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ABSTRACT 

This paper describes the application of the modal 
compliance method to a complex structure such as a 
vehicle body in white, and the extension of the method 
from normal modes to the complex modes of a complete 
vehicle. In addition to the usual bending and torsion 
calculations, the paper also describes the application of 
the method to less usual tests such as second torsion, 
match-boxing and breathing. We also show how the 
method can be used to investigate the distribution of 
compliance throughout the structure.   
 
INTRODUCTION 

The NVH characteristics of a vehicle depend strongly on 
its vibration modes. These in turn depend on the mass 
and stiffness distribution of the vehicle system, 
particularly that of the body. While the mass distribution 
is easily calculated, the stiffness distribution is not easy 
to calculate or measure. On the other hand, it is 
relatively easy to experimentally determine the vibration 
modes of vehicle bodies. Such tests are simplest when 
the body is removed from the rest of the vehicle system 
before testing, and the free-free modes are measured.  
 
In principle the stiffness distribution of the body can be 
found from the modes using a method called matrix 
inversion. In practice this is very difficult. An alternate 
approach is to use the modal data to simulate static 
determinate tests which measure the compliance (i.e. 
reciprocal of stiffness) of the structure for a set of known 
loads. The use of this method to analyze simple lightly 
damped systems, such as frames, has been described 
in previous papers (1, 2). Here we describe its extension 
to more complex systems with greater amounts of 
damping. 
 
One of the big advantages of modal testing is that a 
single modal test provides data which can be analyzed 
in many ways. The most obvious example is that a 

single modal test can provide estimates of bending and 
torsional stiffness, whereas two completely different 
static tests are required to find these results. Not only 
this, but the dynamic data can be used to find a whole 
set of useful numbers, such as second torsion 
compliance, front torsion compliance and match-boxing 
compliance. Static test determination of these 
compliances would require a separate static test with 
different fixtures for each type of compliance. 
 
The previous papers (1, 2) describe a method which 
assumed normal modes. In practice we often encounter 
modes which are complex. Consequently the method 
has been extended to complex modes. This extension 
was first applied to the “almost” normal modes of a 
lightly damped BIP (body in prime).  
 
THEORY 

In paper (1) we showed that for a static determinate test 
involving only forces and translational displacements, all 
the forces (Fn) can be written in terms of a single 
generalized force F and a set of coefficients ( nχ ) that 
depend only on the geometry and the scaling of the 
generalized force: 
 
 FF nn χ=       (1) ∑ =

n n 0χ
          
Tests involving moments and rotations can be analyzed 
in a similar fashion. 
 
The static compliance (C) is calculated from the 
displacements (dn) at the load and support points via: 
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If the structure can be represented by real normal 
modes then each mode gives a contribution to the 
compliance, (c): 
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where: 
 
 Ψi = mode shapes at load and support points 
 
 m = modal mass 
 
 fr  = Resonant frequency 
 
The total compliance is the sum of the compliances due 
to the individual modes. The sum of the contributions of 
all the modes may also be found by constructing a 
“compliance” transfer function and extrapolating it to 
zero Hz. The compliance function has the form: 
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In the event the modes are complex it can be shown 
(see appendix) that the modal contribution is: 
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where: 
 
    (6) ∑=

p
ppA )Re(ψχ

    (7) ∑=
p

ppB )Im(ψχ

 
In the case of real normal modes the equations (5), (6) 
and (7) reduce to equation (3) – but we should note that 
in practice real normal modes are often taken to be 
purely imaginary.  
 
The total compliance is the sum of all the modal 
compliances: 
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This series should converge quickly because of the f2 
factor in the denominator of the expression for c. 
However, since one always sums over a finite set of 
modes one expects the dynamic calculation of 
compliance to be slightly less than the static result. 
 
