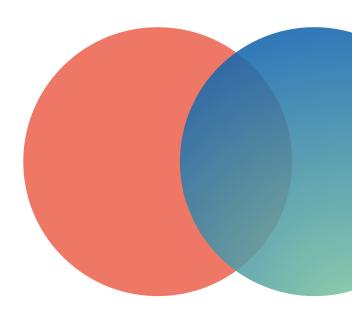
AVEVAWORLD

PARIS

Where energies make tomorrow 🔵

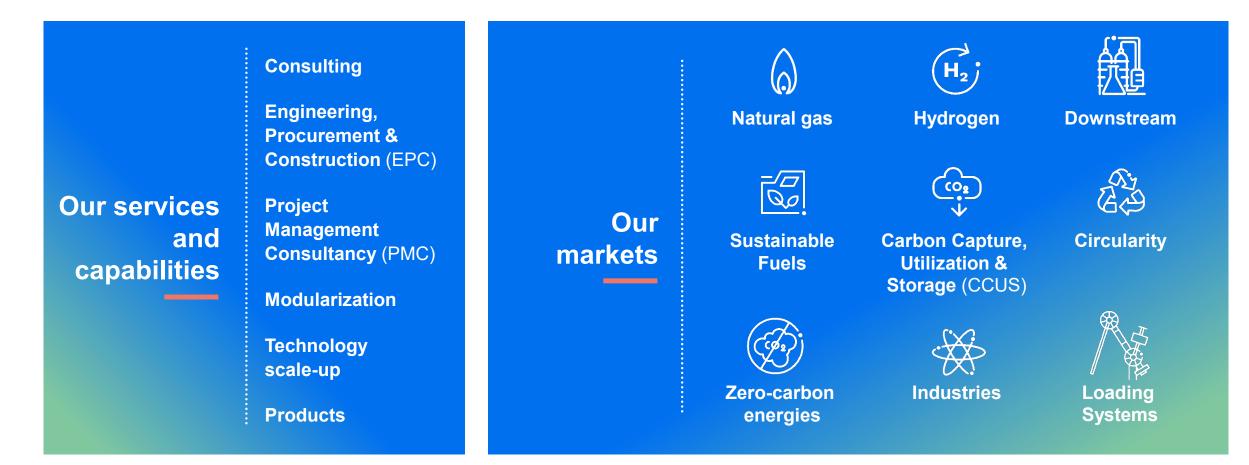

AVEVA World 2024

Capturing CO2 from air – an unusual dynamic simulation

Leonardo Giampani Morita, Dynamic Simulation Expert Eric Eccleston, Department Manager FluoSolids Eric Wagner, Director Technology Development

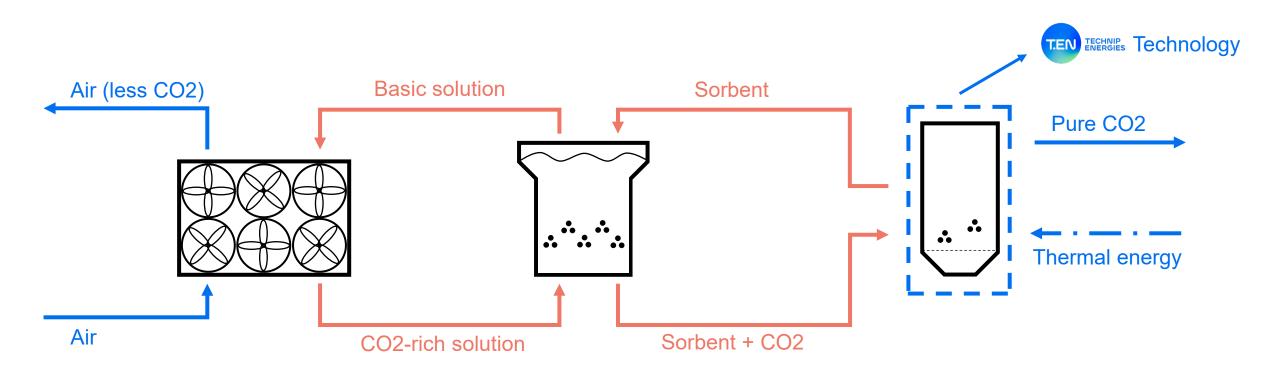
Agenda

- **1. Technip Energies**
- 2. Direct Air Capture Technology
- **3. Dynamic Simulations**
- **4.** Conclusion
- **5. Questions**

