
As a technical professional, one is often faced with the 
challenge of reducing unwanted vibration in a structure. 
The effect of this vibration can range in severity from the 
actual failure of components due to high-cycle fatigue, to 
the consumer’s perception of poor quality in a product that 
radiates too much noise or rattles excessively. Whether the 
failure mode is real or perceived, designers and product 
development engineers from all industries are working 
harder than ever to solve these types of noise and vibration 
issues.

One of the most effective and widely used methods for 
noise and vibration control is passive damping. Damping 
is most beneficial when used to reduce the amplitude of 
dynamic instabilities, or resonances, in a structure.

What is Damping?

Damping is the conversion of mechanical energy of a 
structure into thermal energy. A structure subject to 
oscillatory deformation contains a combination of kinetic 
and potential energy. In the case of real structures, there is 
also an energy dissipation element per cycle of motion. The 
amount of energy dissipated is a measure of the structure’s 
damping level.

Definition of Viscoelasticity

A viscoelastic material is characterized by possessing both 
viscous and elastic behavior. What this means exactly is best 
illustrated in Figure 1, which shows how various types of 
materials behave in the time domain. For a slab of material 
with a cross-sectional area, A, and a thickness, T, subject to 
cyclic loading, F(t), the corresponding response is given by 
the displacement function, x(t). The cyclic stress on the 
sample material is found by dividing the input load by the 
cross-sectional area, and the resulting cyclic strain on the 
material is found by dividing the displacement by the 
thickness.

A purely elastic material is one in which all the energy 
stored in the sample during loading is returned when the 
load is removed. As a result, the stress and strain curves for 
elastic materials move completely in phase. For elastic 
materials, Hooke’s Law applies, where the stress is 
proportional to the strain, and the modulus is defined at the 
ratio of stress to strain.

A complete opposite to an elastic material is a purely 
viscous material, also shown in Figure 1. This type of 
material does not return any of the energy stored during 

loading. All the energy is lost as “pure damping” once 
the load is removed. In this case, the stress is 
proportional to the rate of the strain, and the ratio of 
stress to strain rate is known as viscosity, µ. These 
materials have no stiffness component, only damping.

For all others that do not fall into one of the above 
extreme classifications, we call viscoelastic materials. 
Some of the energy stored in a viscoelastic system is 
recovered upon removal of the load, and the 
remainder is dissipated in the form of heat. The cyclic 

Figure 1. Cyclic Stress and Strain Curves vs. Time for 
Various Materials
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stress at a loading frequency of g is out-of-phase with 
the strain by some angle φ, (where 0 < φ < π/2). The 
angle φ is a measure of the materials damping level; 
the larger the angle the greater the damping.

For a viscoelastic material, the modulus is represented 
by a complex quantity. The real part of this complex 
term (storage modulus, E1) relates to the elastic 
behavior of the material, and defines the stiffness. The 
imaginary component (loss modulus, E2) relates to the 
material’s viscous behavior, and defines the energy 
dissipative ability of the material. Using Hooke’s Law 
to define the modulus for complex values, we can 
define the complex modulus, E* as:

Behavior of Viscoelastic Materials

One of the unique characteristics of viscoelastic 
materials is that their properties are influenced by 
many parameters. They can include: frequency, 
temperature, dynamic strain rate, static pre-load, time 
effects such as creep and relaxation, aging, and other 
irreversible effects. In working with this class of 
materials, we strive to define the materials complex 
modulus (stiffness and damping properties) as a 
function of these parameters. Most important of these 
include temperature and frequency effects. Viscoelastic 
materials are typically characterized as having the type 
of behavior as shown in Figure 2.

These materials exist in various unique states or 
“phases” over the broad temperature and frequency 
ranges in which they are used. These regions are 
typically referred to as the Glassy, Transition, Rubbery, 
and Flow Regions. Viscoelastic materials behave 
differently based on which region they exist in for a 
specific application.

In the glassy region the polymer chains are rigidly 
ordered and crystalline in nature, possessing glass-like 
behavior. Stiffness, E1, is at its highest for the material 
in this region, and damping levels are typically low. 
The glass transition temperature, Tg, of a material 

refers to the elbow of the 
storage modulus curve at 
the edge of the glassy 
region as it enters into the 
transition region. Tg also 
defines the peak of the 
loss modulus, Ez, curve.

The transition region is so 
named because the 
material is transitioning 
from the glassy to the 
rubbery region. It is in this 
area that the viscoelastic 
material goes through its 
most rapid rate of change 
in stiffness and possesses 
its highest level of 
damping performance. 
The reference temperature 
of a material, To, is used 
to define the peak of the 
loss factor curve. In this 
region, the long molecular 
chains of the polymer are 
in a semi-rigid and semi-
flow state, and are able to 
rub against adjacent 
chains. These frictional 
effects result in the 
mechanical damping 
characteristic of 
viscoelastic materials.