BIP CORRELATION STUDY 
 
A vehicle body-in-prime (BIP: sheet metal without glass 
or closures) was used to validate the theory for a 

complex structure. This was done by comparing static 
and dynamic tests. The theory was also used to extend 
the compliance method to tests where static procedures 
would be difficult, for example match-boxing or second 
torsion. 
 
TORSIONAL COMPLIANCE 
 
Static Test Theory 
 
Torsional tests involve applying equal and opposite 
torques, Γ and –Γ, at various locations along the 
structure, for example at the front and rear, and then 
measuring the net angular deflection Ω between the load 
points. Figure 1 shows the basic geometry of such a 
test. 
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  Figure 1: Torsion Test Geometry    
 
Supposing that the applied forces Fp and deflections dp 
are vertical at points 1, 2, 3 and 4, then we can define 
the forces and deflections via:   
 
 Γ= ppF χ      (9) ∑=Ω

p
ppdχ

     
The torsional compliance is then: 
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The values of the s'χ are determined from: 
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Strictly speaking this type of test is “less-than-static-
determinate” in the sense that the specification of static 
test forces allows an overall rigid body motion. However 
the method of calculating compliance removes rigid 
body motion, and we have static results which can be 
compared exactly to free-free modal results. 
 



Static Results 
 
The body structure was supported and loaded at the 
ends of the front and rear rails. Various loads were 
applied and the structure was found to be quite linear for 
torques up to 500 N-m.  
 
 End-to-end torsional compliance: 1.55 x10-6 rad/N-m 
 
Dynamic Results & Correlation  
 
The complex mode calculation for end to end torsion 
gave 1.47 x10-6 rad/N-m. This was approximately 95% of 
the static result, so the results of the dynamic method 
agreed well the static results.   
 
The compliance was spread among a number of modes 
as shown in Table 1. Note that modes with negligible 
contribution are not shown. 
 

Table 1: Modal Contributions to Overall Torsional 
Compliance 

 
Mode 
Freq. 
 (Hz) 

Compliance 
per Mode  
Rad/N-m 

Cumulative 
Compliance 

% 
Total 

31.95 4.44E-07 4.44E-07 30.3
37.01 4.27E-07 8.71E-07 59.4
38.53 1.49E-07 1.02E-06 69.5
46.26 1.09E-07 1.13E-06 77.0
64.35 9.02E-08 1.22E-06 83.1
66.93 3.28E-08 1.25E-06 85.3
71.72 2.11E-08 1.27E-06 86.8
73.61 1.85E-08 1.29E-06 88.0
78.71 5.82E-08 1.35E-06 92.0

100.15 3.61E-08 1.39E-06 94.5
103.27 3.49E-08 1.42E-06 96.9

 
Most of the compliance (~60%) is contributed by the two 
modes at 31.95 Hz and 37.01 Hz, and a further 20% of 
the compliance is contributed by the modes at 38.5, 46.3 
and 64.4 Hz. Some modes gave negative contributions 
with very small magnitudes, an effect that was attributed 
to curve-fitting issues.  
 
Torsional Stiffness Distribution 
 
When analyzing torsional compliance it is tempting to 
suppose that the body structure can be treated as 
torsional springs in series. This is certainly a convenient 
starting point. However, two points need to be born in 
mind: (a) the structure of the body is sufficiently non-
uniform that the concept of springs in series can only be 
a rough approximation (b) as the analyzed sub-divisions 
are made smaller the fractional errors of measurement 
become larger. 
 
The first step in analyzing the distribution of torsional 
stiffness was to consider the body as a front and rear 
section: front of the body to the B-pillars and B-Pillars to 
the rear. The torsional compliances were then found for 

these sections and their sum compared to the complete 
vehicle compliance. Figure 2 summarizes the results. 
 
 
It is evident that the rear section is stiffer (less 
compliant) than the front, and that the sum of the front 
and rear compliance is close to the overall compliance. 
Some negative contributions at high frequencies indicate 
curve fitting problems. 
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   Figure 2:  Cumulative Torsional Compliance 
   (a) End to End (b) Front to B-Pillar 
   (c) B-Pillar to Rear (d) Sum b+c 
 
The use of modal data makes it easy to subdivide the 
body even further, for example into (a) front to dash (b) 
dash to center (c) center to C-Pillar (d) C-pillar to rear. 
The results of this analysis are shown in Table 2. 
 