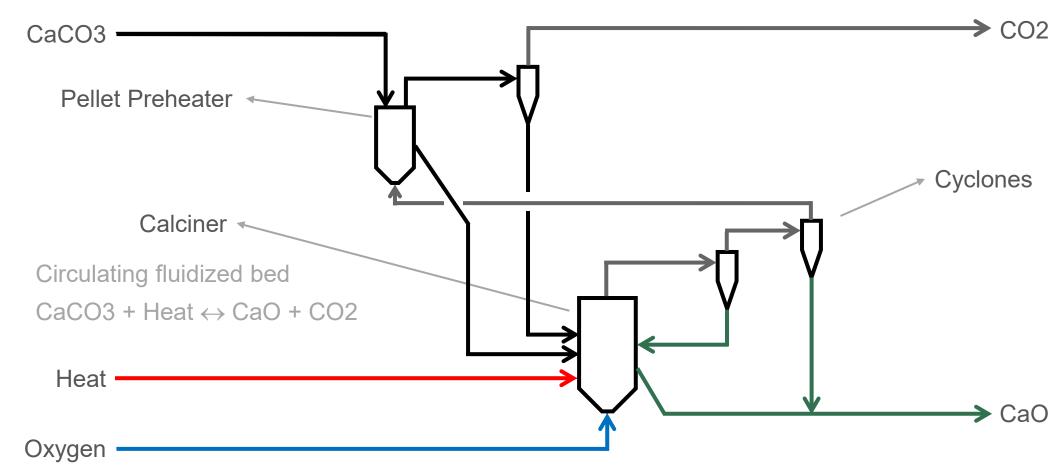


Technip Energies at a glance

Listed on Euronext Paris Stock Exchange	Headquartered in Paris	65+ Years of operations
€6bn Full year 2023 adjusted revenue	A leading engineering & technology company for the energy transition	€17bn Backlog at end June 2024
~16,000 Employees in 34 countries	25+ Leading proprietary technologies	500+ Projects under execution


Our solutions to accelerate the energy transition

Direct Air Capture Technology


Overview

Direct Air Capture Technology

Calciner Unit

Objectives

Simulate start-up and other scenarios

Test different operation setups

Calculate non-measured variables (heat losses, recirculation flow)

Provide an "ideal" reference, to which operating data can be compared

Operator training

What is dynamic (process) simulation?

Tool based on chemical/physical principles used to model the behavior of process variables over <u>time</u>

