CC Tk/ CT<sub>req</sub> CC Tk
```

CTratio = CTratio Filters + CTratio CW + CTratio CC Tk

- Pulled CT equations from an engineering report
- Plugged in both sample data and online process data
- Utilized PI Web API to pull process and sample data, run calculations, and then write the results to new tags
- Created a simplified interface for operators to access results in PI Vision

CT_{calculated}:

 $\begin{array}{l} \text{CT}_{\text{calc}} \; \text{Filters} = \text{Cl}_{\text{2CW}} \, \times \, 1440 \, \times \, 0.75 \, \times \, (.10 \, \times \, (\# \, \text{filters in service / 6})) \, / \, (\text{Flow}_{\text{CW}}) \\ \text{CT}_{\text{calc}} \; \text{CW} = \text{Cl}_{\text{2CW}} \, \times \, 1440 \, \times \, 0.32 \, \times \, 7.4805 \, \times \, (3352 \, \times \, \text{CW level - 9884}) \, / \, (1,000,000 \, \times \, \text{Flow}_{\text{CW}}) \\ \text{CT}_{\text{calc}} \; \text{CC Tk} = \; \text{Cl}_{\text{2CC}} \, \times \, 1440 \, \times \, 0.29 \, \times \, (0.374 \, \times \, \text{CC Tk level / 13}) \, / \, (\text{Flow}_{\text{Finished}}) \\ \text{CT}_{\text{calc}} \; \text{EC Tc}_{\text{alc}} \; \text{Filters} + \text{CT}_{\text{calc}} \; \text{CW} + \text{CT}_{\text{calc}} \; \text{CC Tk} \\ \text{Where:} \end{array}$

Cl_{2CW} is the concentration of free chlorine leaving the clear well. WP_WC_Cl2_CW Minimum of the previous 4 hrs.

Cl_{2CC} is the concentration of free chlorine leaving the chlorine contact tank. WP_WC_Cl2_CCEf Triggering event, entered every 4 hrs.

Flow_{CW} is transfer pump flow + Backwash Pump 1 and Pump 2 flows. WP-CAM.PAC.XFP_FIC5000_PV +

CT Values

CT Required total 133 3/28/2025 8:00:00 AM CT Calculated total 621 3/28/2025 8:00:00 AM

CT Ratio total 13.8 3/28/2025 8:00:00 AM

iviaximum or the previous 4 hrs.

Temp_{CW}: WP_WC_Temp_CW

Last temp entered manually.

Temp_{CCTk}: WP WC Temp CCIn

Last temp entered manually.

Inactivation Ratio:

$$\begin{split} & \mathsf{CT_{ratio}} \; \mathsf{Filters} = \mathsf{CT_{calc}} \; \mathsf{Filters} \; / \; \mathsf{CT_{req}} \; \mathsf{Filters} \\ & \mathsf{CT_{ratio}} \; \mathsf{CW} = \mathsf{CT_{calc}} \; \mathsf{CW} \; / \; \mathsf{CT_{req}} \; \mathsf{CW} \\ & \mathsf{CT_{ratio}} \; \mathsf{CC} \; \mathsf{Tk} = \; \mathsf{CT_{calc}} \; \mathsf{CC} \; \mathsf{Tk} / \; \mathsf{CT_{req}} \; \mathsf{CC} \; \mathsf{Tk} \end{split}$$

CT_{ratio} = CT_{ratio} Filters + CT_{ratio} CW + CT_{ratio} CC Tk

ENGIE uses the PI System to capture and utilize its lab data

Challenge

- An ancient data capture and storage system limited our ability to store and access all our sample and operational data accurately
- Needed an application which would fit a limited budget
- Operators and management were used to the old system and naturally hesitant to changing aspects of it

Solution

- Implemented AVEVA™ PI Manual Logger to capture lab sample data
- Utilized AVEVA™ PI Vision to display sample findings, calculation results, and operational stats side by side
- Organized the resulting new tags and programed calculations in AVEVA PI Server's Asset Framework

Results

- Created a data entry, storage, calculation, and visualization process contained in one already existent ecosystem
- Compiled easily accessible data for operations, management, and project engineers