Table 2: Compliance of Body-Subdivisions (rad/N-m) 

 

 
Compliance 
Rad/N-m 

Compliance as 
% of End-End 

End-End 1.4E-06 100
   
Front-dash 5.5E-07 38.5
dash-center 1.5E-07 10.4
center-C-Pillar 2.2E-07 15.5
C-Pillar-Rear 1.3E-07 8.8
Sum 1.1E-06 73.1

 
It can be seen that the compliance of the sub-divisions 
almost adds to the total, supporting the idea that for 
torsional purposes the body can be represented by 
springs in series, at least as far as the 4-section 
breakdown analyzed here. 
 
2nd Torsion Compliance 
 
More insight into the compliance distribution can be 
obtained by investigating 2nd torsion, i.e. torsion 
exhibited by modes where the front and rear rotate 
together out of phase with the center. 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
           Figure 3: 2nd Torsion Geometry 
 
The equivalent static test would involve applying a 
torque to the center of the vehicle (B-Pillar area) while 
restraining the ends, then measuring angular twist 
versus applied torque. The choice of restraining force is 
somewhat arbitrary, here we choose the front and rear 
restraining torques to be equal.   
 
The applied forces are then defined in the usual way: 
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For the vehicle under consideration the modal data gave 
a compliance value of 4.6 x 10-7 rad/N-m, and the main 
modal contributions were as shown in Table 3 below:  
  
  Table 3: 2nd Torsion Compliance by Mode  
 

Mode 
Frequency 

% Contribution to Total 
Compliance 

46.3 41.7 
66.9 19.5 
73.6 11.1 

 
 
BENDING COMPLIANCE 
 
Static Test Theory 
 
Bending tests involve applying equal forces F/2 at the 
center of the structure (points 3 and 4), supporting the 
structure at the ends (points 1, 2, 5 and 6), and 
measuring the average deflection at the center. The 
forces and compliance are defined in the usual way. The 

values of the s'χ are determined from the geometry and 
load definition: 
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Figure 4:  Geometry of Test Set-Up for Overall Bending 
 
Static Test Results 
 
The body structure was supported at its front & rear rails 
and loaded near the center. The structure was found to 
be quite linear. The compliance was computed from the 
deflections with a load of 800 N (400 N on either side). 
The results are summarized in Table 4. 
 

Table 4: Static Bending Compliance Test 
Measurement & Calculation 

 
Point # di  χi χidi/F (m/N) 
1 6.35E-05 -0.2540 -2.0147E-08
2 8.13E-05 -0.2540 -2.5788E-08
3 5.84E-05 -0.2460 -1.7948E-08
4 2.11E-04 -0.2460 -6.4771E-08
5 3.97E-04 0.5000 2.4766E-07
6 3.07E-04 0.5000 1.9156E-07
          Total Compliance 3.1056E-07

 
The deflection at support #4 was 4 times the deflection 
at support 3, indicating a lack of symmetry in the set-up, 
and this lack of symmetry could be expected to 
“contaminate” the bending results to some extent.  
 



Dynamic Test Results 
 
The total end to end compliance determined from the 
modes was 2.45E x 10-7 m/N or approximately 80% of 
the static result. This agreed reasonably well with the 
static results considering the problem at support #4.  
 