Main applications

- Engineering Studies
- Operator Training Simulators

Time

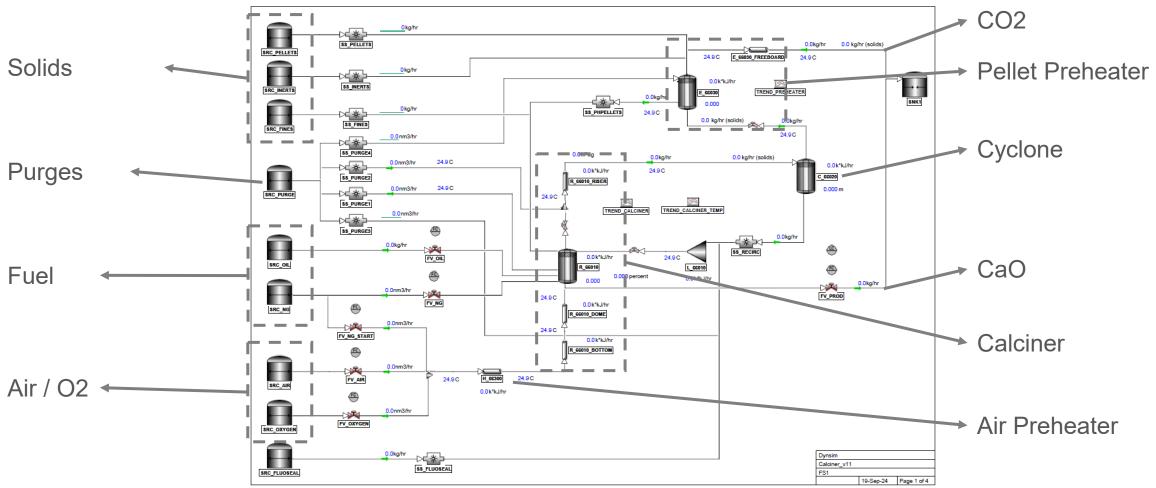
Key elements

- Thermodynamics (method and components)
- Unit operations (topology + sizing/performance information)
- Control scheme (to ensure stable operation)

Methodology

AVEVA Dynamic Simulation

Phase 1 – Pilot


- Model initially built based on design data (Heat & Material Balance)
- Model adjusted to match available operating data (flow rates, temperatures)

Phase 2 – Large-scale

• Ongoing work

Model topology (Pilot)

Assumptions

Conversion reaction

- Calcination is a chemical equilibrium
- Reaction modeled with an overall conversion, assumed as an exponential function of temperature

Fluidization

- Particle size not considered
- Assumed fixed void fraction for holdup/level calculations

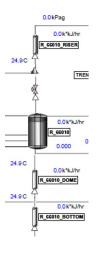
Challenges and Solutions

Solids properties

- Component database is much more used (and validated) for oil & gas & chemicals
- > Validation by comparison with literature values

Solids flow

- Solver is based on pressure-flow relationship, not necessarily appropriate to model solids flow
- Flow is "forced" through "Stream Sets" (directly set by user or a custom equation)

