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ABSTRACT

This paper reports on a case study involving the use of
SEA methods in the acoustic design of an advanced
design luxury sedan. The power of the analytical
method was used to advantage in a case of a vehicle
with very challenging NVH targets. Three practical
issues are highlighted; review of a method to handle
adding components that contribute acoustic absorption,
presentation of data to aid vehicle content decisions,
and design sensitivity analysis. This effort demonstrates
an example in which SEA modeling provided relevant
and timely input to the vehicle design team to aid
decision making for sound package content.

INTRODUCTION

An advanced design vehicle development effort was
undertaken, the NVH design goal being to develop a
prototype luxury sedan with properties that would be as
good as, or better than the Best in World. Untraditional
approaches to achieve this result were allowed, in an
effort to discover what technologies needed to improve
in this highly competitive market. The challenges to
improve performance for road noise were seen to be
some of the greatest in this effort. Consequently, a
team was assembled which attacked these issues using
both experimental and Statistical Energy Analysis (SEA)
methods [1-7]. For several manufacturers, it is not
common to rely heavily on SEA at an early enough
stage to have its results give practical design guidance.
This effort was accelerated and focused in its direction
to make the highest priority be to support design team
decision-making.

At an early stage, it was decided that the SEA modeling
would address acoustic forcing and response only, and

would neglect structural forcing inputs. These were to
be handled by other analytical efforts, using other
methods. The primary forcing cases investigated were
due to tire / road noise, and the team would only
address tailpipe and engine compartment noise as a
second priority. The tire noise case used in the reported
results involved inputs from all four wheel areas, and
was derived from data taken at 45 mph on a smooth test
track.

Response location priority was focused on the driver’s
head space, followed by front and rear passenger head
spaces.

This paper reports on three techniques which were
found to improve the usefulness, ease of model
preparation and timeliness of the SEA results in their
benefit to the decision makers of the vehicle sound
package design team.

PRESENTATION OF SEA RESULTS

PRIORITIZATION OF SOUND PACKAGE CONTENT

The design team began work starting from a recent
model year, production luxury sedan. The SEA model
team was able to obtain an SEA model which was
nearly representative of this vehicle. Brief early effort
was focused to bring the baseline SEA model into
correlation with the baseline development vehicle.
Targets were set which required extensive improvement
in the road noise performance of the vehicle.

Previous modeling efforts would present results in terms
of the improvement in response that a candidate
modification would produce as compared to the
baseline. Because of the drastic changes envisioned,



the SEA team realized that this method of assessing the
effectiveness of treatments would not lead to the correct
conclusions as to whether treatments were needed in
order to meet the final targets. A treatment could be
shown as ineffective in the baseline vehicle, and yet
become very effective when other treatments had
changed the balance of acoustic power flow in the
system.

A bar chart “pareto” approach was chosen to present
model results to the vehicle design team. This
approach would display results of a “Max Pack” vehicle,
or one which had installed in the SEA model the most
effective treatments which were envisioned for the final
vehicle. Then the pareto would show the penalty in final
vehicle performance experienced by choosing to not
include that treatment in the final sound package design.
This approach takes advantage of the unique feature of
SEA modeling, that sweeping design changes can be
rapidly made to an SEA model because of the relatively
small amount of information in the model as compared
to FEA or other methods.

Figures 1 and 2 show the final pareto charts for the tire
noise and engine noise cases.

In the Figure 1, for tire noise inputs, the pareto chart
says that a design decision which leaves the acoustic
absorption of the cabin at the baseline levels would

degrade the final vehicle performance by 3 dB in the
high frequency range. Next in importance is under body
treatments. In Figure 2, for engine noise inputs, to
remove hush panels from the design would raise the
noise levels in the mid- and high frequency ranges by
3 dB. Cabin absorption is the next most crucial design
change for this noise source. Since hush panels work to
seal the dash and instrument panel space, it is
reasonable that they are a significant contributor to
cabin noise attenuation in a well-treated vehicle for the
engine noise case. However, this result quantified for
the vehicle design team the importance of these panels.
Earlier data derived from adding them to a baseline
vehicle indicated that they added very little to cabin
noise performance. However, the SEA team’s
conclusion was that the energy flow path treated by the
hush panels had become dominant because other
treatments found in the fully treated vehicle had reduced
the dominant paths of the baseline vehicle.

BOOK KEEPING OF ACOUSTIC ABSORPTION

Acoustic absorption was seen to be at or near the top in
importance, among all treatments for the acoustic
performance of the vehicle, in all the load cases
investigated. The SEA team discovered that proper
tracking of sources of acoustic absorption, and
assignment of the absorption to the correct acoustic
spaces, was a serious issue for a complex SEA model.
A book keeping method is needed for this tracking which
allows a straightforward way to assign absorption from
new treatments applied in a design change. This is an
area of SEA modeling which commonly leads to input
errors. Though the authors realize that this is not a
completely new concept [8], the method chosen to track
absorption is here presented.