Table 5: Modal Contributions to Overall Bending 

Compliance 
 

Freq. 
Hz 

Compliance 
m/N 

%Total 
 

42.2 3.72E-08 15.2 
45.5 1.09E-07 44.4 
48.2 5.44E-08 22.2 
48.5 3.86E-08 15.7 
60.2 1.68E-09 0.7 
60.8 3.03E-09 1.2 
64.4 4.80E-09 2.0 
73.6 2.55E-09 1.0 

106.8 -6.85E-09 -2.8 
120.5 -1.23E-09 -0.5 

Sum 2.43E-07 99.1 
 

The contribution of the modes is shown in Table 5 (only 
the more important modes are shown). Essentially all 
the compliance was provided by 4 modes in the range 
42 – 49 Hz, other modes giving negligible contributions. 
Some modes gave small negative contributions, 
probably due to curve fitting problems. 
 
 
 
Distribution of Bending Compliance 
 
The modal compliance method makes it relatively easy 
to examine the distribution of bending compliance in a 
structure. As an example, Figure 5 shows one possible  
way to analyze front and rear bending. 
 

 
                 Front Bending   
                                  

 
                  Rear Bending 
Figure 5: Geometry for Front & Rear Bending 

 
Note that if the structure was a uniform beam then the 
bending compliance would be proportional to the cube of 
the length of the section analyzed.  For this reason we 
compare both the compliance and the compliance 
scaled by the cube of the section length, as shown in 
Table 6 below. 
 

Table 6: Front & Rear Bending Compliance 
vs. Overall Compliance 

 
 Compliance 

 (m/N) 
Compliance 
*(L/Li)^3 

Scaled/Overall 

Overall 2.45 E-07 2.45 E-07 100% 
    
Front 1.52 E-08 1.28 E-07 52% 
Rear 5.35 E-08 4.08 E-07 166% 
 Sum F+R  

(Weighted) 
2.68 E-07 109% 

 
 
Match-boxing 
 
Theory 
 
Match-boxing refers to the sort of deformation often 
seen in rectangular sections (“match-boxes”) when a 
vertical or horizontal shear load is applied. The top 
moves laterally relative to the bottom in a shearing 
motion (see Figure 6), one diagonal is compressed (1-3) 
while the other is stretched (2-4).    
 
This type of motion often occurs in vehicle body torsional 
modes. Given that the structure has a plane of 
symmetry, the match-boxing is anti-symmetric, that is, 
the left-right symmetric points have the same lateral 
motion but the opposite vertical motion. As a result 
points 1 and 3 move towards and then away from each 
other, and move out of phase with points 2 and 4. Note 
that usually the widths W12 and W34 are nearly equal. 
 
We define match boxing forces so as to exaggerate the 
effect (see Figure 6). 

Support F Suppor

Support F Suppor



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Match-boxing Motion & Forces 
 
If we write the forces in terms a generalized force we 
can then define the match-boxing compliance in the 
usual form: 
 

  
F
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pp∑
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Here the index p covers both location and direction 
(p=1y,1z,2y,2z,..........). and the value of each χ is 
determined from the geometry (see appendix). 
 
Modal Results 
 
The main contributing modes are shown in Table 7. 
 
 
 
 
 

Table 7: Distribution of Match-Boxing Compliance 
  

Frequency Compliance (m/N) % Total 
31.90 6.41E-07 38.5
37.00 5.25E-07 31.6
46.30 9.59E-08 5.8

100.15 6.29E-08 3.8
135.78 7.82E-08 4.7

Sum 1.40E-06 84.3
 
The match-boxing compliance in the B-pillar region was 
determined from the modal data and found to be 1.4 x 
10-6 m/N. The static match-boxing compliance was 

measured as 1.19e-9 m/N.  The difference between the 
modal and static result was 18%. 
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The distribution of compliance among the modes is 
similar to that of torsion, with the major exception that 
there is a mode at 38.5 Hz which contributes 10% to 
torsional compliance but essentially zero to match 
boxing compliance.   