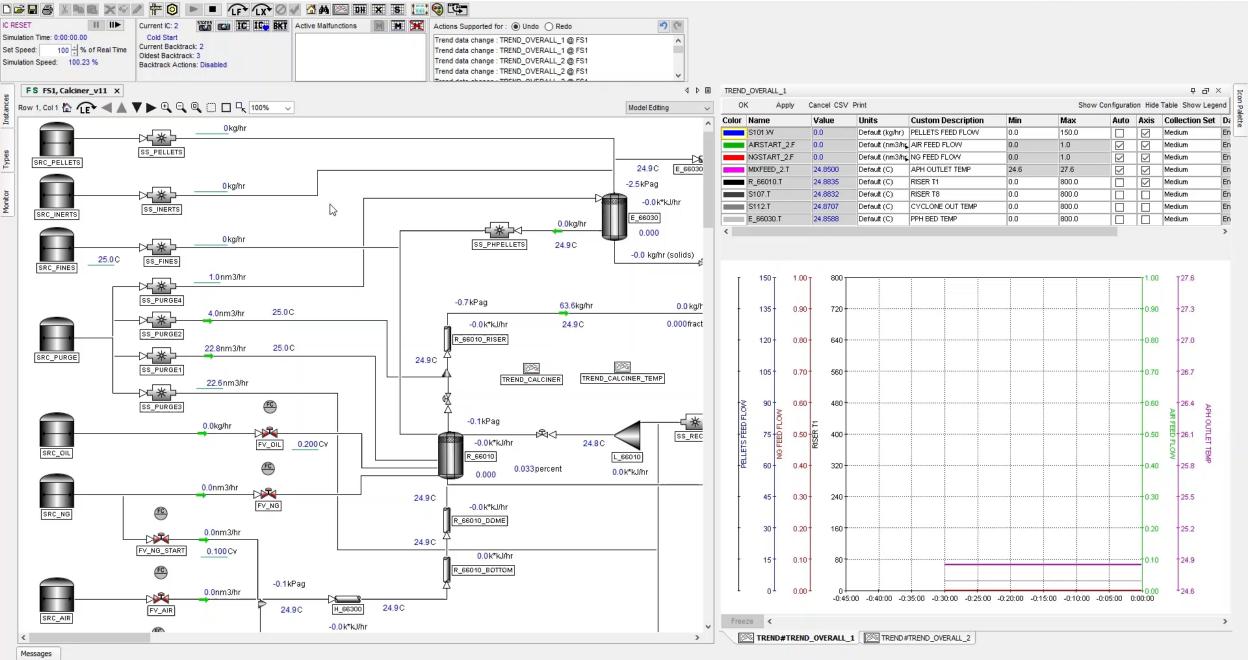

Challenges and Solutions

Solids entrainment

- Normally the solids remain in the heavy phase of the "Drum" and do not go to the gas phase
- Configuration of an entrainment fraction to force part of the solids to go to the gas product
 - This fraction is proportional to the gas flow in the fluidized beds
- This entrainment defines the solids recirculation and the cyclones separation efficiency

Discretization of fluidized beds

- Most unit operations assume a perfect mixing and calculate single holdup properties
- To better represent the temperature gradients in the Calciner and Pellet Preheater, they were modeled using more than one unit operation



Command:

File Edit View Input Run Tools Options Draw Window Help

_

Selection cleared

Large-scale model (Ongoing)

New topology

- Different feeds
- Additional cyclones
- New equipment sizes

New chemical components and reactions

- New reaction: CaO + CO2 \rightarrow CaCO3
- New component: Ca(OH)2

Same modeling approach for solids

Large-scale model (Ongoing)

Simulation of part of start-up procedure

- Adjustment of the model to match different operating cases
 - Fine tuning of equations for heat transfer coefficients and solids entrainment

Next steps (planned)