In the rubbery region, the 
material reaches a lower 
plateau in stiffness. 
Damping is at a lower, but 
reasonable level. A 
material selected to exist 
in this region is ideally 
suited for such devices as 
isolators or tuned mass 
dampers because the 
modulus varies only 
slightly with changes in 

temperature and 
frequency.

Measurement of 
Damping

The simplified single-
degree-of-freedom (SDOF) 
model shown in Figure 3a 
can represent many real 
world structures. In this 
analytical system, damping 
is represented using a 
viscous model in which 
the damping element 
(shown as a dashpot) is 
proportional to velocity, 
dx/dt. When using a 
viscous damping model, a 
direct analytical solution of 
the equations of motion is 
available.

The classic complimentary 
solution to the transient, 
free vibration response of 
the system of Figure 3a 
yields the analytical 
representation of viscous 
damping as the damping 
ratio, ζ, shown in the 
following equation:

The term co is the critical 
viscous damping 
coefficient. The critical 
damping for a system is 
defined as the smallest 
level of viscous damping 
in which the mass of 
Figure 3a will exhibit no 
oscillation when displaced 
from equilibrium.

Figure 2. Variation of Complex Modulus with Temperature for
a Typical Viscoelastic Material

Figure 3. Single-Degree-of-Freedom Damping Models
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The damping ratio is often 
presented as a percentage 
of the fraction of critical 
damping or percent critical 
damping, %Cr. A system is 
classified as underdamped 
if ζ < 1, critically damped 
if ζ = 1, and overdamped if 
ζ > 1. Vibratory motion 
will only exist for an 
underdamped system. In 
all the cases above, the 
response of a system set 
into motion will eventually 
decay to zero with time, 
except when ζ = 0.

Damping estimates can be 
made from this transient 
response. A SDOF 
underdamped system 
subjected to an impulsive 
force at t = 0 will exhibit 
the displacement response 
x(t) as shown in Figure 4. 
A measure of damping can 
be made from the rate of 
decay of the response for 
consecutive cycles of 
vibration, referred to as the 
log decrement, δ, and 
defined in this equation:

The selection of a viscous 
damping model is 
primarily used for ease of 
analysis. However, the 
behavior of a viscoelastic 
material is better described 
through the use of the 
hysteretic model, in which 
the damping is 
proportional to strain and 
is independent of rate. 
This is achieved by 
eliminating the viscous 

dashpot, and representing 
the energy dissipation in 
the system by a complex 
spring element, k*, 
resulting in a complex 
modulus, E*.

The hysteretic model can 
be used for damping 
estimates made from the 
response characteristics of 
steady-state vibrating 
systems. The SDOF system 
of Figure 3b is shown to 
be subject to a harmonic 
forcing function, F(t), 
applied to the mass, m. 
The equation of motion 
for this system can be 
solved to yield the transfer 
function of the nature 
shown in Figure 5. This is 
a graph of compliance for 
a SDOF system having a 
single resonance at ωo. 
The level of damping can 
be subjectively determined 
by noting the sharpness of 
the peak — the more 
rounded the shape, the 
more damping present.

A quantitative measure of 
damping is achieved by 
using the Half-Power 
Bandwidth method, shown 
graphically in Figure 5 and 
given by the following 
equation:

The material damping, η, 
of the complex spring 
element can be 
determined by the ratio of 
∆ω to ωo with ∆ω 
determined from the half-
power point down from 
the resonant peak value, 
Amax. On a decibel scale, 
this corresponds to –3 dB 
down from the peak 
value. For that reason, this 
damping estimation is also 
referred to as the 3 dB 
method.

Another representation of 
damping for this SDOF 
system is called 
Amplification Factor, Q. 
As illustrated in Figure 5, 
Q is the ratio of the 
response amplitude at 
resonance, ωo, to the static 
response at ω = 0.
Yet another estimate of 
damping can be achieved 
by calculating the energy 
loss per cycle of oscillation 
due to steady state 
harmonic loading. For a 
viscoelastic material 
subject to the cyclic 
loading as shown in Figure 
1c, the hysteresis of the 
material can be defined by 
plotting the input stress σ 
(t) versus responding 
strain ε(t) for one cycle of 
motion. The elliptical 
shape shown in Figure 6 is 
defined as the hysteresis 
loop. The area captured 
within the hysteresis loop, 
D, is equal to the 
dissipated energy per cycle 
of harmonic motion by the 
material. For reasonable 

levels of damping, this 
relationship between 
material damping and loop 
area can be defined by 
this equation:

Relationship Between 
Measures of Damping

For low levels of damping 
(η < 0.2), and within the 
linear region of the 
viscoelastic material, the 
different measures of 
damping discussed above 
can be equated using the 
following relationship as 
shown in Figure 7.

Figure 4. Transient Response 
of a Classically 

Underdamped SDOF System

Figure 5. Compliance Transfer Function of a SDOF System

Figure 6. Typical Hysteresis
Loop for a Viscoelastic

Material

Figure 7. Interrelationship of Damping Measures
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