  
Breathing Compliance 
 
We use the term breathing to apply to a symmetrical in-
out motion, for example the center roof and center floor 
moving vertically in opposite directions as illustrated in 
Figure 7.  
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Figure 7: Geometry of Breathing Compliance 
 
The vertical and lateral breathing compliance are given 
by:  
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These formulas make it relatively easy to find the vertical 
& lateral compliance. At the B-pillars the compliances 
were found to be: 
 
 CV= 2.1 x10-6  N/m         CL=1.26 x10-7  N/m 
 
 
The compliance distribution among the modes is shown 
in Table 8. 
 

Table 8: Distribution of Breathing Compliance 
 

 Mode Contribution % 
Modal 
Frequency 

Vertical 
Breathing 

Horizontal 
Breathing 

42.2 29.7 46.2 
48.2 27.5 14.5 
48.5 10.2 7.7 
64.4  4.4 
86.6  3. 
95.1  10.7 
100.2  1.74 
110.2  1.46 
120.5 29.8  
Cumulative % 97 90 

 
FULL VEHICLE TORSION 
 
A full vehicle (complete body, engine, suspension, etc) 
was used to check the ability of the method to detect 
torsional modes, and the reasonableness of the results. 
The vehicle was of the same type from which the BIP 
was extracted, and the vehicle was excited at the 
corners near the ends of the rails. The extracted modes, 
which in some cases were quite complex, were used to 
calculate the torsional compliance. The results were 
then compared with (a) subjective descriptions of the 
modes and (b) the BIP compliance. 
 

Table 9: Full Vehicle Compliance by Mode 
 
Mode  Compliance Description 
Freq. Hz % Rad/N-m  
20.4 1.5 7.3    x10-9 Various Local Motions 
21.8 2.1 10.4  x10-9 Various Local Motions 
22.7 41. 200   x10-9 Body Torsion 
27 2.1 10.1  x10-9 Body & Exhaust Bending 
28.2 4.1 20.2  x10-9 Steering Col. vertical 
30.3 3.3 16.2  x10-9 Minor Front-End Torsion 
31 18 86     x10-9 Front End Torsion 
 
Table 9 shows the calculated compliance by mode for 
modes contributing more than 1% of the total 
compliance, and modes which subjectively exhibited 
torsion. The subjective description is given for 
comparison. It can be seen that the modal compliance 
method is very effective at identifying the 22.7 and 31 hz 
torsional modes. 
 
The total calculated compliance was 4.9x10-7 rad/N-m. 
This is to be compared with the BIP compliance,         

14.x 10-7 rad/N-m. Adding fixed glass to the BIP can be 
expected to reduce the compliance by a factor of ~ ½, 
and addition of closures (doors, hatchback, etc.) will also 
reduce the compliance. Consequently we conclude that 
the full vehicle results are consistent with the BIP 
results. 
 
 
CONCLUSIONS 
 
The studies described in this paper show that when the 
modal compliance method is applied to complex but 
lightly damped structures such as a BIP:  
 
(a) It provides accurate estimates of overall torsion and 

bending compliance as measured in static 
determinate tests. 

 
(b) It can be used to estimate the distribution of torsional 

and bending compliance for the structure.  
 
(c) It can be extended to “unusual” analysis such as 2nd 

torsion, match-boxing and breathing compliance. 
 
(d) It can be applied to complex modes. 
 
In addition, when the method is applied to complex and 
heavily damped systems such as complete vehicles, it 
can identify major body torsional modes and provide a 
reasonable estimate of the body torsional compliance.    
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APPENDIX 

Appendix: Derivation of Formulas 
 
Transfer Functions & Complex Modes 
 

In the standard modal theory each mode is 
parameterized by: 
 
 
 
 
 M = modal mass 
 K = modal stiffness 
 pψ =mode shape at degree of freedom p 

 ζ = viscous damping factor (fraction of critical 
damping) 
 
 )/( MKr =ω  
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    (18) 
 
The contribution of each mode to the compliance 
function is given by (3): 
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Here the “bar” indicates the complex conjugate, and 
s is the Laplace variable: 
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The factor ar is usually expressed in terms of a real 
modal mass or stiffness, for example: 
 