- Other scenarios
- Operator training

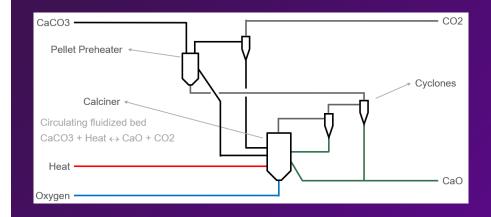
me	Value	Units	Custom Description	Min	Max	Auto	Axis	Collection Set	Data Collection	Samples	Color	Name	,	/alue	Units	Custom Description	Min	Max	Auto	Axis	Collection Set	Data Collection	Sam
05.T	525.834	Default (F)	Feed from Dryer to Calciner	0.0	2000.0			Slow	Enabled	240		T200.W	8	5482.3	Default (lb/hr)	Fluidizing O2 to Calciner	0.0	100000.0			Slow	Enabled	240
06.T	517.390	Default (F)	Dryer Off-gas to Primary Cyclones	0.0	2000.0			Slow	Enabled	240		T201.W	4	298.03	Default (lb/hr)	Fluidizing O2 to Fluoseal	0.0	100000.0			Slow	Enabled	240
7.T	512.694	Default (F)	Dryer Off-gas to Secondary Cyclones	0.0	2000.0			Slow	Enabled	240		T203.W		2244.3	Default (lb/hr)	In-Bed NG to Calciner	0.0	30000.0			Slow	Enabled	240
08.T	507.916	Default (F)	Dryer Off-gas to Scrubber	0.0	2000.0			Slow	Enabled	240	_	T204.W	1	0869124.	Default (lb/hr)	Calciner Off-gas to Primary Cyclone	0.0	1.5E7			Slow	Enabled	240
04.T	1646.48	Default (F)	Calciner Off-gas to Primary Cyclone	0.0	2000.0			Slow	Enabled	240	_	T205.W		76437.	Default (lb/hr)	Calciner Off-gas to Secondary Cyclones	0.0	300000.0			Slow	Enabled	240
05.T	1645.32	Default (F)	Calciner Off-gas to Secondary Cyclones	0.0	2000.0			Slow	Enabled	240	_	T206.W	-	73033.	Default (lb/hr)	Calciner Exhaust gas to Dryer	0.0	300000.0			Slow	Enabled	240
06.T	1630.38	Default (F)	Celciner Exhaust gas to Dryer	0.0	2000.0			Slow	Enabled	240		T207.W	1	0592796.	Default (lb/hr)	Calciner Underflow	0.0	1.5E7			Slow	Enabled	240
08.T	1651.74	Default (F)	Calciner Underflow	0.0	2000.0			Slow	Enabled	240		T208.W		14565.	Default (lb/hr)	Calciner Primary Cyclone Underflow	0.0	400000.0			Slow	Enabled	240
										>		T209.W	5	416.97	Default (lb/hr)	Calciner Secondary Cyclones Underflow	0.0	40000.0			Slow	Enabled	240
1800											Ī	1.00E5	3.00E4	3.00E5	4.00E4							1.50E7 4.00	.5 5
1600		_				Ż	-			-	İ	9.00E4	2.70E4	2.70E5	3.60E4							-1.35E7 -3.60	E5
1400				_							İ	8.00E4	2.40E4	8	3.20E4 ≩		$ \land $					1.20E7 - 3.20	
1200											İ	7.00E4-	2.10E4 ·		2.80E4		/					1.05E7 & 2.80	ciner
1000											İ	8	1.80E4 -		8 2.40E4		1 1		\frown			9,0066 9-2,40	mary.
1000											t	g 5.00E4	2 1.50E4 -	ගී 1.50E5 - ද	2.00E4					~		7.50E6 8-2.00	done
800								······				š –	8	2 .	ē i							1 6.00E6 🗟 11.60	
800												2	2 1.20E4 -	e G	รี่รู้ 1.60E4 ที่							Cycle	nderfi
800										-	ļ	3.00E4 -	⊆ 9.00E3 ·	5 9,00E4 -	99 1-20E4				-			4.5066 8 -1.20	iderflow ES
800 600 400										••••	-	2	£	5 9,00E4 -	er Se							Cycle	
800										•	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	금 3.00E4 -	⊆ 9.00E3 ·	5 9.00E4 - 6.00E4 -	99 1-20E4							4.50E6 8 -1.20)E4

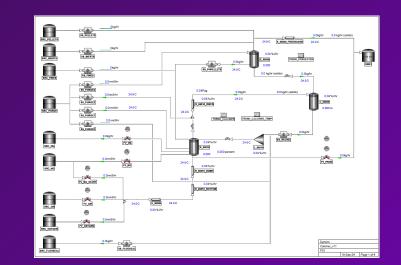
OIL GAS AND ENERGY

Technip Energies builds a process model to run dynamic simulations of a Calciner unit

Challenge

- Development of a simulator of a Calciner to support operators and engineers, in particular during start-up of the unit
- Increasing demand to simulate "unusual" processes with the Energy Transition, which present higher difficulty for modelling


Solution


- Process model built in AVEVA Dynamic Simulation for the Calciner unit
- High level of customization needed to address the "unusual" aspect of the system

Results

- Supported operation team during pilot phase
- Simulated start-up scenarios
- Evaluated different operating conditions and setups
- Calculated non-measured variables (e.g. solids recirculation flow rate)

Questions?

Dynamic Simulation

• leonardo.morita@ten.com

Calciner

- eric.eccleston@ten.com
- eric.wagner@ten.com

Thank you