Sample Absorption Spreadsheet
Engine Compartment Rear Driver's Side

Subsystem ID# 10087

Material ID# 1187

Treatment=> Added
Hood liner

Measured
Engine

Compartment
Absorption

Added
Dash Liner

New Total
Absorption
Area:

Absorption
Area =

2.55E+05 2.87E+05 7.00E+04 6.12E+05

Frequency Alpha Values New Alpha:

125 0.041 0.3100 0.0210 0.165

250 0.094 0.3100 0.0750 0.193

500 0.180 0.3100 0.2130 0.245

1000 0.383 0.6800 0.4180 0.526

2000 0.805 0.7600 0.6020 0.761

4000 0.948 0.8800 0.7780 0.897

8000 0.924 0.9050 0.8570 0.907

Table 1: Absorption Tracking
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Absorption spreadsheets were developed to both
document and ease the updating of absorption values
for the key interior acoustic spaces in the vehicle SEA
model. The particular challenge comes that the
subdividing of the passenger cabin, engine
compartment and trunk, each into multiple air spaces,
complicates the computation of acoustic absorption.
Treatments typically span the boundaries of more than
one acoustic space, while spaces commonly have
absorption contributions from more than one treatment.
In addition, measurements were made which provided
absorption data as a function of frequency for these
various treatments. A sample acoustic absorption table
is presented in Table 1.

Acoustic absorption from multiple sources follows the
simple equation below. Sα is the total acoustic
absorption in metric Sabines.

ÿ=
i

iiSS αα (1)

Si is the absorbing surface area of treatment i, and αI is
the acoustic absorption coefficient of that absorbing
area i. The SEA input accepts S, the total absorbing
area for an acoustic space, and α, the absorption
coefficient of that area, which may be frequency
dependent. The spreadsheet in Table 1 makes use of
this relation to first compute the combined area of
absorbing treatments, and then makes use of that area
to compute the needed frequency dependent α (alpha,
or absorption coefficient) to give the right total acoustic
absorption to the space.

DESIGN SENSITIVITY ANALYSIS

A special version of one of the major US SEA codes has
been developed to support design sensitivity analysis
(DSA). This automates the process of performing
several runs on a model with slightly different values of
a design parameter, to determine the sensitivity of the
final result to changes of this parameter. Full
optimization in a design space can be performed by
choosing a set of design variables to optimize over, and
assigning cost functions to each one. Then the code will
search through the range of allowable values for each
design variable to minimize the cost and maximize the
performance of the design.

The SEA team reached a point where the more obvious
treatments had been chosen and implemented in the
design of the luxury vehicle. Yet the performance
objectives had not been met. It was decided to perform
a design sensitivity analysis in order to look for the most
sensitive parameters in the vehicle acoustic design, in
order to prioritize further efforts to achieve the acoustic
targets. A brainstorming session was used to list all
model variables that were thought to have any
significant influence on the vehicle acoustic noise
attenuation (ANA). A list of 30 key variables was
developed. The DSA software then needed to be fed

the information of which parameters in the SEA model
defined each model design variable. Variables included
panel thicknesses, areas, and absorption values. The
DSA analysis is also affected by the load case used.

Figures 3 – 5 show the DSA results for the Tire noise
load case in the three frequency regions. The scale of
the bars is the number of dB’s the noise level in the
driver’s head space would change with a doubling of the
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property. In Figure 3, the most sensitive parameter is
the interior absorption below the belt line, which would
drop the head space acoustic response by about 1.7 dB
with a doubling of the absorption.

Cabin absorption has been broken into two separate
bars, and otherwise would be the dominant factor in all
frequency ranges. In the mid-frequency range, the glass
thickness jumps ahead, while at high frequencies,
absorption ranks first and second.

Another use of this analysis is to see which factors have
little effect on the performance of the sound package
design. These items appear on the right side of these
bar graphs, and represent items that could be reduced

or omitted for the sake of weight or cost savings without
degrading performance.

However, items that have little effect for one load case
may, in fact, be dominant for other load cases.

Figures 6 – 8 show the DSA results for the engine noise
load case. It is interesting to see that dash panel holes
are a dominant sensitivity at high frequencies, yet
decrease rapidly at lower frequencies. Absorption is a
key sensitivity in this load case as well as in the tire
noise load case. Again, if all cabin absorption were
lumped together into one variable, it would be the
dominant one in all frequency ranges.

DSA results were seen here to provide useful direction
to the vehicle design team in their quest to achieve
difficult acoustic performance targets.

CONCLUSION

This paper presented a case study in the use of SEA
methods to assist in the acoustic design of an advanced
design luxury sedan. Several lessons learned were
presented.

A “pareto” approach to presenting the relative
effectiveness of treatments as compared to an
analytically developed “Max Pack” treatment gave
important clues as to the importance of various
treatments at an early stage in the design. The fact that
this analysis was performed and presented in under a
week showed the power of SEA methods for rapidly
answering design questions.

A method for book-keeping of the acoustic absorption
for important acoustic spaces was presented. The key
cabin space in an automotive SEA model is typically
subdivided into several space subsystems. This
complicates the application of acoustic absorption from
treatments that may span the boundaries of several
acoustic subsystems.

A design sensitivity analysis was run, and the results
presented. This analysis method provided very helpful
direction late in the program to assist in the final stages
of meeting very challenging noise targets.
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