 MsMia rrr
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Based on this the value of the compliance function 
at ω=0 is: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
+−=

rr

qp

rr

qp

rr

qp

q

p

sasasaF
d ψψψψψψ

Re2
)0(
)0(

        (22) 
 
Expressing ar in terms of the modal mass (assumed 
real), and with a little algebra we find: 
  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+= }Im{

1
)Re{1

)0(
)0(

22 qpqp
rq

p

MF
d

ψψ
ζ

ζψψ
ω

        (23) 

 
Note that software packages often give 
“acceleration” mode shapes, and to get the 
appropriate “displacement” mode shapes one must 
divide each shape by riω . Also, we could extend 
this formula to complex modal mass, but this is not 
very useful since the modal mass can always be 
made real, and all the complexity can be factored 
into the mode shapes. 
 
 
 
Compliance Calculation 
 
The generalized static determinate compliance is 
obtained from the transfer functions via: 
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Based on this the contribution of an individual mode, 
assuming the modal mass M is real: 
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Given that the s'χ are real, this expression can be 
written in a more convenient form for computation: 
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Match-boxing Compliance Calculations 
 
General Approach 
 
As usual we wish to define the match-boxing compliance 
C in terms of a static determinate test defined by a 
generalized force F and a displacement D. In this case 
some forces and displacements are in the y direction, 
and some in the z-direction. For this reason we modify 
the usual formulas so that: 
    
 FF pypy χ=   FF pzpz χ=  

 }{ pzpz
p

pypy ddD χχ += ∑      (28) 



To make equations more compact we will in practice 
give each degree of freedom a single index.  
 
Forces & Constraints 
 
The appropriate load geometry is shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Loads & Constraints for Match-Boxing 
 
 For convenience we will define the generalized force F 
via: 
 
      (29) 31 FFF

rrr
−==

 
Here the horizontal arrows are used to denote vector 
quantities. F2 has the same y component as F1, but the 
sign of the z component is reversed:  
 
      (30) yy FF 12 = zz FF 12 −=
  
F4 is the negative of F2
 
   24 FF

rr
−=                 (31) 

 
Working in terms of Cartesian coordinates we have 
(|F|=magnitude of generalized force): 
   
 yyyy FFFFF 4321 )cos(|| −=−==−= α    (32) 
 
 zzzz FFFFF 4321 )sin( +=−=−=−= α    (33) 
 
The required Χ’s are now easily found. Representing the 
indices by a single index, p or q, we then have 
 
  FF pp χ=      (34)       (33) 
 
Generalized Displacement 
 
The deflection geometry is shown in Figure 9. 
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Figure 9: Match-Boxing Deflections 
 
We will define the generalized match-boxing 
displacement as the sum of the 1-3 compression and the 
2-4 expansion, with sign conventions as in the diagram: 
 
  ∑= p pDD      (35) 

 
If we denote the y and z displacements at point 1 as d1y 
and d1z, then the net match-boxing motion D1 along the 
F1 direction is :  
   )sin()cos( 111 αα zy ddD −−=   

    zzyy dd 1111 χχ +=                (36) 
 
In general we can define the match-boxing 
displacements along the direction of all 4 forces in the 
same way, and the total displacement is given by: 
 
   (37) ∑=+++=

p
ppdDDDDD χ4321
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	A vehicle body-in-prime (BIP: sheet metal without glass or closures) was used to validate the theory for a complex structure. This was done by comparing static and dynamic tests. The theory was also used to extend the compliance method to tests where static procedures would be difficult, for example match-boxing or second torsion.
	A full vehicle (complete body, engine, suspension, etc) was used to check the ability of the method to detect torsional modes, and the reasonableness of the results. The vehicle was of the same type from which the BIP was extracted, and the vehicle was excited at the corners near the ends of the rails. The extracted modes, which in some cases were quite complex, were used to calculate the torsional compliance. The results were then compared with (a) subjective descriptions of the modes and (b) the BIP compliance.



